Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.141
1.
Parasite Immunol ; 46(5): e13040, 2024 May.
Article En | MEDLINE | ID: mdl-38801355

Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.


Echinococcus granulosus , Phytic Acid , Animals , Echinococcus granulosus/immunology , Phytic Acid/pharmacology , Phytic Acid/metabolism , Echinococcosis/immunology , Echinococcosis/parasitology , Inflammation , Neutrophils/immunology , Mucins/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Eosinophils/immunology , Female , Larva/immunology
2.
Vet Parasitol Reg Stud Reports ; 51: 101021, 2024 Jun.
Article En | MEDLINE | ID: mdl-38772638

Cystic echinococcosis (CE) causes significant losses in Andean livestock production and affects Andean food security. However, more studies are needed to understand the epidemiology of the disease. In addition, the potential contribution of Andean cattle to the transmission of Echinococcus granulosus sensu lato needs to be known. This study aimed to determine the CE-prevalence and its association with risk factors, such as age and sex of the animals, the parasite load (number of cysts/organ) of condemned organs, and the viability and fertility of Echinococcus cysts from cattle in the Andes. The prevalence was examined in 348 cattle from an authorized slaughterhouse of Huancayo at 3300 m altitude. Cyst burden was determined by extracting all cysts from the total of the CE-infected organs. Cyst fertility and protoscolices viability were analysed from 90 randomly selected CE-infected organs. The CE prevalence was 35.6% (124/348; 95% CI: 30.6%-40.6%). There was no significant effect of age and sex on CE prevalence. CE was significantly more prevalent (p < 0.05) in lungs than livers, 34.8% (121/348; 95% CI: 29.8%-39.8%) vs 8.9% (31/348; 95% CI: 5.9%-11.9%). Most (75%) infected organs had one to five cysts. The mean cyst burden was significantly (p = 0.018) higher in the lungs than livers, 6.4 ± 4.9 vs 3.7 ± 2.9. Cyst fertility was 1.6% (10/608; 95% CI: 0.6%-2.6%). Despite the high CE prevalence, infected organs from Andean cattle play a minor role in CE transmission to dogs in the central Peruvian Andes.


Cattle Diseases , Echinococcosis , Echinococcus granulosus , Animals , Cattle , Peru/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/transmission , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/transmission , Male , Prevalence , Female , Echinococcus granulosus/isolation & purification , Risk Factors , Endemic Diseases/veterinary , Liver/parasitology , Lung/parasitology
3.
Biochem J ; 481(11): 717-739, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38752933

Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.


Echinococcus granulosus , Helminth Proteins , Echinococcus granulosus/enzymology , Echinococcus granulosus/genetics , Echinococcus granulosus/metabolism , Animals , Dogs , Helminth Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/chemistry , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/chemistry , Cattle , Amino Acid Sequence , Trypsin/chemistry , Trypsin/metabolism
4.
PLoS Negl Trop Dis ; 18(5): e0012183, 2024 May.
Article En | MEDLINE | ID: mdl-38814859

Human cystic echinococcosis (CE) is a parasitic infection caused by the larval stage of the tapeworm Echinococcus granulosus sensu lato, primarily affecting the liver and lungs. Although the heart is affected in only 0.02-2% of all CE cases, a considerable number of cases have been, and continue to be, published. However, due to the rare occurrence of cardiac CE and the resulting lack of clinical trials, knowledge about various aspects of the disease remains limited. To obtain a clearer picture of anatomical, clinical, diagnostic as well as therapeutic aspects of cardiac CE, we systematically reviewed the literature published between 1965 and 2022. The anatomical pattern of the affected cardiac structures follows the extension of the supplying capillary bed. The majority of patients (82.7%) are symptomatic and present with prolonged non-specific symptoms such as dyspnoea, chest pain and palpitations. Acute complications generally derive from cyst rupture, occur in 18.3% of cases and manifest as embolism, pericardial tamponade, or anaphylactic reaction in 83.2%, 17.8% and 10.9% of these cases, respectively. As for CE cysts localized in other organs, the diagnosis of cardiac CE is made by imaging. Serology plays a minor role due to its limited sensitivity. Unlike abdominal CE cysts, cardiac CE cysts are usually resected independent of their stage (active/inactive), because their presence impairs cardiac performance and carries the risk of long-term sequelae. More than 80% of patients are treated with a single surgical intervention. We found a disease-related case fatality rate of 11.1%. Since local recurrence was reported up to 108 months and secondary CE up to 72 months after surgery, patients should be followed up for a minimum of 10 years.


