Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.803
Filter
1.
Pharm Biol ; 62(1): 544-561, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946248

ABSTRACT

CONTEXT: Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE: To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS: Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS: This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS: TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.


Subject(s)
Diabetic Neuropathies , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Diabetic Neuropathies/drug therapy , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Animals , Quality of Life , Oxidative Stress/drug effects , Drug Evaluation, Preclinical/methods
2.
Genome Med ; 16(1): 85, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956711

ABSTRACT

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Subject(s)
Aging , DNA Methylation , Longevity , Humans , Animals , DNA Methylation/drug effects , Longevity/drug effects , Aging/drug effects , Epigenesis, Genetic/drug effects , Drug Discovery/methods , Cellular Senescence/drug effects , Drug Evaluation, Preclinical/methods , Drosophila , Cells, Cultured , Sirolimus/pharmacology
3.
Mar Drugs ; 22(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921571

ABSTRACT

TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , TNF Receptor-Associated Factor 6 , Humans , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Aquatic Organisms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Evaluation, Preclinical/methods , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Pharmacophore , Intracellular Signaling Peptides and Proteins
4.
Methods Cell Biol ; 188: 89-108, 2024.
Article in English | MEDLINE | ID: mdl-38880530

ABSTRACT

Autosomal Dominant Optic Atrophy (ADOA) is a rare neurodegenerative condition, characterized by the bilateral loss of vision due to the degeneration of retinal ganglion cells. Its primary cause is linked to mutations in OPA1 gene, which ultimately affect mitochondrial structure and function. The current lack of successful treatments for ADOA emphasizes the need to investigate the mechanisms driving disease pathogenesis and exploit the potential of animal models for preclinical trials. Among such models, Caenorhabditis elegans stands out as a powerful tool, due its simplicity, its genetic tractability, and its relevance to human biology. Despite the lack of a visual system, the presence of mutated OPA1 in the nematode recapitulates ADOA pathology, by stimulating key pathogenic features of the human condition that can be studied in a fast and relatively non-laborious manner. Here, we provide a detailed guide on how to assess the therapeutic efficacy of chemical compounds, in either small or large scale, by evaluating three crucial phenotypes of humanized ADOA model nematodes, that express pathogenic human OPA1 in their GABAergic motor neurons: axonal mitochondria number, neuronal cell death and defecation cycle time. The described methods can deepen our understanding of ADOA pathogenesis and offer a practical framework for developing novel treatment schemes, providing hope for improved therapeutic outcomes and a better quality of life for individuals affected by this currently incurable condition.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Optic Atrophy, Autosomal Dominant , Animals , Caenorhabditis elegans/genetics , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/drug therapy , Humans , Mitochondria/metabolism , Mitochondria/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mutation , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Drug Evaluation, Preclinical/methods
5.
Biomaterials ; 310: 122627, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38823194

ABSTRACT

The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver , Humans , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Liver/pathology , Animals , Swine , Printing, Three-Dimensional , Microfluidics/methods , Models, Biological , Drug Evaluation, Preclinical/methods , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Biomimetics/methods
6.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892306

ABSTRACT

The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , COVID-19/virology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical/methods , Protein Binding , Ligands
7.
Biochem Biophys Res Commun ; 725: 150263, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38905995

