Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.278
Filter
1.
J Environ Sci (China) ; 148: 567-578, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095189

ABSTRACT

Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.


Subject(s)
Erythromycin , Fermentation , Metagenomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics
2.
J Environ Sci (China) ; 150: 373-384, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306413

ABSTRACT

Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.


Subject(s)
Drug Resistance, Microbial , Soil Microbiology , Soil , Soil/chemistry , Drug Resistance, Microbial/genetics , Genes, Bacterial , Bacteria/drug effects , Bacteria/genetics , Soil Pollutants/toxicity
3.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003073

ABSTRACT

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Subject(s)
Drinking Water , Drug Resistance, Microbial , Metagenomics , Drug Resistance, Microbial/genetics , Drinking Water/microbiology , China , Environmental Monitoring , Anti-Bacterial Agents/pharmacology , Water Microbiology
4.
Sci Rep ; 14(1): 22897, 2024 10 02.
Article in English | MEDLINE | ID: mdl-39358462

ABSTRACT

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO2-Pd/Cu and g-C3N4-Pd/Cu), with a particular emphasis on their effectiveness in eliminating blaTEM, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO2 and g-C3N4 processes, while slight differences in Cu/Pd loadings suggest g-C3N4-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.


Subject(s)
Titanium , Titanium/chemistry , Titanium/pharmacology , Catalysis , Wastewater/microbiology , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods , Ozone/chemistry , Ozone/pharmacology , Drug Resistance, Microbial/genetics , Nitrogen Compounds/chemistry , Light , Nitriles/chemistry , Nitriles/pharmacology , Copper/chemistry , Copper/pharmacology , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Oxidation-Reduction , Graphite
5.
Pestic Biochem Physiol ; 204: 106026, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277355

ABSTRACT

As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.


Subject(s)
Biofilms , Fungicides, Industrial , Gene Transfer, Horizontal , Triazoles , Triazoles/toxicity , Triazoles/pharmacology , Fungicides, Industrial/toxicity , Fungicides, Industrial/pharmacology , Biofilms/drug effects , Drug Resistance, Microbial/genetics , Plasmids/genetics , Genes, Bacterial
6.
Environ Sci Technol ; 58(40): 17990-17998, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39324609

ABSTRACT

Antibiotic resistance genes (ARGs) as emerging environmental contaminants exacerbate the risk of spreading antibiotic resistance. Natural organic matter (NOM) is ubiquitous in aquatic environments and plays a crucial role in biogeochemical cycles. However, its impact on the dissemination of extracellular antibiotic resistance genes (eARGs) under sunlight exposure remains elusive. This study reveals that environmentally relevant levels of NOM (0.1-20 mg/L) can significantly enhance the natural transformation frequency of the model bacterium Acinetobacter baylyi ADP1 by up to 7.6-fold under simulated sunlight. Similarly, this enhancement was consistently observed in natural water and wastewater systems. Further mechanism analysis revealed that reactive oxygen species (ROS) generated by NOM under sunlight irradiation, primarily singlet oxygen and hydroxyl radicals, play a crucial role in this process. These ROS induce intracellular oxidative stress and elevated cellular membrane permeability, thereby indirectly boosting ATP production and enhancing cell competence of extracellular DNA uptake and integration. Our findings highlight a previously underestimated role of natural factors in the dissemination of eARGs within aquatic ecosystems and deepen our understanding of the complex interplay between NOM, sunlight, and microbes in environmental water bodies. This underscores the importance of developing comprehensive strategies to mitigate the spread of antibiotic resistance in aquatic environments.


