Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.012
Filter
1.
Front Immunol ; 15: 1429909, 2024.
Article in English | MEDLINE | ID: mdl-39081315

ABSTRACT

Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4+ helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.


Subject(s)
Antibodies, Viral , BCG Vaccine , Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , BCG Vaccine/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , T-Lymphocytes, Helper-Inducer/immunology , Vaccination/methods , Mice, Inbred C57BL , Female , Humans , Disease Models, Animal , Receptors, IgG/immunology , Vaccine Development , Immunoglobulin Class Switching , Immunization
2.
Commun Biol ; 7(1): 871, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020082

ABSTRACT

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear. Here, we compare complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of GP. Binding of GC-specific mAbs to GP induces complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs. In the mouse model of EBOV infection, depletion of the complement system leads to an impairment of protection exerted by one of the GC-specific, but not MPER-specific mAbs. Our data suggest that activation of the complement system represents an important mechanism of antiviral protection by GC antibodies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Polysaccharides , Viral Envelope Proteins , Animals , Ebolavirus/immunology , Antibodies, Monoclonal/immunology , Mice , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/prevention & control , Polysaccharides/immunology , Antibodies, Viral/immunology , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Complement Activation , Mice, Inbred BALB C , Female , Complement System Proteins/immunology , Complement System Proteins/metabolism , Glycoproteins/immunology
3.
Front Immunol ; 15: 1383753, 2024.
Article in English | MEDLINE | ID: mdl-39040106

ABSTRACT

Outbreaks of Ebolaviruses, such as Sudanvirus (SUDV) in Uganda in 2022, demonstrate that species other than the Zaire ebolavirus (EBOV), which is currently the sole virus represented in current licensed vaccines, remain a major threat to global health. There is a pressing need to develop effective pan-species vaccines and novel monoclonal antibody-based therapeutics for Ebolavirus disease. In response to recent outbreaks, the two dose, heterologous Ad26.ZEBOV/MVA-BN-Filo vaccine regimen was developed and was tested in a large phase II clinical trial (EBL2001) as part of the EBOVAC2 consortium. Here, we perform bulk sequencing of the variable heavy chain (VH) of B cell receptors (BCR) in forty participants from the EBL2001 trial in order to characterize the BCR repertoire in response to vaccination with Ad26.ZEBOV/MVA-BN-Filo. We develop a comprehensive database, EBOV-AbDab, of publicly available Ebolavirus-specific antibody sequences. We then use our database to predict the antigen-specific component of the vaccinee repertoires. Our results show striking convergence in VH germline gene usage across participants following the MVA-BN-Filo dose, and provide further evidence of the role of IGHV3-15 and IGHV3-13 antibodies in the B cell response to Ebolavirus glycoprotein. Furthermore, we found that previously described Ebola-specific mAb sequences present in EBOV-AbDab were sufficient to describe at least one of the ten most expanded BCR clonotypes in more than two thirds of our cohort of vaccinees following the boost, providing proof of principle for the utility of computational mining of immune repertoires.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Receptors, Antigen, B-Cell , Vaccination , Humans , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Ebolavirus/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Computational Biology/methods , Adult , Male , B-Lymphocytes/immunology , Female , Data Mining
5.
PLoS Negl Trop Dis ; 18(6): e0011955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848434

ABSTRACT

Ebolavirus disease (EVD) outbreaks have intermittently occurred since the first documented case in the 1970s. Due to its transmission characteristics, large outbreaks have not been observed outside Africa. However, within the continent, significant outbreaks have been attributed to factors such as endemic diseases with similar symptoms and inadequate medical infrastructure, which complicate timely diagnosis. In this study, we employed a stochastic modeling approach to analyze the spread of EVD during the early stages of an outbreak, with an emphasis on inherent risks. We developed a model that considers healthcare workers and unreported cases, and assessed the effect of non-pharmaceutical interventions (NPIs) using actual data. Our results indicate that the implementation of NPIs led to a decrease in the transmission rate and infectious period by 30% and 40% respectively, following the declaration of the outbreak. We also investigated the risks associated with delayed outbreak recognition. Our simulations suggest that, when accounting for NPIs and recognition delays, prompt detection could have resulted in a similar outbreak scale, with approximately 50% of the baseline NPIs effect. Finally, we discussed the potential effects of a vaccination strategy as a follow-up measure after the outbreak declaration. Our findings suggest that a vaccination strategy can reduce both the burden of NPIs and the scale of the outbreak.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Vaccination , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Disease Outbreaks/prevention & control , Vaccination/statistics & numerical data , Stochastic Processes , Models, Statistical , Ebolavirus/immunology
6.
J Virol ; 98(7): e0015524, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38832790