Echinococcosis , Humans , Echinococcosis/diagnosis , Echinococcosis/surgery , Animals , Heart Diseases/parasitology , Heart Diseases/surgery , Echinococcus granulosus , Heart/parasitology
5.
Front Cell Infect Microbiol ; 14: 1334211, 2024.
Article En | MEDLINE | ID: mdl-38817444

Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-ß genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.


Autophagy , Dendritic Cells , Echinococcosis , Echinococcus granulosus , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Echinococcus granulosus/immunology , Autophagy/immunology , Echinococcosis/immunology , Echinococcosis/parasitology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Lectins, C-Type/metabolism , Cytokines/metabolism , Female , Autophagosomes/immunology , Autophagosomes/metabolism
6.
Sci Rep ; 14(1): 11957, 2024 05 25.
Article En | MEDLINE | ID: mdl-38796499

Hydatidosis causes a serious health hazard to humans and animals leading to significant economic and veterinary and public health concern worldwide. The present study aimed to evaluate the in vitro and ex vivo protoscolicidal effects of synthesized poly(amidoamine), PAMAM, nanoemulsion. In this study, PAMAM was characterized through dynamic light scattering technique to investigate the particle size and zeta potential of nanoemulsified polymer. For the in vitro and ex vivo assays, we used eosin dye exclusion test and scanning electron microscope (SEM) to evaluate the effects of the prepared and characterized PAMAM nanoemulsion against protoscoleces from Echinococcus granulosus sensu lato G6 (GenBank: OQ443068.1) isolated from livers of naturally infected camels. Various concentrations (0.5, 1, 1.5 and 2 mg/mL) of PAMAM nanoemulsion at different exposure times (5, 10, 20 and 30 min) were tested against protoscolices. Our findings showed that PAMAM nanoemulsion had considerable concentration- and time-dependent protoscolicidal effect at both in vitro and ex vivo experiments. Regarding in vitro assay, PAMAM nanoemulsion had a potent protoscolicidal effect when compared with the control group with a highest protoscolicidal activity observed at the concentration of 2 mg/mL at all exposure times, such that 100% of protoscolices were killed after 20 min of exposure. Also, the mortality of protoscolices was 100% after 30 min of exposure to 1 and 1.5 mg/mL of PAMAM nanoemulsion, in vitro. Concerning ex vivo assay PAMAM nanoemulsion recorded the highest mortality rates at the concentration of 2 mg/mL (55, 99.4 and 100% at 10, 20, 30 min, respectively). Ultrastructure examination of examined protoscolices after 20 min of exposure to PAMAM nanoemulsion showed a complete loss of rostellar hooks, disruption of suckers with disorganization of hooks with partial or complete loss of them, and damage of protoscolices tegument with loss of their integrity in the form of holes and contraction of the soma region were observed in 1.5 and 2 mg/mL of PAMAM, in vitro and ex vivo, showing more damage in the in vitro conditions. It can be concluded that PAMAM nanoemulsion is a promising protoscolicidal agent offering a high protoscolicidal effect at a short exposure time. Further in vivo studies and preclinical animal trials are required to evaluate its efficacy and clinical applications against hydatid cysts.