ABSTRACT

OBJECTIVE: To explore the feasibility of screening potential drugs for the treatment of diabetic kidney disease (DKD) using a single-cell transcriptome sequencing dataset and Connectivity Map (CMap) database screening. METHODS: A DKD single-nucleus transcriptome sequencing dataset was analyzed using Seurat 4.0 to obtain specific podocyte subclusters and differentially expressed genes (DEGs) related to DKD. These DEGs were subsequently subjected to a search against the CMap database to screen for drug candidates. Cell and animal experiments were conducted to evaluate the efficacy of the top 3 drug candidates. RESULTS: Initially, we analyzed the DKD single-nucleus transcriptome sequencing dataset to obtain intrinsic renal cells such as podocytes, endothelial cells, mesangial cells, proximal tubular cells, collecting duct cells and immune cells. Podocytes were further divided into four subclusters, among which the proportion of POD_1 podcytes was significantly greater in DKD kidneys than in control kidneys (34.0 % vs. 3.4 %). The CMap database was searched using the identified DEGs in the POD_1 subcluster, and the drugs, including tozasertib, paroxetine, and xylazine, were obtained. Cell-based experiments showed that tozasertib, paroxetine and xylazine had no significant podocyte toxicity in the concentration range of 0.01-50 µM. Tozasertib, paroxetine, and xylazine all reversed the advanced glycation end products (AGEs)-induced decrease in podocyte marker levels, but the effect of paroxetine was more prominent. Animal experiments showed that paroxetine decreased urine ALB/Cr levels in DKD model mice by approximately 51.5 % (115.7 mg/g vs. 238.8 mg/g, P < 0.05). Histopathological assessment revealed that paroxetine attenuated basement membrane thickening, restored the number of foot processes of podocytes, and reduced foot process fusion. In addition, paroxetine also attenuated renal tubular-interstitial fibrosis. Mechanistically, paroxetine inhibited the expression of GRK2 and NLRP3, decreased the phosphorylation level of p65, restored NRF2 expression, and relieved inflammation and oxidative stress. CONCLUSION: This strategy based on single-cell transcriptome sequencing and CMap data can facilitate the identification and aid the rapid development of clinical DKD drugs. Paroxetine, screened by this strategy, has excellent renoprotective effects.


Subject(s)
Diabetic Nephropathies , Podocytes , Transcriptome , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Animals , Transcriptome/drug effects , Mice , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Single-Cell Analysis/methods , Male , Drug Evaluation, Preclinical/methods , Mice, Inbred C57BL , Gene Expression Profiling , Humans
8.
9.
Biochem Soc Trans ; 52(3): 1045-1059, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38778769

ABSTRACT

Major advancements in human pluripotent stem cell (hPSC) technology over recent years have yielded valuable tools for cardiovascular research. Multi-cell type 3-dimensional (3D) cardiac models in particular, are providing complementary approaches to animal studies that are better representatives than simple 2-dimensional (2D) cultures of differentiated hPSCs. These human 3D cardiac models can be broadly divided into two categories; namely those generated through aggregating pre-differentiated cells and those that form self-organizing structures during their in vitro differentiation from hPSCs. These models can either replicate aspects of cardiac development or enable the examination of interactions among constituent cell types, with some of these models showing increased maturity compared with 2D systems. Both groups have already emerged as physiologically relevant pre-clinical platforms for studying heart disease mechanisms, exhibiting key functional attributes of the human heart. In this review, we describe the different cardiac organoid models derived from hPSCs, their generation methods, applications in cardiovascular disease research and use in drug screening. We also address their current limitations and challenges as pre-clinical testing platforms and propose potential improvements to enhance their efficacy in cardiac drug discovery.


Subject(s)
Pluripotent Stem Cells , Humans , Pluripotent Stem Cells/cytology , Cell Differentiation , Organoids/cytology , Animals , Heart/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Drug Evaluation, Preclinical/methods , Cardiovascular Diseases/metabolism , Models, Cardiovascular
10.
Drug Metab Pharmacokinet ; 56: 101020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797089

