Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.771
Filter
1.
Gut Microbes ; 16(1): 2379566, 2024.
Article in English | MEDLINE | ID: mdl-39013030

ABSTRACT

Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants with no specific treatments available. We aimed to identify the molecular mechanisms underlying NEC and investigate the therapeutic effects of Bacteroides fragilis on NEC. Clinical samples of infant feces, bile acid-targeted metabolomics, pathological staining, bioinformatics analysis, NEC rat model, and co-immunoprecipitation were used to explore the pathogenesis of NEC. Taxonomic characterization of the bile salt hydrolase (bsh) gene, enzyme activity assays, 16S rRNA sequencing, and organoids were used to explore the therapeutic effects of B. fragilis on NEC-related intestinal damage. Clinical samples, NEC rat models, and in vitro experiments revealed that total bile acid increased in the blood but decreased in feces. Moreover, the levels of FXR and other bile acid metabolism-related genes were abnormal, resulting in disordered bile acid metabolism in NEC. Taurochenodeoxycholic acid accelerated NEC pathogenesis and taurodeoxycholate alleviated NEC. B. fragilis displayed bsh genes and enzyme activity and alleviated intestinal damage by restoring gut microbiota dysbiosis and bile acid metabolism abnormalities by inhibiting the FXR-NLRP3 signaling pathway. Our results provide valuable insights into the therapeutic role of B. fragilis in NEC. Administering B. fragilis may substantially alleviate intestinal damage in NEC.


Subject(s)
Amidohydrolases , Bacteroides fragilis , Bile Acids and Salts , Enterocolitis, Necrotizing , Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Enterocolitis, Necrotizing/metabolism , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/drug therapy , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Bacteroides fragilis/metabolism , Bacteroides fragilis/genetics , Signal Transduction/drug effects , Bile Acids and Salts/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Gastrointestinal Microbiome/drug effects , Amidohydrolases/metabolism , Amidohydrolases/genetics , Humans , Rats, Sprague-Dawley , Infant, Newborn , Disease Models, Animal , Male , Female , Probiotics/administration & dosage , Probiotics/pharmacology , Infant, Premature , Dysbiosis/microbiology
2.
Transl Psychiatry ; 14(1): 292, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013880

ABSTRACT

Accumulating evidence has revealed the gut bacteria dysbiosis and brain hippocampal functional and structural alterations in major depressive disorder (MDD). However, the potential relationship between the gut microbiota and hippocampal function alterations in patients with MDD is still very limited. Data of resting-state functional magnetic resonance imaging were acquired from 44 unmedicated MDD patients and 42 demographically matched healthy controls (HCs). Severn pairs of hippocampus subregions (the bilateral cornu ammonis [CA1-CA3], dentate gyrus (DG), entorhinal cortex, hippocampal-amygdaloid transition area, and subiculum) were selected as the seeds in the functional connectivity (FC) analysis. Additionally, fecal samples of participants were collected and 16S rDNA amplicon sequencing was used to identify the altered relative abundance of gut microbiota. Then, association analysis was conducted to investigate the potential relationships between the abnormal hippocampal subregions FC and microbiome features. Also, the altered hippocampal subregion FC values and gut microbiota levels were used as features separately or together in the support vector machine models distinguishing the MDD patients and HCs. Compared with HCs, patients with MDD exhibited increased FC between the left hippocampus (CA2, CA3 and DG) and right hippocampus (CA2 and CA3), and decreased FC between the right hippocampal CA3 and bilateral posterior cingulate cortex. In addition, we found that the level of proinflammatory bacteria (i.e., Enterobacteriaceae) was significantly increased, whereas the level of short-chain fatty acids producing-bacteria (i.e., Prevotellaceae, Agathobacter and Clostridium) were significantly decreased in MDD patients. Furthermore, FC values of the left hippocampal CA3- right hippocampus (CA2 and CA3) was positively correlated with the relative abundance of Enterobacteriaceae in patients with MDD. Moreover, altered hippocampal FC patterns and gut microbiota level were considered in combination, the best discrimination was obtained (AUC = 0.92). These findings may provide insights into the potential role of gut microbiota in the underlying neuropathology of MDD patients.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Hippocampus , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/microbiology , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Hippocampus/physiopathology , Hippocampus/diagnostic imaging , Hippocampus/microbiology , Adult , Female , Dysbiosis/microbiology , Dysbiosis/physiopathology , Young Adult , Case-Control Studies , Middle Aged , Feces/microbiology
3.
Arch Dermatol Res ; 316(7): 476, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023797