Echinococcosis , Echinococcus granulosus , Emulsions , Animals , Echinococcus granulosus/drug effects , Echinococcus granulosus/ultrastructure , Echinococcosis/drug therapy , Echinococcosis/parasitology , Polyamines/pharmacology , Polyamines/chemistry , Nanoparticles/chemistry , Particle Size , Camelus/parasitology
7.
J Proteomics ; 301: 105191, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38697285

Cystic echinococcosis is a zoonotic disease resulting from infection caused by the larval stage of Echinococcus granulosus. This study aimed to assess the specific proteins that are potential candidates for the development of a vaccine against E. granulosus. The data-independent acquisition approach was employed to identify differentially expressed proteins (DEPs) in E. granulosus samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to identify several noteworthy proteins. Results: The DEPs in E. granulosus samples were identified (245 pericystic wall vs. parasite-free yellowish granuloma (PYG, 1725 PY vs. PYG, 2274 PN vs. PYG). Further examination of these distinct proteins revealed their predominant enrichment in metabolic pathways, amyotrophic lateral sclerosis, and neurodegeneration-associated pathways. Notably, among these DEPs, SH3BGRL, MST1, TAGLN2, FABP5, UBE2V2, and RARRES2 exhibited significantly higher expression levels in the PYG group compared with the PY group (P < 0.05). The findings may contribute to the understanding of the pathological mechanisms underlying echinococcosis, providing valuable insights into the development of more effective diagnostic tools, treatment modalities, and preventive strategies. SIGNIFICANCE: CE is a major public health hazard in the western regions of China, Central Asia, South America, the Mediterranean countries, and eastern Africa. Echinococcus granulosus is responsible for zoonotic disease through infection Our analysis focuses on the proteins in various samples by data-dependent acquisition (DIA) for proteomic analysis. The importance of this research is to develop new strategies and targets to protect against E. granulosus infections in humans.


Echinococcus granulosus , Proteomics , Proteomics/methods , Humans , Echinococcus granulosus/metabolism , Animals , Helminth Proteins/metabolism , Helminth Proteins/analysis , Echinococcosis, Hepatic/metabolism , Echinococcosis, Hepatic/parasitology , Proteome/analysis , Proteome/metabolism
8.
Acta Trop ; 255: 107240, 2024 Jul.
Article En | MEDLINE | ID: mdl-38705342

Cystic echinococcosis (CE), caused by the tapeworm Echinococcus granulosus, is a zoonotic parasitic disease that still represents a serious threat to human and animal health worldwide. The Mediterranean basin is recognized as one of the major hotspots of CE due to several factors, including the presence of diverse intermediate host species as well as socio-economic and cultural conditions of local communities. This study aims to take a closer look at epidemiological data on CE in the Mediterranean area and assess the knowledge attitudes and practices of shepherds towards this disease in four countries (Algeria, Greece, Italy and Tunisia), highly endemic for CE, with the final goal of identifying highly endemic risk areas and practices in use which might potentially allow the persistence of E. granulosus infection in these areas. To update the epidemiological scenario of CE in Mediterranean areas, a comprehensive review of peer-reviewed literature on CE prevalence data published during the 2017-2023 period was carried out and, through a geographical information system (GIS), a map displaying the current CE distribution in the Mediterranean area was generated. In addition, a questionnaire survey was conducted through in-depth interviews of the farmers to collect information on their management system as well as knowledge attitudes and practices towards CE. From the farmer-participatory survey some risky practices emerged including the non-regular deworming of dogs or the use of ineffective drugs or dosing, as well as the provision of uncooked animal viscera to dogs. Finally, lower levels of knowledge and awareness of the disease was observed among farmers from North Africa compared with those of European countries. In conclusion, the results obtained highlight that CE is still a very serious problem in Mediterranean areas and increased efforts are needed to promote awareness among farmers and to turn research results into policy in order to reduce the spread of this disease, according to the One Health perspective.