ABSTRACT

Marburg virus infection in humans is associated with case fatality rates that can reach up to 90%, but to date, there are no approved vaccines or monoclonal antibody (mAb) countermeasures. Here, we immunized Rhesus macaques with multivalent combinations of filovirus glycoprotein (GP) antigens belonging to Marburg, Sudan, and Ebola viruses to generate monospecific and cross-reactive antibody responses against them. From the animal that developed the highest titers of Marburg virus GP-specific neutralizing antibodies, we sorted single memory B cells using a heterologous Ravn virus GP probe and cloned and characterized a panel of 34 mAbs belonging to 28 unique lineages. Antibody specificities were assessed by overlapping pepscan and binding competition analyses, revealing that roughly a third of the lineages mapped to the conserved receptor binding region, including potent neutralizing lineages that were confirmed by negative stain electron microscopy to target this region. Additional lineages targeted a protective region on GP2, while others were found to possess cross-filovirus reactivity. Our study advances the understanding of orthomarburgvirus glycoprotein antigenicity and furthers efforts to develop candidate antibody countermeasures against these lethal viruses. IMPORTANCE: Marburg viruses were the first filoviruses characterized to emerge in humans in 1967 and cause severe hemorrhagic fever with average case fatality rates of ~50%. Although mAb countermeasures have been approved for clinical use against the related Ebola viruses, there are currently no approved countermeasures against Marburg viruses. We successfully isolated a panel of orthomarburgvirus GP-specific mAbs from a macaque immunized with a multivalent combination of filovirus antigens. Our analyses revealed that roughly half of the antibodies in the panel mapped to regions on the glycoprotein shown to protect from infection, including the host cell receptor binding domain and a protective region on the membrane-anchoring subunit. Other antibodies in the panel exhibited broad filovirus GP recognition. Our study describes the discovery of a diverse panel of cross-reactive macaque antibodies targeting orthomarburgvirus and other filovirus GPs and provides candidate immunotherapeutics for further study and development.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Cross Reactions , Macaca mulatta , Marburg Virus Disease , Marburgvirus , Animals , Marburgvirus/immunology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Monoclonal/immunology , Marburg Virus Disease/immunology , Marburg Virus Disease/prevention & control , Cross Reactions/immunology , Glycoproteins/immunology , Viral Envelope Proteins/immunology , Immunization , Humans , Ebolavirus/immunology , Antigens, Viral/immunology
7.
PLoS Pathog ; 20(6): e1012262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924060

ABSTRACT

Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Lassa Fever , Lassa virus , Marburg Virus Disease , Marburgvirus , Animals , Mice , Ebolavirus/immunology , Lassa virus/immunology , Marburgvirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Lassa Fever/immunology , Lassa Fever/prevention & control , Marburg Virus Disease/immunology , Marburg Virus Disease/prevention & control , Viral Vaccines/immunology , Humans , Vaccination , Female , Antibodies, Viral/immunology , Immunogenicity, Vaccine , Ebola Vaccines/immunology
8.
EBioMedicine ; 104: 105170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823088

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS: Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION: Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING: This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.


Subject(s)
Antibodies, Viral , Disease Models, Animal , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Ebolavirus/immunology , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Antibodies, Viral/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Humans , Viral Load , Glycoproteins/immunology , Glycoproteins/metabolism , Viral Envelope Proteins/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibody-Dependent Cell Cytotoxicity
9.
Nat Commun ; 15(1): 4171, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755147

ABSTRACT

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Subject(s)
Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea/epidemiology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Adult , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Female , Cross-Sectional Studies , Disease Outbreaks , Young Adult , Aged , Enzyme-Linked Immunosorbent Assay , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Antigens, Viral/immunology
10.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603762