ABSTRACT

Increased intestinal permeability and gut dysbiosis are important factors in the pathophysiology of psoriasis and its associated conditions. Claudin-3 is a protein that is found in tight junctions and may be used to assess the integrity of the gut barrier. The aim of this study was to investigate serum concentration of Claudin- 3 (CLDN3) in patients with psoriasis. Exploring its possible relations with patients' demographic, clinical and laboratory findings was another objective. Fifty psoriatic patients and thirty-five age- and sex-matched healthy volunteers served as the study's control group in this case-control, hospital-based research. The amount of serum CLDN3 was determined by means of an enzyme-linked immunosorbent test (ELISA). Concentration of serum CLDN3 was found to be significantly higher in patients with psoriasis. (p = 0.002). There was no statistically significant correlation between CLDN3 and patient's clinical & laboratory variables. We demonstrated that gut permeability is dysfunctional in patients with psoriasis as indicated by reduction of serum CLDN3. Further investigations are needed to determine whether modulation of gut barrier may represent a new therapeutic approach for psoriasis.


Subject(s)
Biomarkers , Claudin-3 , Permeability , Psoriasis , Skin , Humans , Psoriasis/blood , Psoriasis/diagnosis , Male , Female , Biomarkers/blood , Adult , Claudin-3/blood , Case-Control Studies , Middle Aged , Skin/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Young Adult , Tight Junctions/metabolism , Dysbiosis/diagnosis
4.
Benef Microbes ; 15(4): 397-410, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38955351

ABSTRACT

Previous studies reporting the association between gut microbiota dysbiosis and maternal obesity were mostly confined at the phylum level or at postpartum period. This study aimed to investigate the dynamic changes in gut microbial communities associated with maternal obesity at different time points of pregnancy. We performed 16S rRNA gene V3-V4 amplicon sequencing on stool samples from 110 women in all three trimesters and 1-month postpartum. Maternal gut microbial communities associated with maternal pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) were explored. The influence of maternal obesity on gut microbiota trajectories was determined based on longitudinal shifts in community clusters across the trimesters. The richness index of alpha diversity decreased with the progression of pregnancy, particularly in women with excessive GWG. The evenness index in 2nd trimester was found inversely associated with GWG. Various taxonomic differences in 1st trimester were associated with excessive GWG, whereas limited taxonomic differences in 2nd and 3rd trimesters were associated with pre-pregnancy BMI or GWG. Meanwhile, the gut microbiota trajectory with especially depleted genus Faecalibacterium in 1st trimester was associated with excessive GWG (adjusted odds ratio 5.7, 95% confidence interval 1.2-28.1). Moreover, the longitudinal abundances of genus Lachnospiraceae ND3007 group across gestations were depleted in women with overweight/obese pre-pregnancy BMI, while genus Bifidobacterium enriched in women with excessive GWG. Our study shows that dysbiosis of the gut microbiota in early pregnancy may have a significant impact on excess GWG. The abundance of the genus Faecalibacterium in 1st trimester may be a potential risk factor. Clinical trial number: NCT03785093 (https://classic.clinicaltrials.gov/ct2/show/NCT03785093).