ABSTRACT

Quantitative Systems Pharmacology (QSP) has emerged as a promising modeling and simulation (M&S) approach in drug development, with potential to improve clinical success rates. While conventional M&S has significantly contributed to quantitative understanding in late preclinical and clinical phases, it falls short in explaining unexpected phenomena and testing hypotheses in the early research phase. QSP presents a solution to these limitations. To harness the full potential of QSP in early preclinical stages, preclinical modelers who are familiar with conventional M&S need to update their understanding of the differences between conventional M&S and QSP. This review focuses on QSP applications during the preclinical stage, citing case examples and sharing our experiences in oncology. We emphasize the critical role of QSP in increasing the probability of success for clinical proof of concept (PoC) when applied from the early preclinical stage. Enhancing the quality of both hypotheses and QSP models from early preclinical stage is of critical importance. Once a QSP model achieves credibility, it facilitates predictions of clinical responses and potential biomarkers. We propose that sequential QSP applications from preclinical stages can improve success rates of clinical PoC, and emphasize the importance of refining both hypotheses and QSP models throughout the process.


Subject(s)
Drug Evaluation, Preclinical , Humans , Animals , Drug Evaluation, Preclinical/methods , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Network Pharmacology , Drug Development/methods , Models, Biological , Computer Simulation
11.
STAR Protoc ; 5(2): 103058, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38748881

ABSTRACT

Three-dimensional (3D) models play an increasingly important role in preclinical drug testing as they faithfully mimic interactions between cancer cells and the tumor microenvironment (TME). Here, we present a protocol for generating scaffold-free 3D multicomponent human melanoma spheroids. We describe steps for characterizing models using live-cell imaging and histology, followed by drug testing and assessment of cell death through various techniques such as imaging, luminescence-based assays, and flow cytometry. Finally, we demonstrate the models' adaptability for co-cultures with immune cells.


Subject(s)
Melanoma , Spheroids, Cellular , Humans , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Melanoma/pathology , Melanoma/metabolism , Drug Evaluation, Preclinical/methods , Tumor Microenvironment , Coculture Techniques/methods , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Cell Culture Techniques/methods
12.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791226

ABSTRACT

Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.


Subject(s)
Antiviral Agents , Biological Products , SARS-CoV-2 , Virus Internalization , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Virus Internalization/drug effects , SARS-CoV-2/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/therapeutic use , COVID-19 Drug Treatment , Plant Extracts/pharmacology , Plant Extracts/chemistry , Drug Repositioning/methods , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Drug Evaluation, Preclinical/methods
13.
Tuberculosis (Edinb) ; 147: 102503, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729070

ABSTRACT

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.


Subject(s)
Disease Models, Animal , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Mycobacterium abscessus/drug effects , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Mice , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Humans , Drug Evaluation, Preclinical/methods , Lung/microbiology , Lung/drug effects , Lung/immunology
14.
J Pharmacol Toxicol Methods ; 127: 107517, 2024.
Article in English | MEDLINE | ID: mdl-38797367

ABSTRACT

INTRODUCTION: Rat telemetry is the assay of choice to assess the potential effects of novel drug candidates on cardiovascular parameters during early drug discovery. Telemetry device implantation can be combined with venous catheter and access button implantation when intravenous administration of the drug substance is required. METHODS: Rats (Sprague Dawley or Han Wistar) were implanted with telemetry devices for arterial blood pressure measurement using either direct aortic catheterisation (n = 131) or aortic catheterisation via the femoral artery (n = 17). Bipolar leads for ECG recording were also implanted in some of the animals (n = 102). Femoral vein catheters and access buttons were implanted as a separate surgery after the initial telemetry implantation (n = 43). RESULTS: 128 animals (86%) were implanted successfully with telemetry devices without any notable surgical or post-surgical problems. When considering the 2 different catheterisation methods separately, the success rate of the direct aortic approach was 88% compared to 76% with the aortic placement via the femoral artery. Lameness was the most common post-surgical problem. Blood loss during surgery and ischaemic patches on the tail were also observed at a low incidence with the direct aortic approach. Catheter pull-out occurred in some rats before the first signal check reducing the overall success rate for blood pressure measurement using the direct aortic approach to 85%. A 95% success rate was observed for catheter and access button implantation. DISCUSSION: A high success rate is possible when implanting telemetry devices in rats with and without venous catheters and access buttons. We have attempted to provide solutions to problems and describe refinements to the procedure which may further improve surgical outcomes.