Subject(s)
Drug Resistance, Microbial , Sunlight , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Reactive Oxygen Species/metabolism
7.
Environ Sci Technol ; 58(40): 17838-17849, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39333059

ABSTRACT

Active antibiotic-resistant bacteria (ARB) play a major role in spreading antimicrobial resistance (AMR) in the environment; however, they have remained largely unexplored. Herein, we coupled bio-orthogonal noncanonical amino acid tagging with high-throughput fluorescence-activated single-cell sorting (FACS) and sequencing to characterize the phenome and genome of active ARB in complex environmental matrices. Active ARB, conferring resistance to six antibiotics throughout wastewater treatment, were distinguished and quantified. The percentage and concentration of active ARB ranged from 0.28% to 45.3% and from 1.1 × 104 to 2.09 × 107 cells/mL, respectively. Notably, the final effluents retained up to 4.79 × 104 cells/mL of active ARB. Targeted FACS and genomic sequencing revealed a distinct taxonomic composition of active ARB compared with that of the overall population. The coexistence of antibiotic resistome and mobilome in active ARB was also identified, including three high-quality metagenomic assembly genomes assigned to pathogenic bacteria, highlighting the substantial health risks due to their activity, phenotypic resistance, mobility, and pathogenicity. This study advances our understanding of previously overlooked active ARB in the environment by linking their resistance phenotype to their genotype. This high-throughput method will enable efficient quantitative surveillance of active AMR, providing valuable insights into risk control and management.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Single-Cell Analysis , Drug Resistance, Microbial/genetics , Wastewater/microbiology
8.
Sci Total Environ ; 952: 175906, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39226958

ABSTRACT

Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.


Subject(s)
Anti-Bacterial Agents , Bacteria , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , Environmental Monitoring , Environmental Restoration and Remediation/methods
9.
Sci Total Environ ; 952: 175989, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39233087

ABSTRACT

Freeze-thaw cycle (FTC) is a naturally occurring phenomenon in high-latitude terrestrial ecosystems, which may exert influence on distribution and evolution of microbial community in the soil. The relationship between transmission of antibiotic resistance genes (ARGs) and microbial community was investigated upon the case study on the soil of cold-region dairy farm under seasonal FTC. The results demonstrated that 37 ARGs underwent decrease in the abundance of blaTEM from 80.4 % for frozen soil to 71.7 % for thawed soil, and that sul2 from 8.8 % for frozen soil to 6.5 % for thawed soil, respectively. Antibiotic deactivation was identified to be closely related to the highest relative abundance of blaTEM, and the spread of sulfonamide resistance genes (SRGs) occurred mainly via target modification. Firmicutes in frozen soil were responsible for dominating the abundance of ARGs by suppressing the native bacteria under starvation effect in cold regions, and then underwent horizontal gene transfer (HGT) among native bacteria through mobile genetic elements (MGEs). The TRB-C (32.6-49.1 %) and tnpA-06 (0.27-7.5 %) were significantly increased in frozen soil, while Int3 (0.67-10.6 %) and tnpA-04 (11.1-19.4 %) were up-regulated in thawed soil. Moreover, the ARGs in frozen soil primarily underwent HGT through MGEs, i.e. TRB-C and tnpA-06, with increased number of Firmicutes serving as carrier. The case study not only demonstrated relationship between transmission of ARGs and microbial community in the soil under practically relevant FTC condition, but also emphasized the importance for formulating better strategies for preventing FTC-induced ARGs in dairy farm in cold regions.


Subject(s)
Dairying , Drug Resistance, Microbial , Freezing , Microbiota , Soil Microbiology , Drug Resistance, Microbial/genetics , Microbiota/genetics , Microbiota/drug effects , Farms , Gene Transfer, Horizontal , Genes, Bacterial , China , Environmental Monitoring
10.
Bioresour Technol ; 412: 131399, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39218364

ABSTRACT

A self-corrosion microelectrolysis (SME)-enhanced membrane-aerated biofilm reactor (eMABR) was developed for the removal of pollutants and reduction of antibiotic resistance genes (ARGs). Fe2+ and Fe3+ formed iron oxides on the biofilm, which enhanced the adsorption and redox process. SME can induce microorganisms to secrete more extracellular proteins and up-regulate the expression of ammonia monooxygenase (AMO) (0.92 log2). AMO exposed extra binding sites (ASP-69) for antibiotics, weakening the competition between NH4+-N and sulfamethoxazole (SMX). The NH4+-N removal efficiency in the S-eMABR (adding SMX and IC) increased by 44.87 % compared to the S-MABR (adding SMX). SME increased the removal performance of SMX by approximately 1.45 times, down-regulated the expressions of sul1 (-1.69 log2) and sul2 (-1.30 log2) genes, and controlled their transfer within the genus. This study provides a novel strategy for synergistic reduction of antibiotics and ARGs, and elucidates the corresponding mechanism based on metatranscriptomic and molecular docking analyses.