Subject(s)
Body Mass Index , Dysbiosis , Feces , Gastrointestinal Microbiome , Gestational Weight Gain , RNA, Ribosomal, 16S , Humans , Female , Pregnancy , Adult , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Obesity/microbiology , Young Adult , Obesity, Maternal , Faecalibacterium/genetics
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 508-515, 2024 Apr 28.
Article in English, Chinese | MEDLINE | ID: mdl-39019779

ABSTRACT

Gut microbiota refers to the vast and diverse community of microorganisms residing in the intestines. Factors such as genetics, environmental influences (e.g., exercise, diet), and early life experiences (e.g., infant feeding methods) can all affect the ecological balance of gut microbiota within the body. Dysbiosis of the gut microbiota is associated with extra-intestinal diseases such as Parkinson's syndrome, osteoporosis, and autoimmune diseases, suggesting that disturbances in gut microbiota may be one of the causes of these diseases. Exercise benefits various diseases, with gut microbiota playing a role in regulating the nervous, musculoskeletal, and immune systems. Gut microbiota can impact the body's health status through the gut-brain axis, gut-muscle axis, and immune pathways. Moderate-intensity aerobic exercise can increase the quantity of gut microbiota and change microbial abundance, although short-term exercise does not significantly affect the alpha diversity of the microbiota. Resistance exercise also does not have a significant regulatory effect on gut microbiota.


Subject(s)
Exercise , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Exercise/physiology , Dysbiosis/microbiology , Brain-Gut Axis/physiology , Parkinson Disease/microbiology , Osteoporosis/microbiology , Osteoporosis/prevention & control
6.
BMC Med ; 22(1): 294, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020289

ABSTRACT

BACKGROUND: Endometriosis, defined as the presence of endometrial-like tissue outside of the uterus, is one of the most prevalent gynecological disorders. Although different theories have been proposed, its pathogenesis is not clear. Novel studies indicate that the gut microbiome may be involved in the etiology of endometriosis; nevertheless, the connection between microbes, their dysbiosis, and the development of endometriosis is understudied. This case-control study analyzed the gut microbiome in women with and without endometriosis to identify microbial targets involved in the disease. METHODS: A subsample of 1000 women from the Estonian Microbiome cohort, including 136 women with endometriosis and 864 control women, was analyzed. Microbial composition was determined by shotgun metagenomics and microbial functional pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Partitioning Around Medoids (PAM) algorithm was performed to cluster the microbial profile of the Estonian population. The alpha- and beta-diversity and differential abundance analyses were performed to assess the gut microbiome (species and KEGG orthologies (KO)) in both groups. Metagenomic reads were mapped to estrobolome-related enzymes' sequences to study potential microbiome-estrogen metabolism axis alterations in endometriosis. RESULTS: Diversity analyses did not detect significant differences between women with and without endometriosis (alpha-diversity: all p-values > 0.05; beta-diversity: PERMANOVA, both R 2 < 0.0007, p-values > 0.05). No differential species or pathways were detected after multiple testing adjustment (all FDR p-values > 0.05). Sensitivity analysis excluding women at menopause (> 50 years) confirmed our results. Estrobolome-associated enzymes' sequence reads were not significantly different between groups (all FDR p-values > 0.05). CONCLUSIONS: Our findings do not provide enough evidence to support the existence of a gut microbiome-dependent mechanism directly implicated in the pathogenesis of endometriosis. To the best of our knowledge, this is the largest metagenome study on endometriosis conducted to date.


Subject(s)
Endometriosis , Gastrointestinal Microbiome , Humans , Endometriosis/microbiology , Female , Gastrointestinal Microbiome/physiology , Adult , Case-Control Studies , Estonia/epidemiology , Cohort Studies , Middle Aged , Metagenomics , Dysbiosis/microbiology , Young Adult
7.
Front Immunol ; 15: 1416961, 2024.
Article in English | MEDLINE | ID: mdl-38983862