Echinococcosis , Echinococcus granulosus , Health Knowledge, Attitudes, Practice , Livestock , Animals , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/prevention & control , Livestock/parasitology , Dogs , Mediterranean Region/epidemiology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Greece/epidemiology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/prevention & control , Humans , Italy/epidemiology , Prevalence , Cattle , Tunisia/epidemiology , Algeria/epidemiology , Surveys and Questionnaires , Sheep , Farmers/statistics & numerical data
9.
Front Cell Infect Microbiol ; 14: 1362765, 2024.
Article En | MEDLINE | ID: mdl-38562963

Cestodes use own lipid-binding proteins to capture and transport hydrophobic ligands, including lipids that they cannot synthesise as fatty acids and cholesterol. In E. granulosus s.l., one of these lipoproteins is antigen B (EgAgB), codified by a multigenic and polymorphic family that gives rise to five gene products (EgAgB8/1-5 subunits) assembled as a 230 kDa macromolecule. EgAgB has a diagnostic value for cystic echinococcosis, but its putative role in the immunobiology of this infection is still poorly understood. Accumulating research suggests that EgAgB has immunomodulatory properties, but previous studies employed denatured antigen preparations that might exert different effects than the native form, thereby limiting data interpretation. This work analysed the modulatory actions on macrophages of native EgAgB (nEgAgB) and the recombinant form of EgAg8/1, which is the most abundant subunit in the larva and was expressed in insect S2 cells (rEgAgB8/1). Both EgAgB preparations were purified to homogeneity by immunoaffinity chromatography using a novel nanobody anti-EgAgB8/1. nEgAgB and rEgAgB8/1 exhibited differences in size and lipid composition. The rEgAgB8/1 generates mildly larger lipoproteins with a less diverse lipid composition than nEgAgB. Assays using human and murine macrophages showed that both nEgAgB and rEgAgB8/1 interfered with in vitro LPS-driven macrophage activation, decreasing cytokine (IL-1ß, IL-6, IL-12p40, IFN-ß) secretion and ·NO generation. Furthermore, nEgAgB and rEgAgB8/1 modulated in vivo LPS-induced cytokine production (IL-6, IL-10) and activation of large (measured as MHC-II level) and small (measured as CD86 and CD40 levels) macrophages in the peritoneum, although rEgAgB8/1 effects were less robust. Overall, this work reinforced the notion that EgAgB is an immunomodulatory component of E. granulosus s.l. Although nEgAgB lipid's effects cannot be ruled out, our data suggest that the EgAgB8/1 subunit contributes to EgAgB´s ability to regulate the inflammatory activation of macrophages.


Echinococcus granulosus , Humans , Animals , Mice , Echinococcus granulosus/genetics , Echinococcus granulosus/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Macrophage Activation , Lipoproteins/genetics , Lipoproteins/metabolism , Macrophages , Cytokines/metabolism
10.
Rev Med Liege ; 79(4): 208-214, 2024 Apr.
Article Fr | MEDLINE | ID: mdl-38602207

We report the case of a patient who has been hospitalized for dyspnea. Investigations revealed airway obstruction, eosinophilia, elevated IgE and elevated exhaled nitric oxide. Patient improved with oral corticosteroids (OCS). However, the patient presented two exacerbations requiring OCS during the next twelve months. Chest CT scan revealed two multiloculated parenchymal lesions. Lab test was positive for Echinococcus and Western-Blot confirmed infection with Echinococcus granulosus. Bronchoalveolar lavage confirmed the presence of 6 % eosinophils. Echinococcus granulosis is a zoonotic larval infection caused by a tapeworm larva. Patients with this disease may be asymptomatic for years. Early identification and management, in a multidisciplinary team, are essential and rely mainly on surgical intervention and antiparasitic treatments. This article presents the case of a young patient with pulmonary echinococcosis.


Nous rapportons le cas d'un patient ayant été hospitalisé dans un contexte d'obstruction bronchique, avec une légère éosinophilie, une élévation des IgE et du monoxyde d'azote dans l'air exhalé, qui a évolué favorablement sous corticostéroïdes oraux (CSO). L'évolution est marquée par deux exacerbations d'asthme d'évolution favorable sous CSO dans les douze mois de suivi. Une tomodensitométrie thoracique révèle la présence de deux lésions pulmonaires kystiques. Les sérologies infectieuses mettent en évidence une positivité pour l'espèce -Echinococcus et une confirmation pour l'Echinococcus granulosus. Le lavage broncho-alvéolaire retrouve une hyperéosinophilie à 6 %. L'échinococcose kystique est une infection larvaire zoonotique causée par une larve de taenia. Les patients atteints de cette maladie peuvent être asymptomatiques pendant de nombreuses années. Une identification précoce et une prise en charge adéquate, en équipe pluridisciplinaire, sont primordiales et reposent essentiellement sur une intervention chirurgicale et des traitements anti-parasitaires. Cet article présente le cas d'un jeune patient atteint d'une échinococcose kystique pulmonaire.