Subject(s)
Ammonia , Biofilms , Sulfamethoxazole , Ammonia/metabolism , Bioreactors , Nitrogen , Drug Resistance, Microbial/genetics , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Diffusion , Genes, Bacterial , Water Pollutants, Chemical
11.
Bioresour Technol ; 412: 131420, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39233181

ABSTRACT

The effect of different levels of temperature on resistance genes is not clear in mesophilic static composting (<50 °C). This study conducted livestock manure composting with different temperature gradients from 20 to 50 °C, it was found that the reduction rates of risk rank-I antibiotic resistance genes (from 3 % to 66 %), metal resistance genes (from -50 % to 76 %) and bacterial pathogens (from 72 % to 91 %) all increased significantly with increasing temperature from 20 to 50°C. The vulnerability of bacterial communities increased significantly, and the assembly process of bacterial communities changed from deterministic to stochastic with the increase of composting temperature. Higher temperature could accelerate the removal of thermolabile resistance genes hosts or pathogenic hosts carrying mobile genetic elements by directly or indirectly affecting organic acids content. Therefore, for soil safety, the temperature of the manure recycling process should be increased as much as possible.


Subject(s)
Bacteria , Composting , Drug Resistance, Microbial , Manure , Temperature , Composting/methods , Manure/microbiology , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/drug effects , Genes, Bacterial , Soil Microbiology , Animals , Drug Resistance, Bacterial/genetics
12.
Sci Rep ; 14(1): 21034, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251745

ABSTRACT

Global sewage sludge production is rapidly increasing, and its safe disposal is becoming an increasingly serious issue. One of the main methods of municipal sewage sludge management is based on its agricultural use. The wastewater and sewage sludge contain numerous antibiotic resistance genes (ARGs), and its microbiome differs significantly from the soil microbial community. The aim of the study was to assess the changes occurring in the soil microbial community and resistome after the addition of sewage sludge from municipal wastewater treatment plant (WWTP) in central Poland, from which the sludge is used for fertilizing agricultural soils on a regular basis. This study used a high-throughput shotgun metagenomics approach to compare the microbial communities and ARGs present in two soils fertilized with sewage sludge. The two soils represented different land uses and different physicochemical and granulometric properties. Both soils were characterized by a similar taxonomic composition of the bacterial community, despite dissimilarities between soils properties. Five phyla predominated, viz. Planctomycetes, Actinobacteria, Proteobacteria, Chloroflexi and Firmicutes, and they were present in comparable proportions in both soils. Network analysis revealed that the application of sewage sludge resulted in substantial qualitative and quantitative changes in bacterial taxonomic profile, with most abundant phyla being considerably depleted and replaced by Proteobacteria and Spirochaetes. In addition, the ratio of oligotrophic to copiotrophic bacteria substantially decreased in both amended soils. Furthermore, fertilized soils demonstrated greater diversity and richness of ARGs compared to control soils. The increased abundance concerned mainly genes of resistance to antibiotics most commonly used in human and animal medicine. The level of heavy metals in sewage sludge was low and did not exceed the standards permitted in Poland for sludge used in agriculture, and their level in fertilized soils was still inconsiderable.