ABSTRACT

Depression, projected to be the predominant contributor to the global disease burden, is a complex condition with diverse symptoms including mood disturbances and cognitive impairments. Traditional treatments such as medication and psychotherapy often fall short, prompting the pursuit of alternative interventions. Recent research has highlighted the significant role of gut microbiota in mental health, influencing emotional and neural regulation. Fecal microbiota transplantation (FMT), the infusion of fecal matter from a healthy donor into the gut of a patient, emerges as a promising strategy to ameliorate depressive symptoms by restoring gut microbial balance. The microbial-gut-brain (MGB) axis represents a critical pathway through which to potentially rectify dysbiosis and modulate neuropsychiatric outcomes. Preclinical studies reveal that FMT can enhance neurochemicals and reduce inflammatory markers, thereby alleviating depressive behaviors. Moreover, FMT has shown promise in clinical settings, improving gastrointestinal symptoms and overall quality of life in patients with depression. The review highlights the role of the gut-brain axis in depression and the need for further research to validate the long-term safety and efficacy of FMT, identify specific therapeutic microbial strains, and develop targeted microbial modulation strategies. Advancing our understanding of FMT could revolutionize depression treatment, shifting the paradigm toward microbiome-targeting therapies.


Subject(s)
Brain-Gut Axis , Depression , Dysbiosis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Depression/therapy , Depression/microbiology , Dysbiosis/therapy , Animals , Treatment Outcome
8.
World J Gastroenterol ; 30(24): 3076-3085, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983956

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) infection is closely associated with gastrointestinal diseases. Our preliminary studies have indicated that H. pylori infection had a significant impact on the mucosal microbiome structure in patients with gastric ulcer (GU) or duodenal ulcer (DU). AIM: To investigate the contributions of H. pylori infection and the mucosal microbiome to the pathogenesis and progression of ulcerative diseases. METHODS: Patients with H. pylori infection and either GU or DU, and healthy individuals without H. pylori infection were included. Gastric or duodenal mucosal samples was obtained and subjected to metagenomic sequencing. The compositions of the microbial communities and their metabolic functions in the mucosal tissues were analyzed. RESULTS: Compared with that in the healthy individuals, the gastric mucosal microbiota in the H. pylori-positive patients with GU was dominated by H. pylori, with significantly reduced biodiversity. The intergroup differential functions, which were enriched in the H. pylori-positive GU patients, were all derived from H. pylori, particularly those concerning transfer RNA queuosine-modification and the synthesis of demethylmenaquinones or menaquinones. A significant enrichment of the uibE gene was detected in the synthesis pathway. There was no significant difference in microbial diversity between the H. pylori-positive DU patients and healthy controls. CONCLUSION: H. pylori infection significantly alters the gastric microbiota structure, diversity, and biological functions, which may be important contributing factors for GU.


Subject(s)
Duodenal Ulcer , Gastric Mucosa , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Stomach Ulcer , Humans , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Helicobacter pylori/genetics , Duodenal Ulcer/microbiology , Duodenal Ulcer/diagnosis , Male , Female , Middle Aged , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Stomach Ulcer/microbiology , Adult , Case-Control Studies , Aged , Metagenomics/methods , Duodenum/microbiology , Dysbiosis/microbiology
9.
Gan To Kagaku Ryoho ; 51(6): 603-607, 2024 Jun.
Article in Japanese | MEDLINE | ID: mdl-39009514

ABSTRACT

An association between periodontal disease and the development of pancreatic cancer has been pointed out since before. Advances in genome analysis technology have revealed that a pancreatic cancer-specific microbiome is formed in the intestines and tumors of pancreatic cancer patients and modifies the progression of pancreatic cancer. Disturbance of microbiome( dysbiosis)suppresses anti-tumor immunity against pancreatic cancer, promoting cancer progression. Therefore, attempts are being made to correct dysbiosis by administration of probiotics or transplantation of microbiome, which is especially activating immune checkpoint inhibitors against cancer. In addition, specific intratumor bacteria has been identified that create an immunosuppressive microenvironment through crosstalk with pancreatic cancer cells. In the future, analysis of the microbiome distribution in pancreatic cancers may determine the following treatment strategy as an individualized treatment. We hope that innovations in omics technology will reveal more detailed functions of microbiome and lead to the development of effective treatments for pancreatic cancer.