Asthma , Echinococcus granulosus , Eosinophilia , Animals , Humans , Eosinophilia/complications , Asthma/complications , Asthma/diagnosis , Eosinophils , Zoonoses/complications
11.
Parasit Vectors ; 17(1): 190, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643149

BACKGROUND: Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS: To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS: Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFß1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS: Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.


Echinococcosis , Echinococcus granulosus , Sheep Diseases , Animals , Sheep , Echinococcus granulosus/genetics , Ubiquitin-Conjugating Enzymes/genetics , Echinococcosis/parasitology , Liver Cirrhosis , Ubiquitins/genetics , Genotype , Sheep Diseases/parasitology
12.
Open Vet J ; 14(3): 866-878, 2024 Mar.
Article En | MEDLINE | ID: mdl-38682137

Background: Cystic echinococcosis (CE), which is triggered by the parasite Echinococcus granulosus, is a global zoonotic disease that is common in rural regions in which there are frequent encounters between dogs and other domestic animals. The disease can have devastating consequences, impacting the health of people and animals and leading to huge financial losses, especially in the agricultural industry. In the Kingdom of Saudi Arabia (KSA) and Egypt, despite the high incidence of disease, few investigations have been conducted into the genetic variation in species of the genus Echinococcus. Aim: This study sought to compare the genetic features of the hydatid cysts carried in sheep in KSA with those found in Egypt. Methods: DNA from the protoscolices was used in a PCR targeting the mitochondrial NADH dehydrogenase 1 (NAD1), cytochrome c oxidase subunit 1 (COX1), and nuclear actin II (ACT II) genes, and the resulting amplification products of 30 KSA and Egyptian isolates were sequenced and compared. Results: Among the sheep in KSA, the overall prevalence of CE was 0.51%. Of the sheep cyst DNA samples, 95%, 100%, and 52% were positive for the Cox1, nad1, and act II genes, respectively. Targeting all three genes, all KSA samples belonged to the E. granulosus genotype (G1), whereas all Egyptian isolates belonged to E. granulosus (G1) and E. canadensis (G6). Conclusion: We conclude that isolates of E. granulosus from the two countries shared a common origin in Arabic North Africa, with sheep and camels as common hosts.


Echinococcosis , Echinococcus granulosus , Genotype , Sheep Diseases , Animals , Echinococcus granulosus/genetics , Echinococcus granulosus/isolation & purification , Echinococcosis/veterinary , Echinococcosis/epidemiology , Echinococcosis/parasitology , Sheep , Egypt/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Saudi Arabia/epidemiology , Prevalence
13.
Parasitology ; 151(4): 421-428, 2024 Apr.
Article En | MEDLINE | ID: mdl-38576256

Cystic echinococcosis (CE), caused by the larval stage of the cestode Echinococcus granulosus, is one of the most widespread zoonoses in Mediterranean countries. Baiting not-owned dogs with praziquantel (PZQ), due to their key role in the maintaining the transmission of CE, currently appears to be the most effective way to limit the transmission of CE, as well as an important aspect to introduce for the control of this parasitic disease. Therefore, this study aims to test 3 types of PZQ-based baits by evaluating different parameters (integrity over time, attractiveness and palatability for dogs, and mechanical resistance after release to different altitudes) and the bait acceptance in field by target animals, i.e. not-owned dogs, by using camera traps. The double PZQ-laced baits (with a double layer of highly palatable chews) showed the greatest resistance in the environment while also preserving the attractiveness and palatability up to 10 days, also withstood heights of 25 m, thus resulting as the most suitable also for drone delivery. The results on the field showed that most of the baits were consumed by not-owned dogs (82.2%), while the remaining were consumed by wild boars (8.9%), foxes (6.7%), badgers (1.1%) and hedgehogs (1.1%), confirming the specific and high attractiveness of the double PZQ-laced baits for the target population and highlights how an anthelmintic baiting programme may be a viable tool for the management of E. granulosus among free-ranging dog populations in endemic rural areas.