Subject(s)
Rats, Sprague-Dawley , Rats, Wistar , Telemetry , Animals , Telemetry/methods , Telemetry/instrumentation , Rats , Male , Femoral Artery/surgery , Blood Pressure/drug effects , Electrocardiography/methods , Drug Evaluation, Preclinical/methods
15.
J Pharmacol Toxicol Methods ; 127: 107510, 2024.
Article in English | MEDLINE | ID: mdl-38705245

ABSTRACT

Cardiovascular safety pharmacology and toxicology studies include vehicle control animals in most studies. Electrocardiogram data on common vehicles is accumulated relatively quickly. In the interests of the 3Rs principles it may be useful to use this historical information to reduce the use of animals or to refine the sensitivity of studies. We used implanted telemetry data from a large nonhuman primate (NHP) cardiovascular study (n = 48) evaluating the effect of moxifloxacin. We extracted 24 animals to conduct a n = 3/sex/group analysis. The remaining 24 animals were used to generate 1000 unique combinations of 3 male and 3 female NHP to act as control groups for the three treated groups in the n = 3/sex/group analysis. The distribution of treatment effects, median minimum detectable difference (MDD) values were gathered from the 1000 studies. These represent contemporary controls. Data were available from 42 NHP from 3 other studies in the same laboratory using the same technology. These were used to generate 1000 unique combinations of 6, 12, 18, 24 and 36 NHP to act as historical control animals for the 18 animals in the treated groups of the moxifloxacin study. Data from an additional laboratory were also available for 20 NHP. The QT, RR and QT-RR data from the three sources were comparable. However, differences in the time course of QTc effect in the vehicle data from the two laboratories meant that it was not possible to use cross-lab controls. In the case of historical controls from the same laboratory, these could be used in place of the contemporary controls in determining a treatment's effect. There appeared to be an advantage in using larger (≥18) group sizes for historical controls. These data support the opportunity of using historical controls to reduce the number of animals used in new cardiovascular studies.


Subject(s)
Electrocardiography , Fluoroquinolones , Moxifloxacin , Telemetry , Animals , Female , Electrocardiography/methods , Electrocardiography/drug effects , Male , Telemetry/methods , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Control Groups , Heart Rate/drug effects , Heart Rate/physiology , Consciousness/drug effects , Drug Evaluation, Preclinical/methods
16.
Protein Sci ; 33(6): e5007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723187

ABSTRACT

The identification of an effective inhibitor is an important starting step in drug development. Unfortunately, many issues such as the characterization of protein binding sites, the screening library, materials for assays, etc., make drug screening a difficult proposition. As the size of screening libraries increases, more resources will be inefficiently consumed. Thus, new strategies are needed to preprocess and focus a screening library towards a targeted protein. Herein, we report an ensemble machine learning (ML) model to generate a CDK8-focused screening library. The ensemble model consists of six different algorithms optimized for CDK8 inhibitor classification. The models were trained using a CDK8-specific fragment library along with molecules containing CDK8 activity. The optimized ensemble model processed a commercial library containing 1.6 million molecules. This resulted in a CDK8-focused screening library containing 1,672 molecules, a reduction of more than 99.90%. The CDK8-focused library was then subjected to molecular docking, and 25 candidate compounds were selected. Enzymatic assays confirmed six CDK8 inhibitors, with one compound producing an IC50 value of ≤100 nM. Analysis of the ensemble ML model reveals the role of the CDK8 fragment library during training. Structural analysis of molecules reveals the hit compounds to be structurally novel CDK8 inhibitors. Together, the results highlight a pipeline for curating a focused library for a specific protein target, such as CDK8.