Subject(s)
Microbiota , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Dysbiosis/microbiology , Dysbiosis/immunology , Dysbiosis/therapy , Tumor Microenvironment
10.
Environ Microbiol ; 26(7): e16676, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010309

ABSTRACT

Just as the human gut microbiome is colonized by a variety of microbes, so too is the rhizosphere of plants. An imbalance in this microbial community, known as dysbiosis, can have a negative impact on plant health. This study sought to explore the effect of rhizosphere dysbiosis on the health of tomato plants (Solanum lycopersicum L.), using them and the foliar bacterial spot pathogen Xanthomonas perforans as model organisms. The rhizospheres of 3-week-old tomato plants were treated with either streptomycin or water as a control, and then spray-inoculated with X. perforans after 24 h. Half of the plants that were treated with both streptomycin and X. perforans received soil microbiome transplants from uninfected plant donors 48 h after the streptomycin was applied. The plants treated with streptomycin showed a 26% increase in disease severity compared to those that did not receive the antibiotic. However, the plants that received the soil microbiome transplant exhibited an intermediate level of disease severity. The antibiotic-treated plants demonstrated a reduced abundance of rhizobacterial taxa such as Cyanobacteria from the genus Cylindrospermum. They also showed a down-regulation of genes related to plant primary and secondary metabolism, and an up-regulation of plant defence genes associated with induced systemic resistance. This study highlights the vital role that beneficial rhizosphere microbes play in disease resistance, even against foliar pathogens.


Subject(s)
Dysbiosis , Plant Diseases , Rhizosphere , Soil Microbiology , Solanum lycopersicum , Transcriptome , Plant Diseases/microbiology , Dysbiosis/microbiology , Solanum lycopersicum/microbiology , Xanthomonas/genetics , Plant Leaves/microbiology , Microbiota , Disease Resistance/genetics , Plant Roots/microbiology , Anti-Bacterial Agents/pharmacology , Streptomycin/pharmacology
11.
J Extracell Vesicles ; 13(7): e12474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001704

ABSTRACT

Gut microbiome dysbiosis is a major contributing factor to several pathological conditions. However, the mechanistic understanding of the communication between gut microbiota and extra-intestinal organs remains largely elusive. Extracellular vesicles (EVs), secreted by almost every form of life, including bacteria, could play a critical role in this inter-kingdom crosstalk and are the focus of present study. Here, we present a novel approach for isolating lipopolysaccharide (LPS)+ bacterial extracellular vesicles (bEVLPS) from complex biological samples, including faeces, plasma and the liver from lean and diet-induced obese (DIO) mice. bEVLPS were extensively characterised using nanoparticle tracking analyses, immunogold labelling coupled with transmission electron microscopy, flow cytometry, super-resolution microscopy and 16S sequencing. In liver tissues, the protein expressions of TLR4 and a few macrophage-specific biomarkers were assessed by immunohistochemistry, and the gene expressions of inflammation-related cytokines and their receptors (n = 89 genes) were measured using a PCR array. Faecal samples from DIO mice revealed a remarkably lower concentration of total EVs but a significantly higher percentage of LPS+ EVs. Interestingly, DIO faecal bEVLPS showed a higher abundance of Proteobacteria by 16S sequencing. Importantly, in DIO mice, a higher number of total EVs and bEVLPS consistently entered the hepatic portal vein and subsequently reached the liver, associated with increased expression of TLR4, macrophage markers (F4/80, CD86 and CD206), cytokines and receptors (Il1rn, Ccr1, Cxcl10, Il2rg and Ccr2). Furthermore, a portion of bEVLPS escaped liver and entered the peripheral circulation. In conclusion, bEV could be the key mediator orchestrating various well-established biological effects induced by gut bacteria on distant organs.