Dog Diseases , Echinococcosis , Echinococcus granulosus , Praziquantel , Animals , Dogs , Echinococcus granulosus/drug effects , Echinococcosis/veterinary , Echinococcosis/prevention & control , Echinococcosis/parasitology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Praziquantel/pharmacology , Anthelmintics/pharmacology , Zoonoses/parasitology , Swine
14.
Br J Biomed Sci ; 81: 12446, 2024.
Article En | MEDLINE | ID: mdl-38650738

Introduction: The parasitic tapeworm impersonated by the larvae of Echinococcus granulosus represents the aetiology of the hydatid pathology. The predilect site of invasion is the liver, but there are other cases of different localization all over the body, regardless of the type of invaded tissue. Soft tissue hydatidosis can be a real challenge for the clinician in terms of the diagnosis, and it might generate various complications such as anaphylactic shock. The aim of the present work is to illustrate a unique case of primary hydatidosis located in the nuchal region. Case Report: We report the case of a 68-year-old male patient, a zootechnic, who presented at the hospital with a tumoural mass (dimension: about 12/10 cm) located in the nuchal region. The complex approach needed consisted of surgical therapy along with histopathological confirmation of the diagnostic and antiparasitic medication, which led to a complete recovery with a low probability of recurrence. Discussion: Encounters with patients with primary soft tissue hydatidosis are exceptionally rare, but the surgeon must take into consideration this clinical diagnosis, especially for patients located in an endemic region with occupations that might have exposed the patient to this type of parasite.


Echinococcosis , Humans , Male , Echinococcosis/diagnosis , Echinococcosis/pathology , Aged , Animals , Echinococcus granulosus
15.
Vet Parasitol Reg Stud Reports ; 50: 101013, 2024 05.
Article En | MEDLINE | ID: mdl-38644038

Canids harbor many zoonotic parasites and play an important role in the spread of parasites in the human environment. Estimation of parasitic infection among canids as definitive hosts may help competent authorities design efficient control programs. This study was conducted to determine the prevalence of intestinal parasites in dogs and foxes with an emphasis on Echinococcus spp. A total of 500 fecal samples of dogs and 30 fecal samples of foxes were studied in the summer, autumn, and winter of 2021 in the Zanjan province using the formalin-ethyl acetate concentration technique, followed by multiplex PCR. The overall prevalence of gastrointestinal parasite infection was estimated to be 19.05%. The prevalence was 24.8%, 10.2%, and 26.7% in stray, shelter dogs and foxes, respectively. No parasites were found among pet and guard dog samples. PCR results on Taenidae eggs showed that 2.4% of samples were positive for Echinococcus granulosus and none contained E. multilocularis. Noteworthy is that E. granulosus was identified only in stray dog samples. The higher prevalence of E. granulosus infection in stray dogs in this province emphasizes the importance of monitoring the food sources consumed by these animals.


Dog Diseases , Echinococcosis , Feces , Foxes , Intestinal Diseases, Parasitic , Animals , Dogs , Foxes/parasitology , Iran/epidemiology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Prevalence , Feces/parasitology , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/parasitology , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Echinococcus/isolation & purification , Seasons , Echinococcus granulosus/isolation & purification
16.
Vet Parasitol ; 328: 110180, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626652