ABSTRACT

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Subject(s)
Antibodies, Bispecific , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Antibodies, Viral/immunology , Humans , Filoviridae/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Monoclonal/immunology , Female , Mice, Inbred BALB C , Filoviridae Infections/immunology , Filoviridae Infections/therapy , Filoviridae Infections/prevention & control
11.
PLoS Negl Trop Dis ; 18(4): e0011500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603720

ABSTRACT

BACKGROUND: The exposure to parasites may influence the immune response to vaccines in endemic African countries. In this study, we aimed to assess the association between helminth exposure to the most prevalent parasitic infections, schistosomiasis, soil transmitted helminths infection and filariasis, and the Ebola virus glycoprotein (EBOV GP) antibody concentration in response to vaccination with the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen in African and European participants using samples obtained from three international clinical trials. METHODS/PRINCIPAL FINDINGS: We conducted a study in a subset of participants in the EBL2001, EBL2002 and EBL3001 clinical trials that evaluated the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen against EVD in children, adolescents and adults from the United Kingdom, France, Burkina Faso, Cote d'Ivoire, Kenya, Uganda and Sierra Leone. Immune markers of helminth exposure at baseline were evaluated by ELISA with three commercial kits which detect IgG antibodies against schistosome, filarial and Strongyloides antigens. Luminex technology was used to measure inflammatory and activation markers, and Th1/Th2/Th17 cytokines at baseline. The association between binding IgG antibodies specific to EBOV GP (measured on day 21 post-dose 2 and on Day 365 after the first dose respectively), and helminth exposure at baseline was evaluated using a multivariable linear regression model adjusted for age and study group. Seventy-eight (21.3%) of the 367 participants included in the study had at least one helminth positive ELISA test at baseline, with differences of prevalence between studies and an increased prevalence with age. The most frequently detected antibodies were those to Schistosoma mansoni (10.9%), followed by Acanthocheilonema viteae (9%) and then Strongyloides ratti (7.9%). Among the 41 immunological analytes tested, five were significantly (p < .003) lower in participants with at least one positive helminth ELISA test result: CCL2/MCP1, FGFbasic, IL-7, IL-13 and CCL11/Eotaxin compared to participants with negative helminth ELISA tests. No significant association was found with EBOV-GP specific antibody concentration at 21 days post-dose 2, or at 365 days post-dose 1, adjusted for age group, study, and the presence of any helminth antibodies at baseline. CONCLUSIONS/SIGNIFICANCE: No clear association was found between immune markers of helminth exposure as measured by ELISA and post-vaccination response to the Ebola Ad26.ZEBOV/ MVA-BN-Filo vaccine regimen. TRIAL REGISTRATION: NCT02416453, NCT02564523, NCT02509494. ClinicalTrials.gov.


Subject(s)
Antibodies, Viral , Ebola Vaccines , Hemorrhagic Fever, Ebola , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult , Africa , Antibodies, Helminth/blood , Antibodies, Viral/blood , Cytokines/immunology , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Ebolavirus/immunology , Ebolavirus/genetics , Enzyme-Linked Immunosorbent Assay , Helminthiasis/immunology , Helminthiasis/prevention & control , Helminths/immunology , Helminths/genetics , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Immunoglobulin G/blood , Aged
12.
Antiviral Res ; 226: 105873, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580170

ABSTRACT

In the 1990s, monoclonal antibodies (mAbs) progressed from scientific tools to advanced therapeutics, particularly for the treatment of cancers and autoimmune and inflammatory disorders. In the arena of infectious disease, the inauguration of mAbs as a post-exposure treatment in humans against Ebola virus (EBOV) occurred in response to the 2013-2016 West Africa outbreak. This review recounts the history of a candidate mAb treatment, ZMapp, beginning with its emergency use in the 2013-2016 outbreak and advancing to randomized controlled trials into the 2018-2020 African outbreak. We end with a brief discussion of the hurdles and promise toward mAb therapeutic use against infectious disease.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Humans , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Ebolavirus/immunology , Ebolavirus/drug effects , Antibodies, Viral/therapeutic use , Antibodies, Viral/immunology , Animals , Disease Outbreaks , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/immunology , Africa, Western/epidemiology
13.
Lancet Infect Dis ; 24(7): 746-759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552653