Subject(s)
Agriculture , Fertilizers , Microbiota , Sewage , Soil Microbiology , Soil , Sewage/microbiology , Agriculture/methods , Soil/chemistry , Microbiota/genetics , Microbiota/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Metagenomics/methods , Drug Resistance, Microbial/genetics , Poland
13.
Environ Monit Assess ; 196(10): 967, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305333

ABSTRACT

This work examined the occurrence characteristics and ecological risks of 31 antibiotics across five classes and seven ARGs in the surface waters of Gaoyou Lake. A total of 27 antibiotics, spanning four classes, were detected in the surface waters of Gaoyou Lake, with an overall concentration ranging from 57.5 to 114 ng/L and an average of 78.8 ng/L. Sulfonamide antibiotics exhibited the highest average concentration at 32.7 ng/L. Spatial analysis revealed that antibiotic concentration levels in the western region of the lake were higher than those in other areas. Similarly, ARGs were most abundant in this area, with sulfonamide ARGs demonstrating a notably higher mean abundance than other ARGs. Correlation analysis revealed strong positive associations between sul1 and several antibiotics, including sulfadimidine, sulfamethoxazole, ciprofloxacin, lincomycin, clindamycin, erythromycin, and intl1 (P < 0.05), with intra-group correlations among sulfonamide ARGs exceeding those between different ARG groups. Ecological risk assessment indicated that erythromycin and sulfamethoxazole presented medium risks, whereas roxithromycin, azithromycin, and lincomycin were associated with low risks to aquatic organisms. The ecological risk proportions across monitoring sites were primarily low (10.6%) and moderate (16.7%), with no high-risk areas identified and 72.7% presenting no risk. The cumulative ecological risk quotient (RQcum) suggested a medium-risk level at all surveyed sites.


Subject(s)
Anti-Bacterial Agents , Environmental Monitoring , Lakes , Water Pollutants, Chemical , Lakes/chemistry , China , Anti-Bacterial Agents/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Drug Resistance, Microbial/genetics
14.
Environ Sci Technol ; 58(37): 16547-16559, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39229966

ABSTRACT

It has been debated whether wastewater treatment plants (WWTPs) primarily act to attenuate or amplify antibiotic resistance genes (ARGs). However, ARGs are highly diverse with respect to their resistance mechanisms, mobilities, and taxonomic hosts and therefore their behavior in WWTPs should not be expected to be universally conserved. We applied metagenomic sequencing to wastewater influent and effluent samples from 12 international WWTPs to classify the behavior of specific ARGs entering and exiting WWTPs. In total, 1079 different ARGs originating from a variety of bacteria were detected. This included ARGs that could be mapped to assembled scaffolds corresponding to nine human pathogens. While the relative abundance (per 16S rRNA gene) of ARGs decreased during treatment at 11 of the 12 WWTPs sampled and absolute abundance (per mL) decreased at all 12 WWTPs, increases in relative abundance were observed for 40% of the ARGs detected at the 12th WWTP. Also, the relative abundance of mobile genetic elements (MGE) increased during treatment, but the fraction of ARGs known to be transmissible between species decreased, thus demonstrating that increased MGE prevalence may not be generally indicative of an increase in ARGs. A distinct conserved resistome was documented in both influent and effluent across samples, suggesting that well-functioning WWTPs generally attenuate influent antibiotic resistance loads. This work helps inform strategies for wastewater surveillance of antibiotic resistance, highlighting the utility of tracking ARGs as indicators of treatment performance and relative risk reduction.


Subject(s)
Drug Resistance, Microbial , Metagenomics , Sewage , Wastewater , Sewage/microbiology , Drug Resistance, Microbial/genetics , Wastewater/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/drug effects
15.
J Hazard Mater ; 479: 135525, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39217943

ABSTRACT

Composting is widely applied in recycling ever-increasing sewage sludge. However, the insufficient elimination of antibiotics and antibiotic resistance genes (ARGs) in conventional compost fertilizer poses considerable threat to agriculture safety and human health. Here we investigated the efficacy and potential mechanisms in the removal of antibiotics and ARGs from sludge in hyperthermophilic composting (HTC) plant. Our results demonstrated that the HTC product was of high maturity. HTC led to complete elimination of antibiotics and potential pathogens, as well as removal of 98.8 % of ARGs and 88.1 % of mobile genetic elements (MGEs). The enrichment of antibiotic-degrading candidates and related metabolic functions during HTC suggested that biodegradation played a crucial role in antibiotic removal. Redundancy analysis (RDA) and structural equation modelling (SEM) revealed that the reduction of ARGs was attributed to the decline of ARG-associated bacteria, mainly due to the high-temperature selection. These findings highlight the feasibility of HTC in sludge recycling and provide a deeper understanding of its mechanism in simultaneous removal of antibiotics and ARGs.