Subject(s)
Extracellular Vesicles , Gastrointestinal Microbiome , Lipopolysaccharides , Liver , Portal Vein , Animals , Extracellular Vesicles/metabolism , Liver/metabolism , Lipopolysaccharides/metabolism , Mice , Portal Vein/metabolism , Mice, Inbred C57BL , Male , Bacteria/metabolism , Toll-Like Receptor 4/metabolism , Obesity/metabolism , Obesity/microbiology , Feces/microbiology , Dysbiosis/metabolism , Dysbiosis/microbiology
12.
Nutrients ; 16(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38999840

ABSTRACT

Inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic diseases of the digestive system with a multifactorial and not fully understood etiology. There is research suggesting that they may be initiated by genetic, immunological, and lifestyle factors. In turn, all of these factors play an important role in the modulation of intestinal microflora, and a significant proportion of IBD patients struggle with intestinal dysbiosis, which leads to the conclusion that intestinal microflora disorders may significantly increase the risk of developing IBD. Additionally, in IBD patients, Toll-like receptors (TLRs) produced by intestinal epithelial cells and dendritic cells treat intestinal bacterial antigens as pathogens, which causes a disruption of the immune response, resulting in the development of an inflammatory process. This may result in the occurrence of intestinal dysbiosis, which IBD patients are significantly vulnerable to. In this study, we reviewed scientific studies (in particular, systematic reviews with meta-analyses, being studies with the highest level of evidence) regarding the microflora of patients with IBD vs. the microflora in healthy people, and the use of various strains in IBD therapy.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/immunology , Crohn Disease/microbiology , Crohn Disease/immunology , Probiotics/therapeutic use , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/immunology
13.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000013

ABSTRACT

Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome. C57BL/6 male mice with obesity and metabolic syndrome, continuously fed with an HFD, were exposed to EE. We analyzed the gut microbiota of the mice by sequencing the 16s rRNA gene at different intervals, including on day 0 and 12 and 24 weeks after EE exposure. Fasting glucose levels, glucose tolerance, insulin resistance, food intake, weight gain, lipid profile, hepatic steatosis, and inflammatory mediators were evaluated in serum, adipose tissue, and the colon. We demonstrate that EE intervention prevents the progression of HFD-induced dysbiosis, reducing taxa associated with metabolic syndrome (Tepidimicrobium, Acidaminobacteraceae, and Fusibacter) while promoting those linked to healthy physiology (Syntrophococcus sucrumutans, Dehalobacterium, Prevotella, and Butyricimonas). Furthermore, EE enhances intestinal barrier integrity, increases mucin-producing goblet cell population, and upregulates Muc2 expression in the colon. These alterations correlate with reduced systemic lipopolysaccharide levels and attenuated colon inflammation, resulting in normalized glucose metabolism, diminished adipose tissue inflammation, reduced liver steatosis, improved lipid profiles, and a significant reduction in body weight gain despite mice's continued HFD consumption. Our findings highlight EE as a promising anti-inflammatory strategy for managing obesity-related metabolic dysregulation and suggest its potential in developing probiotics targeting EE-modulated microbial taxa.


Subject(s)
Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Dysbiosis/microbiology , Mice , Obesity/metabolism , Obesity/microbiology , Male , Glucose/metabolism , Mice, Obese , Insulin Resistance , Metabolic Syndrome/metabolism , Metabolic Syndrome/etiology , Metabolic Syndrome/microbiology
14.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000333

ABSTRACT

Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.


Subject(s)
Breast Neoplasms , Extracellular Matrix , Microbiota , Humans , Breast Neoplasms/microbiology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Extracellular Matrix/metabolism , Female , Epithelial-Mesenchymal Transition , Animals , Dysbiosis/microbiology , Tumor Microenvironment
15.
J Transl Med ; 22(1): 628, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970045