ABSTRACT

BACKGROUND: Health-care providers and front-line workers are at risk of contracting Ebola virus disease during an Ebola virus outbreak and consequently of becoming drivers of the disease. We aimed to assess the long-term immunogenicity of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen and the safety of and immune memory response to an Ad26.ZEBOV booster vaccination at 1 year or 2 years after the first dose in this at-risk population. METHODS: This open-label, single-centre, randomised, phase 2 trial was conducted at one study site within a hospital in Boende, Democratic Republic of the Congo. Adult health-care providers and front-line workers, excluding those with a known history of Ebola virus disease, were vaccinated with a two-dose heterologous regimen administered at a 56-day interval via a 0·5 mL intramuscular injection in the deltoid muscle, comprising Ad26.ZEBOV as the first dose and MVA-BN-Filo as the second dose. After the initial vaccination on day 1, participants were randomly assigned (1:1) via randomisation envelopes, opened in a sequential order, to receive an Ad26.ZEBOV booster vaccination at 1 year (group 1) or 2 years (group 2) after the first dose. We present the secondary and exploratory objectives of the trial-results of the primary objective have been published elsewhere. We measured immunogenicity at six timepoints per group as geometric mean concentrations (GMCs) of Ebola virus glycoprotein-specific IgG binding antibodies, using the Filovirus Animal Non-Clinical Group ELISA. We assessed serious adverse events occurring up to 6 months after the last dose and local and systemic solicited and unsolicited adverse events reported for 7 days after the booster vaccination. Antibody responses were analysed per protocol, serious adverse events per full analysis set (FAS), and adverse events for all boosted FAS participants. This trial is registered as completed on ClinicalTrials.gov (NCT04186000). FINDINGS: Between Dec 18, 2019, and Feb 8, 2020, 699 health-care providers and front-line workers were enrolled and 698 were randomly assigned (350 to group 1 and 348 to group 2 [FAS]); 534 (77%) participants were male and 164 (23%) were female. 319 in group 1 and 317 in group 2 received the booster. 29 (8%) in group 1 and 26 (7%) in group 2 did not complete the study, mostly due to loss to follow-up or moving out of the study area. In both groups, injection-site pain or tenderness (87 [27%] of 319 group 1 participants vs 90 [28%] of 317 group 2 participants) and headache (91 [29%] vs 93 [29%]) were the most common solicited adverse events related to the investigational product. One participant (in group 2) had a related serious adverse event after booster vaccination (fever of ≥40·0°C). Before booster vaccination, Ebola virus glycoprotein-specific IgG binding antibody GMCs were 279·9 ELISA units (EU) per mL (95% CI 250·6-312·7) in 314 group 1 participants (1 year after first dose) and 274·6 EU/mL (242·1-311·5) in 310 group 2 participants (2 years after first dose). These values were 5·2 times higher in group 1 and 4·9 times higher in group 2 than before vaccination on day 1. 7 days after booster vaccination, these values increased to 10 781·6 EU/mL (9354·4-12 426·4) for group 1 and 10 746·9 EU/mL (9208·7-12 542·0) for group 2, which were approximately 39 times higher than before booster vaccination in both groups. 1 year after booster vaccination in 299 group 1 participants, a GMC that was 7·6-times higher than before booster vaccination was still observed (2133·1 EU/mL [1827·7-2489·7]). INTERPRETATION: Overall, the vaccine regimen and booster dose were well tolerated. A similar and robust humoral immune response was observed for participants boosted 1 year and 2 years after the first dose, supporting the use of the regimen and flexibility of booster dose administration for prophylactic vaccination in at-risk populations. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Coalition for Epidemic Preparedness Innovations.


Subject(s)
Antibodies, Viral , Ebola Vaccines , Ebolavirus , Health Personnel , Hemorrhagic Fever, Ebola , Immunization, Secondary , Humans , Democratic Republic of the Congo , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Ebola Vaccines/adverse effects , Male , Adult , Female , Antibodies, Viral/blood , Ebolavirus/immunology , Ebolavirus/genetics , Middle Aged , Young Adult , Vaccination/methods
15.
J Virol ; 98(3): e0162723, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38305150

ABSTRACT

Ebola virus disease (EVD) caused by Ebola virus (EBOV) is a severe, often fatal, hemorrhagic disease. A critical component of the public health response to curb EVD epidemics is the use of a replication-competent, recombinant vesicular stomatitis virus (rVSV)-vectored Ebola vaccine, rVSVΔG-ZEBOV-GP (ERVEBO). In this Gem, we will discuss the past and ongoing development of rVSVΔG-ZEBOV-GP, highlighting the importance of basic science and the strength of public-private partnerships to translate fundamental virology into a licensed VSV-vectored Ebola vaccine.