Subject(s)
Cyclin-Dependent Kinase 8 , Drug Evaluation, Preclinical , Machine Learning , Protein Kinase Inhibitors , Humans , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/chemistry , Cyclin-Dependent Kinase 8/metabolism , Drug Evaluation, Preclinical/methods , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
17.
Nucleic Acids Res ; 52(W1): W439-W449, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38783035

ABSTRACT

High-throughput screening rapidly tests an extensive array of chemical compounds to identify hit compounds for specific biological targets in drug discovery. However, false-positive results disrupt hit compound screening, leading to wastage of time and resources. To address this, we propose ChemFH, an integrated online platform facilitating rapid virtual evaluation of potential false positives, including colloidal aggregators, spectroscopic interference compounds, firefly luciferase inhibitors, chemical reactive compounds, promiscuous compounds, and other assay interferences. By leveraging a dataset containing 823 391 compounds, we constructed high-quality prediction models using multi-task directed message-passing network (DMPNN) architectures combining uncertainty estimation, yielding an average AUC value of 0.91. Furthermore, ChemFH incorporated 1441 representative alert substructures derived from the collected data and ten commonly used frequent hitter screening rules. ChemFH was validated with an external set of 75 compounds. Subsequently, the virtual screening capability of ChemFH was successfully confirmed through its application to five virtual screening libraries. Furthermore, ChemFH underwent additional validation on two natural products and FDA-approved drugs, yielding reliable and accurate results. ChemFH is a comprehensive, reliable, and computationally efficient screening pipeline that facilitates the identification of true positive results in assays, contributing to enhanced efficiency and success rates in drug discovery. ChemFH is freely available via https://chemfh.scbdd.com/.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Software , Drug Discovery/methods , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical/methods , False Positive Reactions , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Humans
18.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791119

ABSTRACT

SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 µM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.


Subject(s)
Furin , SARS-CoV-2 , Small Molecule Libraries , Furin/antagonists & inhibitors , Furin/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Humans , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Drug Evaluation, Preclinical/methods
19.
Clin Pharmacol Ther ; 116(1): 235-246, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38711199

ABSTRACT

Cross-species differences in drug transport and metabolism are linked to poor translation of preclinical pharmacokinetic and toxicology data to humans, often resulting in the failure of new chemical entities (NCEs) during clinical drug development. Specifically, inaccurate prediction of renal clearance and renal accumulation of NCEs due to differential abundance of enzymes and transporters in kidneys can lead to differences in pharmacokinetics and toxicity between experimental animals and humans. We carried out liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based protein quantification of 78 membrane drug-metabolizing enzymes and transporters (DMETs) in the kidney membrane fractions of humans, rats, and mice for characterization of cross-species and sex-dependent differences. In general, majority of DMET proteins were higher in rodents than in humans. Significant cross-species differences were observed in 30 out of 33 membrane DMET proteins quantified in all three species. Although no significant sex-dependent differences were observed in humans, the abundance of 28 and 46 membrane proteins showed significant sex dependence in rats and mice, respectively. These cross-species and sex-dependent quantitative abundance data are valuable for gaining a mechanistic understanding of drug renal disposition and accumulation. Further, these data can also be integrated into systems pharmacology tools, such as physiologically based pharmacokinetic models, to enhance the interpretation of preclinical pharmacokinetic and toxicological data.


Subject(s)
Kidney , Membrane Transport Proteins , Species Specificity , Tandem Mass Spectrometry , Animals , Humans , Male , Female , Kidney/metabolism , Mice , Rats , Membrane Transport Proteins/metabolism , Sex Factors , Chromatography, Liquid/methods , Pharmaceutical Preparations/metabolism , Drug Evaluation, Preclinical/methods
20.
Nat Rev Drug Discov ; 23(7): 525-545, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38773351

ABSTRACT

Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Humans , Drug-Related Side Effects and Adverse Reactions/prevention & control , Animals , Drug Industry , Drug Development/methods , Drug Evaluation, Preclinical/methods , Drugs, Investigational/pharmacology , Drugs, Investigational/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...