Subject(s)
Anti-Bacterial Agents , Composting , Drug Resistance, Microbial , Sewage , Sewage/microbiology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Biodegradation, Environmental , Bacteria/genetics , Bacteria/metabolism , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Hot Temperature
16.
J Hazard Mater ; 479: 135673, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39217949

ABSTRACT

Agricultural systems significantly contribute to global N2O emissions, which is intensified by excessive fertilization and antibiotic residues, attracting global concerns. However, the dynamics and pathways of antibiotics-induced soil N2O production coupled with microbial metabolism remain controversial. Here, we explored the pathways of N2O production in agricultural soils exposed to ciprofloxacin (CIP), and revealed the underlying mechanisms of CIP degradation and the associated microbial metabolisms using 15N-isotope labeling and molecular techniques. CIP exposure significantly increases the total soil N2O production rate. This is attributed to an unexpected shift from heterotrophic and autotrophic nitrification to denitrification and an increased abundance of denitrifiers Methylobacillus members under CIP exposure. The most striking strain M. flagellatus KT is further discovered to harbor N2O-producing genes but lacks a N2O-reducing gene, thereby stimulating denitrification-based N2O production. Moreover, this denitrifying strain is probably capable of utilizing the byproducts of CIP as carbon sources, evidenced by genes associated with CIP resistance and degradation. Molecular docking further shows that CIP is well ordered in the catalytic active site of CotA laccase, thus affirming the potential for this strain to degrade CIP. These findings advance the mechanistic insights into N2O production within terrestrial ecosystems coupled with the organic contaminants degradation.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Denitrification , Soil Microbiology , Soil Pollutants , Ciprofloxacin/metabolism , Ciprofloxacin/pharmacology , Soil Pollutants/metabolism , Denitrification/drug effects , Anti-Bacterial Agents/pharmacology , Nitrous Oxide/metabolism , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Nitrification/drug effects
17.
Environ Int ; 191: 108989, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39241334

ABSTRACT

Antibiotic resistance genes (ARGs) persistence and potential harm have become more widely recognized in the environment due to its fast-paced research. However, the bibliometric review on the detection, research hotspot, and development trend of environmental ARGs has not been widely conducted. It is essential to provide a comprehensive overview of the last 30 years of research on environmental ARGs to clarify the changes in the research landscape and ascertain future prospects. This study presents a visualized analysis of data from the Web of Science to enhance our understanding of ARGs. The findings indicate that solid-phase extraction provides a reliable method for extracting ARG. Technological advancements in commercial kits and microfluidics have facilitated the efficacy of ARGs extraction with significantly reducing processing times. PCR and its derivatives, DNA sequencing, and multi-omics technology are the prevalent methodologies for ARGs detection, enabling the expansion of ARG research from individual strains to more intricate microbial communities in the environment. Furthermore, due to the development of combination, hybridization and mass spectrometer technologies, considerable advancements have been achieved in terms of sensitivity and accuracy as well as lowering the cost of ARGs detection. Currently, high-frequency terms such as "Antibiotic Resistance, Antibiotics, and Metagenomics" are the center of attention for study in this area. Prominent topics include the investigation of anthropogenic impacts on environmental resistance, as well as the dynamics of migration, dissemination, and adaptation of environmental ARGs, etc. The research on environmental ARGs has made significant advancements in the fields of "Microbiology" and "Biotechnology Applied Microbiology". Over the past decade, there has been a notable increase in the fields of "Environmental Sciences Ecology" and "Engineering" with a similar growth trend observed in "Water Resources". These three domains are expected to continue driving extensive study within the realm of environmental ARGs.