The Echinococcus granulosus sensu lato species complex is responsible for the neglected zoonotic disease known as cystic echinococcosis (CE). Humans and livestock are infected via fecal-oral transmission. CE remains prevalent in Western China, Central Asia, South America, Eastern Africa, and the Mediterranean. Approximately one million individuals worldwide are affected, influencing veterinary and public health, as well as social and economic matters. The infection causes slow-growing cysts, predominantly in the liver and lungs, but can also develop in other organs. The exact progression of these cysts is uncertain. This study aimed to understand the survival mechanisms of liver and lung CE cysts from cattle by determining their metabolite profiles through metabolomics and multivariate statistical analyses. Non-targeted metabolomic approaches were conducted using quadrupole-time-of-flight liquid chromatography/mass spectrometry (LC-QTOF-MS) to distinguish between liver and lung CE cysts. Data processing to extract the peaks on complex chromatograms was performed using XCMS. PCA and OPLS-DA plots obtained through multiple statistical analyses showed interactions of metabolites within and between groups. Metabolites such as glutathione, prostaglandin, folic acid, and cortisol that cause different immunological reactions have been identified both in liver and lung hydatid cysts, but in different ratios. Considering the differences in the metabolomic profiles of the liver and lung cysts determined in the present study will contribute research to enlighten the nature of the cyst and develop specific therapeutic strategies.


Cattle Diseases , Liver , Lung , Metabolomics , Animals , Cattle , Cattle Diseases/parasitology , Liver/parasitology , Lung/parasitology , Echinococcus granulosus/physiology , Echinococcus granulosus/immunology , Echinococcosis, Pulmonary/veterinary , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis, Hepatic/veterinary , Echinococcosis, Hepatic/parasitology , Chromatography, Liquid , Mass Spectrometry/veterinary
17.
J Helminthol ; 98: e34, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38628145

The diagnosis of cystic echinococcosis (CE) is based on imaging. Detection of a focal lesion with morphological characteristics of Echinococcus granulosus sensu lato metacestode is the starting point for the diagnostic workup. In organs explorable with ultrasound (US), this is the method of choice for both aetiological diagnosis of CE and staging of the CE cyst. Staging in terms of lesion morphology is also needed when serology is added to the diagnostic workflow when imaging alone is inconclusive. Finally, staging guides the clinical management of uncomplicated CE, especially in the liver. This commentary provides an overview of the most up-to-date evidence backing the above-mentioned role of US in the diagnosis and clinical management of CE. Finally, we outline future perspectives for the improvement of CE diagnosis.


Echinococcosis , Echinococcus granulosus , Animals , Echinococcosis/diagnostic imaging , Ultrasonography , Liver/diagnostic imaging
18.
Parasitol Res ; 123(3): 172, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38536510

The etiological agents of zoonotic cystic echinococcosis comprise the Echinococcus granulosus sensu lato (s.l.) species complex. The present study was aimed at investigating the zoonotic genotypes of Echinococcus granulosus s.l. circulating in the pig population of Haryana, India. Out of 253 slaughtered pigs screened, 5 showed the presence of hydatid cysts. The amplification of the partial mitochondrial NADH dehydrogenase subunit 1 (nad1) gene for the molecular confirmation and phylogenetics of the retrieved metacestodes (n = 2) revealed the presence of E. ortleppi. The sequences generated herein exhibited 99.80% homology to the GenBank archived E. ortleppi sequences. Cladistics targeting genetic diversity and haplotype network analysis involved 37 E. granulosus s.l. GenBank archived sequences from India corresponding to different hosts (large and small ruminants and humans) along with the sequences (n = 2) generated in the present study. Overall, 14 haplotypes with high haplotype (0.780 ± 0.059) and low nucleotide (0.033 ± 0.010) diversities were recorded for the overall data set, which evinced a population expansion. The median-joining haplotype network revealed a stellate shape of E. granulosus sensu stricto (s.s.) sequences, which was indicative of rapid population expansion. High genetic differentiation (FST = 0.840 - 0.983) and low gene flow (Nm = 0.003 - 0.047) were recorded between the pig intermediate hosts infected with E. ortleppi and other hosts infected with E. granulosus s.s. The findings are of paramount significance for the formulation of effective control strategies considering the public health and economic impact of cystic echinococcosis.