ABSTRACT

BACKGROUND: Bladder cancer is a common malignancy with high recurrence rate. Early diagnosis and recurrence surveillance are pivotal to patients' outcomes, which require novel minimal-invasive diagnostic tools. The urinary microbiome is associated with bladder cancer and can be used as biomarkers, but the underlying mechanism is to be fully illustrated and diagnostic performance to be improved. METHODS: A total of 23 treatment-naïve bladder cancer patients and 9 non-cancerous subjects were enrolled into the Before group and Control group. After surgery, 10 patients from the Before group were further assigned into After group. Void mid-stream urine samples were collected and sent for 16S rDNA sequencing, targeted metabolomic profiling, and flow cytometry. Next, correlations were analyzed between microbiota, metabolites, and cytokines. Finally, receiver operating characteristic (ROC) curves of the urinary biomarkers were plotted and compared. RESULTS: Comparing to the Control group, levels of IL-6 (p < 0.01), IL-8 (p < 0.05), and IL-10 (p < 0.05) were remarkably elevated in the Before group. The α diversity of urine microbiome was also significantly higher, with the feature microbiota positively correlated to the level of IL-6 (r = 0.58, p < 0.01). Significant differences in metabolic composition were also observed between the Before and Control groups, with fatty acids and fatty acylcarnitines enriched in the Before group. After tumor resection, cytokine levels and the overall microbiome structure in the After group remained similar to that of the Before group, but fatty acylcarnitines were significantly reduced (p < 0.05). Pathway enrichment analysis revealed beta-oxidation of fatty acids was significantly involved (p < 0.001). ROC curves showed that the biomarker panel of Actinomycetaceae + arachidonic acid + IL-6 had superior diagnostic performance, with sensitivity of 0.94 and specificity of 1.00. CONCLUSIONS: Microbiome dysbiosis, proinflammatory environment and altered fatty acids metabolism are involved in the pathogenesis of bladder cancer, which may throw light on novel noninvasive diagnostic tool development.


Subject(s)
Dysbiosis , Fatty Acids , Inflammation , Microbiota , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/microbiology , Urinary Bladder Neoplasms/urine , Inflammation/microbiology , Male , Dysbiosis/microbiology , Dysbiosis/urine , Middle Aged , Female , Fatty Acids/metabolism , Fatty Acids/urine , ROC Curve , Cytokines/metabolism , RNA, Ribosomal, 16S/genetics , Aged , Case-Control Studies
16.
Front Public Health ; 12: 1342313, 2024.
Article in English | MEDLINE | ID: mdl-38962766

ABSTRACT

Background: Studies have shown that gut dysbiosis contributes to the pathophysiology of type 2 diabetes mellitus (T2DM). Identifying specific gut microbiota dysbiosis may provide insight into the pathogenesis of T2DM. Purpose: This study investigated the causal relationship between gut microbiota and T2DM using meta-analysis and Mendelian randomization (MR). Methods: In the first part, we searched for literature on gut microbiota and T2DM, and conducted a meta-analysis. We observed differences in glycosylated hemoglobin and fasting blood glucose levels in both groups. Second, we obtained GWAS data from genome-wide association study database 19 (GWAS). We used two-sample MR analysis to verify the forward and reverse causal associations between gut microbiota and T2DM. Additionally, we selected the European GWAS data from the European Bioinformatics Institute (EBI) as a validation set for external validation of the MR analysis. In the third part, we aimed to clarify which gut microbiota contribute to the degree of causal association between group disorders and T2DM through multivariate MR analysis and Bayesian model averaging (MR-BMA). Results: 1. According to the meta-analysis results, the glycated hemoglobin concentration in the gut probiotic intervention group was significantly lower than in the control group. Following treatment, fasting blood glucose levels in the intervention group were significantly lower than those in the control group. 2. The results of two samples MR analysis revealed that there were causal relationships between six gut microbiota and T2DM. Genus Haemophilus and order Pasteurellaceae were negatively correlated with T2DM. Genus Actinomycetes, class Melanobacteria and genus Lactobacillus were positively correlated. Reverse MR analysis demonstrated that T2DM and gut microbiota did not have any reverse causal relationship. The external validation data set showed a causal relationship between gut microbiota and T2DM. 3. Multivariate MR analysis and MR-BMA results showed that the independent genus Haemophilus collection had the largest PP. Conclusion: Our research results suggest that gut microbiota is closely related to T2DM pathogenesis. The results of further MR research and an analysis of the prediction model indicate that a variety of gut microbiota disorders, including genus Haemophilus, are causally related to the development of T2DM. The findings of this study may provide some insight into the diagnosis and treatment of T2DM. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Diabetes Mellitus, Type 2/microbiology , Humans , Dysbiosis , Blood Glucose/analysis , Glycated Hemoglobin/analysis , Probiotics
17.
Crit Care ; 28(1): 220, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965622

ABSTRACT

The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.