Subject(s)
Ebola Vaccines , Ebolavirus , Genetic Vectors , Hemorrhagic Fever, Ebola , Vesiculovirus , Humans , Ebola Vaccines/genetics , Ebola Vaccines/immunology , Ebolavirus/genetics , Ebolavirus/immunology , Genetic Vectors/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Vesiculovirus/genetics , Public-Private Sector Partnerships
16.
Lancet Infect Dis ; 24(6): 602-610, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38340736

ABSTRACT

BACKGROUND: The rVSVΔG-ZEBOV-GP vaccine constitutes a valuable tool to control Ebola virus disease outbreaks. This retrospective cohort study aimed to assess the protective effect of the vaccine against death among patients with confirmed Ebola virus disease. METHODS: In this retrospective cohort analysis of patients with confirmed Ebola virus disease admitted to Ebola health facilities in the Democratic Republic of the Congo between July 27, 2018, and April 27, 2020, we performed univariate and multivariate analyses to assess case fatality risk and cycle threshold for nucleoprotein according to vaccination status, Ebola virus disease-specific treatments (eg, mAb114 and REGN-EB3), and other risk factors. FINDINGS: We analysed all 2279 patients with confirmed Ebola virus disease. Of these 2279 patients, 1300 (57%) were female and 979 (43%) were male. Vaccination significantly lowered case fatality risk (vaccinated: 25% [106/423] vs not vaccinated: 56% [570/1015]; p<0·0001). In adjusted analyses, vaccination significantly lowered the risk of death compared with no vaccination, with protection increasing as time elapsed from vaccination to symptom onset (vaccinated ≤2 days before onset: 27% [27/99], adjusted relative risk 0·56 [95% CI 0·36-0·82, p=0·0046]; 3-9 days before onset: 20% [28/139], 0·44 [0·29-0·65, p=0·0001]; ≥10 days before onset: 18% [12/68], 0·40 [0·21-0·69; p=0·0022]; vaccination date unknown: 33% [39/117], 0·69 [0·48-0·96; p=0·0341]; and vaccination status unknown: 52% [441/841], 0·80 [0·70-0·91, p=0·0011]). Longer time from symptom onset to admission significantly increased risk of death (49% [1117/2279], 1·03 [1·02-1·05; p<0·0001]). Cycle threshold values for nucleoprotein were significantly higher-indicating lower viraemia-among patients who were vaccinated compared with those who were not vaccinated; the highest difference was observed among those vaccinated 21 days or longer before symptom onset (median 30·0 cycles [IQR 24·6-33·7]) compared with patients who were not vaccinated (21·4 cycles [18·4-25·9], p<0·0001). INTERPRETATION: To our knowledge, this is the first observational study describing the protective effect of rVSVΔG-ZEBOV-GP vaccination against death among patients with confirmed Ebola virus disease admitted to an Ebola health facility. Vaccination was protective against death for all patients, even when adjusted for Ebola virus disease-specific treatment, age group, and time from symptom onset to admission. FUNDING: Médecins Sans Frontières. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Ebola Vaccines , Hemorrhagic Fever, Ebola , Humans , Male , Retrospective Studies , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/mortality , Hemorrhagic Fever, Ebola/epidemiology , Female , Democratic Republic of the Congo/epidemiology , Ebola Vaccines/administration & dosage , Ebola Vaccines/immunology , Adult , Middle Aged , Ebolavirus/immunology , Vaccination , Young Adult , Adolescent , Risk Factors , Child
17.
Nat Chem Biol ; 20(8): 1012-1021, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38225471

ABSTRACT

A major challenge in creating universal influenza vaccines is to focus immune responses away from the immunodominant, variable head region of hemagglutinin (HA-head) and toward the evolutionarily conserved stem region (HA-stem). Here we introduce an approach to control antigen orientation via site-specific insertion of aspartate residues that facilitates antigen binding to alum. We demonstrate the generalizability of this approach with antigens from Ebola, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses and observe enhanced neutralizing antibody responses in all cases. We then reorient an H2 HA in an 'upside-down' configuration to increase the exposure and immunogenicity of HA-stem. The reoriented H2 HA (reoH2HA) on alum induced stem-directed antibodies that cross-react with both group 1 and group 2 influenza A subtypes. Electron microscopy polyclonal epitope mapping (EMPEM) revealed that reoH2HA (group 1) elicits cross-reactive antibodies targeting group 2 HA-stems. Our results highlight antigen reorientation as a generalizable approach for designing epitope-focused vaccines.


Subject(s)
Influenza Vaccines , SARS-CoV-2 , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Humans , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Antigens, Viral/immunology , Antigens, Viral/chemistry , Cross Reactions/immunology , Mice , Epitopes/immunology , Epitopes/chemistry , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Ebolavirus/immunology , Influenza A virus/immunology , Alum Compounds/chemistry , Epitope Mapping , COVID-19 Vaccines/immunology , COVID-19 Vaccines/chemistry
18.
Cell Rep ; 42(10): 113254, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858466

ABSTRACT

Ebola virus (EBOV) and Bundibugyo virus (BDBV) belong to the family Filoviridae and cause a severe disease in humans. We previously isolated a large panel of monoclonal antibodies from B cells of human survivors from the 2007 Uganda BDBV outbreak, 16 survivors from the 2014 EBOV outbreak in the Democratic Republic of the Congo, and one survivor from the West African 2013-2016 EBOV epidemic. Here, we demonstrate that EBOV and BDBV are capable of spreading to neighboring cells through intercellular connections in a process that depends upon actin and T cell immunoglobulin and mucin 1 protein. We quantify spread through intercellular connections by immunofluorescence microscopy and flow cytometry. One of the antibodies, BDBV223, specific to the membrane-proximal external region, induces virus accumulation at the plasma membrane. The inhibiting activity of BDBV223 depends on BST2/tetherin.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Bone Marrow Stromal Antigen 2 , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Antigens, CD , Bone Marrow Stromal Antigen 2/immunology , Ebolavirus/immunology , GPI-Linked Proteins , Hemorrhagic Fever, Ebola/virology
19.
Middle East Afr J Ophthalmol ; 30(2): 103-106, 2023.
Article in English | MEDLINE | ID: mdl-39006926

ABSTRACT

PURPOSE: Survivors of Ebola virus disease (EVD) are at risk for ocular complications after infection. We sought to identify demographic factors associated with the likelihood to present for eye examination among Ebola survivors enrolled in a longitudinal natural history study of EVD. METHODS: The Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL) III Ebola natural history study is a 5-year study that seeks to identify long-term sequelae of EVD, including ocular sequelae. All survivors enrolled in the PREVAIL parent study from June 2015 to March 2016 were asked to return for comprehensive eye examination through June 2016. Logistic regression was conducted using self-reported survivor status, age, gender, and distance from the hospital as covariates. RESULTS: A total of 1448 subjects enrolled in the parent PREVAIL III longitudinal cohort during the defined window, of which 1375 (95.0%) followed up for baseline eye examination. Ebola survivors (635/661, 96.1%) and adult close contacts (727/767, 94.8%) demonstrated a comparable likelihood for presenting for eye examination (odds ratio [OR] 0.68, 95% confidence interval [CI] 0.36-1.28). In an adjusted model, age over 50 (OR 10.2, 95% CI 1.35-77.3) and living outside Montserrado County (OR 0.18, 95% CI 0.10-0.33) were associated with the likelihood of presenting for a baseline comprehensive eye examination. CONCLUSION: Most EVD survivors and their close contacts who enrolled during the study window presented for eye examinations. Older participants and those who lived closer to clinical facilities were most likely to present. Focused strategies accounting for these factors may assist with organizations planning survivor care in the setting of EVD.


Subject(s)
Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Male , Female , Liberia/epidemiology , Adult , Middle Aged , Young Adult , Adolescent , Child , Survivors , Eye Diseases/epidemiology , Child, Preschool , Ebolavirus/immunology , Risk Factors , Aged , Eye Infections, Viral/epidemiology , Eye Infections, Viral/virology
SELECTION OF CITATIONS
SEARCH DETAIL