Echinococcosis , Echinococcus granulosus , Echinococcus , Humans , Animals , Swine , Echinococcus/genetics , Echinococcus granulosus/genetics , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/genetics , Genotype , India/epidemiology
19.
Sci Rep ; 14(1): 7297, 2024 03 27.
Article En | MEDLINE | ID: mdl-38538664

Cystic echinococcosis is caused by the zoonotic tapeworm Echinococcus granulosus. There has been ongoing controversy over whether it causes weight loss in cattle. Recently implemented recording of comorbidities at processors has provided opportunity to investigate this effect. Using prevalence-based observational data from 1,648,049 adult cattle processed in seven states and territories in Australia (2019-2022), we explored associations between carcase weight, hydatid cysts, comorbidities, sex, age, and region. Linear mixed-effect regression models estimated the effect of cystic echinococcosis on carcase weight, guided by directed acyclic graphs to reduce bias. The highest, previously unreported, prevalence was in the southeast Queensland region. The estimated effect of cystic echinococcosis cysts on carcase weight ranged from a gain of 0.32 kg/carcase (standard error [se] 0.58 kg; two-tooth 2022) to a loss of -5.45 kg/carcase (se 0.63 kg; six-tooth 2019) with most point estimates (11/16) between 0 and -2.5 kg across all cattle grouped by year and dentition. This effect size would be practically undetectable in live cattle which is an important finding; cattle producers are unlikely to observe increased productivity through weight gain from cystic echinococcosis prevention in cattle, and awareness to strengthen prevention in domestic dogs around cattle properties to reduce human risk remains a public health focus.


Cattle Diseases , Echinococcosis , Echinococcus granulosus , Echinococcus , Dogs , Animals , Cattle , Humans , Cattle Diseases/epidemiology , Echinococcosis/epidemiology , Echinococcosis/veterinary , Australia/epidemiology
20.
Methods Cell Biol ; 185: 115-136, 2024.
Article En | MEDLINE | ID: mdl-38556444

Cystic echinococcosis (CE) is a parasitic zoonosis caused by the larval stage of the cestode Echinococcus granulosus sensu lato (s. l.), a genetic complex composed of five species: E. granulosus sensu stricto (s. s.), E. equinus, E. ortleppi, E. canadensis, and E. felidis. The parasite requires two mammalian hosts to complete its life cycle: a definitive host (mainly dogs) harboring the adult parasite in its intestines, and an intermediate host (mostly farm and wild ungulates) where hydatid cysts develop mainly in the liver and lungs. Humans are accidental intermediate hosts, being susceptible to either primary or secondary forms of CE; the first one due to the ingestion of oncospheres, and the second one because of the spillage of protoscoleces (PSC) contained within a primary cyst. Secondary CE is a serious medical problem, and can be modeled in immunocompetent mice (a non-natural intermediate host) through the intraperitoneal inoculation of viable PSC from E. granulosus s. l. This model is useful to study not only the immunobiology of CE, but also to test new chemotherapeutics or therapeutical protocols, to explore novel vaccine candidates, and to evaluate alternative diagnostic and/or follow-up tools. The mouse model of secondary CE involves two sequential stages: an early stage of parasite pre-encystment (PSC develop into hydatid cysts in the peritoneal cavity of mice), and a late or chronic stage of parasite post-encystment (already differentiated cysts slowly grow during the whole host lifespan). This model is a time-consuming infection, whose outcome depends on several factors like the parasite infective dose, the mouse strain, and the parasite species/genotype. Thus, such variables should always be adjusted according to the research objectives. Herein, the general materials and procedures needed to establish secondary CE in mice are described, as well as several useful tips and recommendations.


Echinococcosis , Echinococcus granulosus , Echinococcus , Adult , Animals , Humans , Dogs , Mice , Echinococcosis/parasitology , Echinococcosis/veterinary , Echinococcus granulosus/genetics , Echinococcus/genetics , Genotype , Liver , Disease Models, Animal , Mammals
...