Subject(s)
Gastrointestinal Microbiome , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/microbiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/immunology , Lung/immunology , Lung/physiopathology , Lung/microbiology , Dysbiosis/physiopathology , Dysbiosis/immunology , Dysbiosis/complications , Animals
18.
Sci Rep ; 14(1): 16712, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030381

ABSTRACT

The association between oral dysbiosis and celiac disease (CD) remains poorly understood, as does the impact of CD-associated dysbiosis on disease development or exacerbation. This study aims to investigate alterations in salivary microbial composition among children with CD. In this cross-sectional study, saliva samples from 12 children with active CD (A-CD group), 14 children with CD on a gluten-free diet (GFD), and 10 healthy control (HC) children were analyzed using DNA sequencing targeting the 16S ribosomal RNA. Both patients in A-CD and GFD groups showed a significant increase (p = 0.0001) in the Bacteroidetes phylum, while the Actinobacteria phylum showed a significant decrease (p = 0.0001). Notably, the Rothia genus and R.aeria also demonstrated a significant decrease (p = 0.0001) within the both CD groups as compare to HC. Additionally, the control group displayed a significant increase (p = 0.006) in R.mucilaginosa species compared to both CD patient groups. Distinct bacterial strains were abundant in the saliva of patients with active CD, indicating a unique composition of the salivary microbiome in individuals with CD. These findings suggest that our approach to assessing salivary microbiota changes may contribute to developing noninvasive methods for diagnosing and treating CD.


Subject(s)
Celiac Disease , Microbiota , RNA, Ribosomal, 16S , Saliva , Humans , Celiac Disease/microbiology , Celiac Disease/diagnosis , Saliva/microbiology , Child , Female , Male , Cross-Sectional Studies , RNA, Ribosomal, 16S/genetics , Diet, Gluten-Free , Adolescent , Child, Preschool , Dysbiosis/microbiology , Dysbiosis/diagnosis , Case-Control Studies , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
19.
Sci Rep ; 14(1): 16745, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033185

ABSTRACT

Patchouli alcohol (PA) is a widely used pharmaceutical ingredient in various Chinese traditional herbal medicine (THM) formulations, known for its modulatory effects on the gut microbiota. The present study investigated PA's anti-inflammatory and regulatory effects on gut microbiota and its mode of action (MOA). Based on the assessments of ulcerative colitis (UC) symptoms, PA exhibited promising preventions against inflammatory response. In accordance, the expressions of pro-inflammatory factors, including interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, and chemokine ligand 5 were significantly attenuated under PA treatment. Furthermore, PA enhanced the intestinal barrier damage caused by dextran sodium sulfate (DSS). Interestingly, PA exhibited negligible inventions on DSS-induced gut microbiota dysbiosis. PA did not affect the diversity of the DSS gut microbiota, it did alter the composition, as evidenced by a significant increase in the Firmicutes-Bacteroidetes (F/B) ratio. Finally, the MOA of PA against inflammation in DSS-treated mice was addressed by suppressing the expressions of heme oxygenase-1 (HO-1) and inducible nitric oxide synthase (iNOS). In conclusion, PA prevented inflammatory response in the DSS-induced UC mice model via directly suppressing HO-1 and iNOS-associated antioxidant signal pathways, independent of its effects on gut microbiota composition.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Sesquiterpenes , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Mice , Gastrointestinal Microbiome/drug effects , Sesquiterpenes/pharmacology , Heme Oxygenase-1/metabolism , Nitric Oxide Synthase Type II/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Dysbiosis/chemically induced , Dysbiosis/microbiology , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
20.
Gut Microbes ; 16(1): 2379624, 2024.
Article in English | MEDLINE | ID: mdl-39042424

ABSTRACT

Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Paneth Cells , Dysbiosis/microbiology , Humans , Animals , Paneth Cells/metabolism , Symbiosis , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Tuft Cells
SELECTION OF CITATIONS
SEARCH DETAIL