Subject(s)
Drug Resistance, Microbial , Ecosystem , Drug Resistance, Microbial/genetics , Metagenomics/methods , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Environmental Microbiology , Environmental Monitoring/methods
18.
J Hazard Mater ; 479: 135730, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39243538

ABSTRACT

Sewage surveillance is a cost-effective tool for assessing antimicrobial resistance (AMR) in urban populations. However, research on sewage AMR in remote areas is still limited. Here, we used shotgun metagenomic sequencing to profile antibiotic resistance genes (ARGs) and ARG-carrying pathogens (APs) across 15 cities in Tibetan Plateau (TP) and the major cities in eastern China. Notable regional disparities in sewage ARG composition were found, with a significantly higher ARG abundance in TP (2.97 copies/cell). A total of 542 and 545 APs were identified in sewage from TP and the East, respectively, while more than 40 % carried mobile genetic elements (MGEs). Moreover, 65 MGEs-carrying APs were identified as World Health Organization (WHO) priority-like bacterial and fungal pathogens. Notably, a fungal zoonotic pathogen, Enterocytozoon bieneusi, was found for the first time to carry a nitroimidazole resistance gene (nimJ). Although distinct in AP compositions, the relative abundances of APs were comparable in these two regions. Furthermore, sewage in TP was found to be comparable to the cities in eastern China in terms of ARG mobility and AMR risks. These findings provide insights into ARGs and APs distribution in Chinese sewage and stress the importance of AMR surveillance and management strategies in remote regions.


Subject(s)
Cities , Metagenomics , Sewage , Sewage/microbiology , Tibet , China , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial
19.
J Hazard Mater ; 479: 135727, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39244980

ABSTRACT

The widespread prevalence of microplastics (MPs) in the environment poses concerns as they are vectors of antibiotic resistance genes (ARGs). The relationships between antibiotic resistomes and MPs remain unexplored in soil which was considered as the reservoirs of MPs and ARGs. This study investigated the effects of polyvinyl chloride (PVC) MPs on soil bacterial communities and ARG abundance which soil samples sourced from 20 provinces across China. We found that PVC significantly influences soil bacterial community structure and ARG abundance. Structural equation modeling revealed that PVC alters soil characteristics, ultimately affecting soil bacterial communities, including ARG-containing bacterial hosts, and the relative abundance of ARGs. This study enhances our understanding of how MPs influence the proliferation and hosts of ARGs within diverse soil environments, offering crucial insights for future strategies in plastic management and disposal.


Subject(s)
Bacteria , Drug Resistance, Microbial , Genes, Bacterial , Microplastics , Polyvinyl Chloride , Soil Microbiology , Soil Pollutants , Microplastics/toxicity , China , Soil Pollutants/toxicity , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/drug effects , Metagenomics , Drug Resistance, Bacterial/genetics
20.
J Hazard Mater ; 479: 135762, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39255666

ABSTRACT

Spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study. The conjugate transfer frequency (CTF) was only 7.16 × 10-7 at a constant water temperature of 5 °C, and it reached 2.18 × 10-5 at 30 °C. Interestingly, compared to the constant 5 °C, the water temperature perturbations (cooling and warming models between 5-30 °C) significantly promoted the CTF. Intracellular reactive oxygen species was a dominant factor, which not only directly affected the CTF of ARGs, but also functioned indirectly via influencing the cell membrane permeability and cell adhesion. Compared to the constant 5 °C, water temperature perturbations significantly elevated the gene expression associated with intercellular contact, cell membrane permeability, oxidative stress responses, and energy driven force for CTF. Furthermore, based on the mathematical model predictions, the stabilization times of acquiring plasmid maintenance were shortened to 184 h and 190 h under cooling and warming model, respectively, thus the water temperature perturbations promoted the ARGs transmission in natural conditions compared with the constant low temperature conditions.


Subject(s)
Plasmids , Reactive Oxygen Species , Temperature , Reactive Oxygen Species/metabolism , Plasmids/genetics , Drug Resistance, Microbial/genetics , Water/chemistry , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Gene Transfer, Horizontal , Escherichia coli/genetics , Escherichia coli/drug effects , Drug Resistance, Bacterial/genetics , Cell Membrane Permeability/drug effects , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL