Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.843
Filter
1.
J Math Biol ; 89(2): 25, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963509

ABSTRACT

The Ebola virus disease (EVD) has been endemic since 1976, and the case fatality rate is extremely high. EVD is spread by infected animals, symptomatic individuals, dead bodies, and contaminated environment. In this paper, we formulate an EVD model with four transmission modes and a time delay describing the incubation period. Through dynamical analysis, we verify the importance of blocking the infection source of infected animals. We get the basic reproduction number without considering the infection source of infected animals. And, it is proven that the model has a globally attractive disease-free equilibrium when the basic reproduction number is less than unity; the disease eventually becomes endemic when the basic reproduction number is greater than unity. Taking the EVD epidemic in Sierra Leone in 2014-2016 as an example, we complete the data fitting by combining the effect of the media to obtain the unknown parameters, the basic reproduction number and its time-varying reproduction number. It is shown by parameter sensitivity analysis that the contact rate and the removal rate of infected group have the greatest influence on the prevalence of the disease. And, the disease-controlling thresholds of these two parameters are obtained. In addition, according to the existing vaccination strategy, only the inoculation ratio in high-risk areas is greater than 0.4, the effective reproduction number can be less than unity. And, the earlier the vaccination time, the greater the inoculation ratio, and the faster the disease can be controlled.


Subject(s)
Basic Reproduction Number , Ebolavirus , Hemorrhagic Fever, Ebola , Mathematical Concepts , Models, Biological , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Basic Reproduction Number/statistics & numerical data , Humans , Animals , Sierra Leone/epidemiology , Ebolavirus/pathogenicity , Ebolavirus/physiology , Epidemics/statistics & numerical data , Epidemics/prevention & control , Computer Simulation , Epidemiological Models , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data
2.
Sci Adv ; 10(27): eado7576, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959306

ABSTRACT

Following the apparent final case in an Ebola virus disease (EVD) outbreak, the decision to declare the outbreak over must balance societal benefits of relaxing interventions against the risk of resurgence. Estimates of the end-of-outbreak probability (the probability that no future cases will occur) provide quantitative evidence that can inform the timing of an end-of-outbreak declaration. An existing modeling approach for estimating the end-of-outbreak probability requires comprehensive contact tracing data describing who infected whom to be available, but such data are often unavailable or incomplete during outbreaks. Here, we develop a Markov chain Monte Carlo-based approach that extends the previous method and does not require contact tracing data. Considering data from two EVD outbreaks in the Democratic Republic of the Congo, we find that data describing who infected whom are not required to resolve uncertainty about when to declare an outbreak over.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Democratic Republic of the Congo/epidemiology , Humans , Ebolavirus , Markov Chains , Monte Carlo Method
3.
Nat Commun ; 15(1): 5667, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971835

ABSTRACT

Important policy questions during infections disease outbreaks include: i) How effective are particular interventions?; ii) When can resource-intensive interventions be removed? We used mathematical modelling to address these questions during the 2017 Ebola outbreak in Likati Health Zone, Democratic Republic of the Congo (DRC). Eight cases occurred before 15 May 2017, when the Ebola Response Team (ERT; co-ordinated by the World Health Organisation and DRC Ministry of Health) was deployed to reduce transmission. We used a branching process model to estimate that, pre-ERT arrival, the reproduction number was R = 1.49 (95% credible interval ( 0.67, 2.81 ) ). The risk of further cases occurring without the ERT was estimated to be 0.97 (97%). However, no cases materialised, suggesting that the ERT's measures were effective. We also estimated the risk of withdrawing the ERT in real-time. By the actual ERT withdrawal date (2 July 2017), the risk of future cases without the ERT was only 0.01, indicating that the ERT withdrawal decision was safe. We evaluated the sensitivity of our results to the estimated R value and considered different criteria for determining the ERT withdrawal date. This research provides an extensible modelling framework that can be used to guide decisions about when to relax interventions during future outbreaks.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Disease Outbreaks/prevention & control , Democratic Republic of the Congo/epidemiology , Models, Theoretical , Ebolavirus
4.
Biomolecules ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927063

ABSTRACT

The Ebola virus (EBOV) is a lethal pathogen causing hemorrhagic fever syndrome which remains a global health challenge. In the EBOV, two multifunctional proteins, VP35 and VP40, have significant roles in replication, virion assembly, and budding from the cell and have been identified as druggable targets. In this study, we employed in silico methods comprising molecular docking, molecular dynamic simulations, and pharmacological properties to identify prospective drugs for inhibiting VP35 and VP40 proteins from the myxobacterial bioactive natural product repertoire. Cystobactamid 934-2, Cystobactamid 919-1, and Cittilin A bound firmly to VP35. Meanwhile, 2-Hydroxysorangiadenosine, Enhypyrazinone B, and Sorangiadenosine showed strong binding to the matrix protein VP40. Molecular dynamic simulations revealed that, among these compounds, Cystobactamid 919-1 and 2-Hydroxysorangiadenosine had stable interactions with their respective targets. Similarly, molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations indicated close-fitting receptor binding with VP35 or VP40. These two compounds also exhibited good pharmacological properties. In conclusion, we identified Cystobactamid 919-1 and 2-Hydroxysorangiadenosine as potential ligands for EBOV that target VP35 and VP40 proteins. These findings signify an essential step in vitro and in vivo to validate their potential for EBOV inhibition.


Subject(s)
Antiviral Agents , Biological Products , Ebolavirus , Molecular Docking Simulation , Molecular Dynamics Simulation , Ebolavirus/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Myxococcales/chemistry , Humans , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/chemistry , Nucleocapsid Proteins
5.
J Travel Med ; 31(5)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38861425

ABSTRACT

BACKGROUND: On 20 September 2022, the Ugandan Ministry of Health declared an outbreak of Ebola disease caused by Sudan ebolavirus. METHODS: From 6 October 2022 to 10 January 2023, Centers for Disease Control and Prevention (CDC) staff conducted public health assessments at five US ports of entry for travellers identified as having been in Uganda in the past 21 days. CDC also recommended that state, local and territorial health departments ('health departments') conduct post-arrival monitoring of these travellers. CDC provided traveller contact information, daily to 58 health departments, and collected health department data regarding monitoring outcomes. RESULTS: Among 11 583 travellers screened, 132 (1%) required additional assessment due to potential exposures or symptoms of concern. Fifty-three (91%) health departments reported receiving traveller data from CDC for 10 114 (87%) travellers, of whom 8499 (84%) were contacted for monitoring, 1547 (15%) could not be contacted and 68 (1%) had no reported outcomes. No travellers with high-risk exposures or Ebola disease were identified. CONCLUSION: Entry risk assessment and post-arrival monitoring of travellers are resource-intensive activities that had low demonstrated yield during this and previous outbreaks. The efficiency of future responses could be improved by incorporating an assessment of risk of importation of disease, accounting for individual travellers' potential for exposure, and expanded use of methods that reduce burden to federal agencies, health departments, and travellers.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Travel , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Uganda/epidemiology , Disease Outbreaks/prevention & control , Risk Assessment/methods , United States/epidemiology , Male , Female , Adult , Centers for Disease Control and Prevention, U.S. , Public Health/methods , Middle Aged , Ebolavirus , Adolescent , Young Adult
6.
PLoS Negl Trop Dis ; 18(6): e0011955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848434

ABSTRACT

Ebolavirus disease (EVD) outbreaks have intermittently occurred since the first documented case in the 1970s. Due to its transmission characteristics, large outbreaks have not been observed outside Africa. However, within the continent, significant outbreaks have been attributed to factors such as endemic diseases with similar symptoms and inadequate medical infrastructure, which complicate timely diagnosis. In this study, we employed a stochastic modeling approach to analyze the spread of EVD during the early stages of an outbreak, with an emphasis on inherent risks. We developed a model that considers healthcare workers and unreported cases, and assessed the effect of non-pharmaceutical interventions (NPIs) using actual data. Our results indicate that the implementation of NPIs led to a decrease in the transmission rate and infectious period by 30% and 40% respectively, following the declaration of the outbreak. We also investigated the risks associated with delayed outbreak recognition. Our simulations suggest that, when accounting for NPIs and recognition delays, prompt detection could have resulted in a similar outbreak scale, with approximately 50% of the baseline NPIs effect. Finally, we discussed the potential effects of a vaccination strategy as a follow-up measure after the outbreak declaration. Our findings suggest that a vaccination strategy can reduce both the burden of NPIs and the scale of the outbreak.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Vaccination , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Disease Outbreaks/prevention & control , Vaccination/statistics & numerical data , Stochastic Processes , Models, Statistical , Ebolavirus/immunology
7.
J Med Virol ; 96(6): e29744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874258

ABSTRACT

Ebolavirus disease (EVD) is an often-lethal disease caused by the genus Ebolavirus (EBOV). Although vaccines are being developed and recently used, outbreak control still relies on a combination of various factors, including rapid identification of EVD cases. This allows rapid patient isolation and control measure implementation. Ebolavirus diagnosis is performed in treatment centers or reference laboratories, which usually takes a few hours to days to confirm the outbreak or deliver a clear result. A fast and field-deployable molecular detection method, such as the isothermal amplification recombinase-aided amplification (RAA), could significantly reduce sample-to-result time. In this study, a RT-RAA assay was evaluated for EBOV detection. Various primer and probe combinations were screened; analytical sensitivity and cross-specificity were tested. A total of 40 archived samples from the 2014 to 2016 Ebola outbreak in West Africa were tested with both the reference method real-time RT-PCR and the established RT-RAA assay. The assay could detect down to 22.6 molecular copies per microliter. No other pathogens were detected with the Ebolavirus RT-RAA assay. Testing 40 samples yield clinical sensitivity and specificity of 100% each. This rapid isothermal RT-RAA assay can replace the previous RT-RPA and continue to offer rapid EBOV diagnostics.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Recombinases , Sensitivity and Specificity , Ebolavirus/genetics , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Nucleic Acid Amplification Techniques/methods , Humans , Recombinases/metabolism , Molecular Diagnostic Techniques/methods , Africa, Western/epidemiology , Disease Outbreaks , RNA, Viral/genetics , DNA Primers/genetics
8.
EBioMedicine ; 104: 105170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823088

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS: Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION: Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING: This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.


Subject(s)
Antibodies, Viral , Disease Models, Animal , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Ebolavirus/immunology , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Antibodies, Viral/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Humans , Viral Load , Glycoproteins/immunology , Glycoproteins/metabolism , Viral Envelope Proteins/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibody-Dependent Cell Cytotoxicity
10.
Virol Sin ; 39(3): 459-468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782261

ABSTRACT

Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Menglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.


Subject(s)
Ebolavirus , Genome, Viral , Marburgvirus , Animals , Genome, Viral/genetics , Ebolavirus/genetics , Humans , Marburgvirus/genetics , Mengovirus/genetics , Virus Replication , RNA, Viral/genetics , Alanine/analogs & derivatives , Alanine/pharmacology , Chiroptera/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Filoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
11.
mBio ; 15(6): e0098424, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38780266

ABSTRACT

Intervening proteins (inteins) are translated as subdomains within host proteins and removed through an intein-driven splicing reaction where the flanking sequences (exteins) are joined with a peptide bond. Previously, we developed a self-removing translation reporter for labeling Ebola virus (EBOV). In this reporter, an intein (RadA) containing the fluorescent protein ZsGreen (ZsG) is inserted within the EBOV protein VP30. Upon VP30-RadA-ZsG expression from the viral genome, RadA-ZsG is removed from VP30 through the protein splicing activity of RadA, generating functional, non-tagged VP30 and functional ZsGreen. While incorporation of our VP30-RadA-ZsG fusion reporter into recombinant EBOV (rEBOV-RadA-ZsG) resulted in an infectious virus that expresses ZsG upon infection of cells, this virus displayed a replication defect compared to wild-type EBOV, which might be the result of insufficient RadA splicing. Here, we demonstrate that the serial passaging of rEBOV-RadA-ZsG in human cells led to an increase in replication efficiency compared to unpassaged rEBOV-RadA-ZsG. Sequencing of passaged viruses revealed intein-specific mutations. These mutations improve intein activity in both prokaryotic and eukaryotic systems, as well as in multiple extein contexts. Taken together, our findings offer a novel means to select for inteins with enhanced catalytic properties that appear independent of extein context and expression system.IMPORTANCEIntervening proteins (inteins) are self-removing protein elements that have been utilized to develop a variety of innovative protein engineering technologies. Here, we report the isolation of inteins with improved catalytic activity through viral passaging. Specifically, we inserted a highly active intein within an essential protein of Ebola virus and serially passaged this recombinant virus, which led to intein-specific hyper-activity mutations. The identified mutations showed improved intein activity within both bacterial and eukaryotic expression systems and in multiple extein contexts. These results present a new strategy for developing inteins with improved splicing activity.


Subject(s)
Ebolavirus , Inteins , Protein Splicing , Humans , Inteins/genetics , Ebolavirus/genetics , Ebolavirus/physiology , Virus Replication , Viral Proteins/genetics , Viral Proteins/metabolism , Genes, Reporter
12.
J Virol ; 98(6): e0052424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38757972

ABSTRACT

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.


Subject(s)
Ebolavirus , Polysaccharides , Virus Replication , Ebolavirus/physiology , Ebolavirus/metabolism , Humans , HEK293 Cells , Glycosylation , Polysaccharides/metabolism , Viral Envelope Proteins/metabolism , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/metabolism , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Glycoproteins/metabolism , Polypeptide N-acetylgalactosaminyltransferase
13.
Nat Microbiol ; 9(6): 1417-1426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783022

ABSTRACT

Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , RNA, Viral , Ebolavirus/genetics , Ebolavirus/physiology , Humans , Hemorrhagic Fever, Ebola/virology , RNA, Viral/metabolism , RNA, Viral/genetics , Virus Replication , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Assembly , Virus Internalization , Genome, Viral , Animals , Virion/metabolism , Virion/genetics , Host-Pathogen Interactions
14.
BMC Infect Dis ; 24(1): 520, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783244

ABSTRACT

BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events.


Subject(s)
Disease Outbreaks , Humans , Uganda/epidemiology , Male , Cross-Sectional Studies , Adult , Female , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Whole Genome Sequencing , Ebolavirus/genetics , Ebolavirus/isolation & purification
15.
Commun Biol ; 7(1): 634, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796621

ABSTRACT

Ebola virus (EBOV) matrix protein VP40 can assemble and bud as virus-like particles (VLPs) when expressed alone in mammalian cells. Nucleoprotein (NP) could be recruited to VLPs as inclusion body (IB) when co-expressed, and increase VLP production. However, the mechanism behind it remains unclear. Here, we use a computational approach to study NP-VP40 interactions. Our simulations indicate that NP may enhance VLP production through stabilizing VP40 filaments and accelerating the VLP budding step. Further, both the relative timing and amount of NP expression compared to VP40 are important for the effective production of IB-containing VLPs. We predict that relative NP/VP40 expression ratio and time are important for efficient production of IB-containing VLPs. We conclude that disrupting the expression timing and amount of NP and VP40 could provide new avenues to treat EBOV infection. This work provides quantitative insights into EBOV proteins interactions and how virion generation and drug efficacy could be influenced.


Subject(s)
Ebolavirus , Viral Core Proteins , Ebolavirus/metabolism , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Humans , Virion/metabolism , Virion/genetics , Nucleoproteins/metabolism , Nucleoproteins/genetics , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/genetics , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/metabolism
16.
BMC Infect Dis ; 24(1): 543, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816800

ABSTRACT

BACKGROUND: In 2022, an Ebola disease outbreak caused by Sudan virus (SUDV) occurred in Uganda, primarily affecting Mubende and Kassanda districts. We determined risk factors for SUDV infection among household members (HHM) of cases. METHODS: We conducted a case-control and retrospective cohort study in January 2023. Cases were RT-PCR-confirmed SUDV infection in residents of Mubende or Kassanda districts during the outbreak. Case-households housed a symptomatic, primary case-patient for ≥ 24 h and had ≥ 1 secondary case-patient with onset < 2 weeks after their last exposure to the primary case-patient. Control households housed a case-patient and other HHM but no secondary cases. A risk factor questionnaire was administered to the primary case-patient or another adult who lived at home while the primary case-patient was ill. We conducted a retrospective cohort study among case-household members and categorized their interactions with primary case-patients during their illnesses as none, minimal, indirect, and direct contact. We conducted logistic regression to explore associations between exposures and case-household status, and Poisson regression to identify risk factors for SUDV infection among HHM. RESULTS: Case- and control-households had similar median sizes. Among 19 case-households and 51 control households, primary case-patient death (adjusted odds ratio [ORadj] = 7.6, 95% CI 1.4-41) and ≥ 2 household bedrooms (ORadj=0.19, 95% CI 0.056-0.71) were associated with case-household status. In the cohort of 76 case-HHM, 44 (58%) were tested for SUDV < 2 weeks from their last contact with the primary case-patient; 29 (38%) were positive. Being aged ≥ 18 years (adjusted risk ratio [aRRadj] = 1.9, 95%CI: 1.01-3.7) and having direct or indirect contact with the primary case-patient (aRRadj=3.2, 95%CI: 1.1-9.7) compared to minimal or no contact increased risk of Sudan virus disease (SVD). Access to a handwashing facility decreased risk (aRRadj=0.52, 95%CI: 0.31-0.88). CONCLUSION: Direct contact, particularly providing nursing care for and sharing sleeping space with SVD patients, increased infection risk among HHM. Risk assessments during contact tracing may provide evidence to justify closer monitoring of some HHM. Health messaging should highlight the risk of sharing sleeping spaces and providing nursing care for persons with Ebola disease symptoms and emphasize hand hygiene to aid early case identification and reduce transmission.


Subject(s)
Disease Outbreaks , Family Characteristics , Hemorrhagic Fever, Ebola , Humans , Uganda/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Risk Factors , Male , Adult , Female , Retrospective Studies , Case-Control Studies , Adolescent , Young Adult , Middle Aged , Child , Child, Preschool , Ebolavirus , Infant
17.
Mil Med ; 189(7-8): e1470-e1478, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38743575

ABSTRACT

INTRODUCTION: The purpose of this review is to examine African Ebola outbreaks from their first discovery to the present, to determine how the medical and public health response has changed and identify the causes for those changes. We sought to describe what is now known about the epidemiology and spread of Ebola virus disease (EVD) from the significant outbreaks that have occurred and outbreak control methods applied under often challenging circumstances. Given the substantial role that the U.S. Government and the U.S. DoD have played in the 2014 to 2016 West African Ebola outbreak, the role of the DoD and the U.S. Africa Command in controlling EVD is described. MATERIALS AND METHODS: A descriptive method design was used to collect and analyze all available Ebola outbreak literature using the PubMed database. An initial literature search was conducted by searching for, obtaining, and reading original source articles on all major global Ebola outbreaks. To conduct a focused search, we used initial search terms "Ebola outbreak," "Ebola virus disease," "Ebola response," "Ebola countermeasures," and also included each country's name where Ebola cases are known to have occurred. From the 4,673 unique articles obtained from this search and subsequent article title review, 307 articles were identified for potential inclusion. Following abstract and article review, 45 original source articles were used to compile the history of significant Ebola outbreaks. From this compilation, articles focused on each respective subsection of this review to delineate and describe the history of EVD and response, identifying fundamental changes, were obtained and incorporated. RESULTS: We present known Ebola virus and disease attributes, including a general description, seasonality and location, transmission capacity, clinical symptoms, surveillance, virology, historical EVD outbreaks and response, international support for Ebola outbreak response, U.S. DoD support, medical countermeasures supporting outbreak response, remaining gaps to include policy limitations, regional instability, climate change, migration, and urbanization, public health education and infrastructure, and virus persistence and public awareness. CONCLUSIONS: The health and societal impacts of EVD on Africa has been far-reaching, with about 35,000 cases and over 15,000 deaths, with small numbers of cases spreading globally. However, the history of combatting EVD reveals that there is considerable hope for African nations to quickly and successfully respond to Ebola outbreaks, through use of endemic resources including Africa CDC and African Partner Outbreak Response Alliance and the U.S. Africa Command with greater DoD reachback. Although there remains much to be learned about the Ebola virus and EVD including whether the potential for novel strains to become deadly emerging infections, invaluable vaccines, antivirals, and public health measures are now part of the resources that can be used to combat this disease.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Humans , Disease Outbreaks/prevention & control , Ebolavirus , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Public Health/methods , Public Health/trends , United States
18.
Emerg Microbes Infect ; 13(1): 2352520, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38713593

ABSTRACT

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Vagina , Humans , Female , Ebolavirus/physiology , Vagina/virology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/transmission , Virion , Immunoglobulin G , Adult , Cervix Mucus/virology , Mucus/virology
19.
Nat Commun ; 15(1): 4171, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755147

ABSTRACT

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Subject(s)
Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea/epidemiology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Adult , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Female , Cross-Sectional Studies , Disease Outbreaks , Young Adult , Aged , Enzyme-Linked Immunosorbent Assay , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Antigens, Viral/immunology
20.
ACS Infect Dis ; 10(5): 1590-1601, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38684073

ABSTRACT

Ebola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete. To investigate GP-membrane association, a key step in the fusion process, we used two approaches: high-throughput measurements of single-particle diffusion and single-molecule measurements with optical tweezers. Using these methods, we show that the presence of the endosomal Niemann-Pick C1 (NPC1) receptor is not required for primed GP-membrane binding. In addition, we demonstrate this binding is very strong, likely attributed to the interaction between the GP fusion loop and the membrane's hydrophobic core. Our results also align with previously reported findings, emphasizing the significance of acidic pH in the protein-membrane interaction. Beyond Ebola virus research, our approach provides a powerful toolkit for studying other protein-membrane interactions, opening new avenues for a better understanding of protein-mediated membrane fusion events.


Subject(s)
Ebolavirus , Viral Envelope Proteins , Ebolavirus/metabolism , Ebolavirus/physiology , Ebolavirus/genetics , Ebolavirus/chemistry , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Humans , Protein Binding , Virus Internalization , Niemann-Pick C1 Protein/metabolism , Cell Membrane/metabolism , Cell Membrane/virology , Hemorrhagic Fever, Ebola/virology , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...