Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.117
2.
Mar Drugs ; 22(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38786598

This paper aims to provide an in-depth review of the specific outcomes associated with omega-3 polyunsaturated fatty acids (PUFAs), focusing on their purported effects on post-surgical complications in trauma patients. A comprehensive investigation of omega-3 polyunsaturated fatty acids was conducted until February 2023 using the PubMed database. Surgical trauma is characterized by a disruption in immune response post surgery, known to induce systemic inflammation. Omega-3 PUFAs are believed to offer potential improvements in multiple post-surgical complications because of their anti-inflammatory and antioxidant properties. Inconsistent findings have emerged in the context of cardiac surgeries, with the route of administration playing a mediating role in these outcomes. The effects of omega-3 PUFAs on post-operative atrial fibrillation have exhibited variability across various studies. Omega-3 PUFAs have demonstrated positive effects in liver surgery outcomes and in patients with acute respiratory distress syndrome. Omega-3 is suggested to offer potential benefits, particularly in the perioperative care of patients undergoing traumatic procedures. Incorporating omega-3 in such cases is hypothesized to contribute to a reduction in certain surgical outcomes, such as hospitalization duration and length of stay in the intensive care unit. Therefore, comprehensive assessments of adverse effects can aid in identifying the presence of subtle or inconspicuous side effects associated with omega-3.


Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Postoperative Complications , Humans , Postoperative Complications/prevention & control , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Eicosapentaenoic Acid/administration & dosage , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/administration & dosage , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Wounds and Injuries/surgery , Animals
3.
FASEB J ; 38(10): e23699, 2024 May 31.
Article En | MEDLINE | ID: mdl-38805158

This meeting report presents a consensus on the biological aspects of lipid emulsions in parenteral nutrition, emphasizing the unanimous support for the integration of lipid emulsions, particularly those containing fish oil, owing to their many potential benefits beyond caloric provision. Lipid emulsions have evolved from simple energy sources to complex formulations designed to improve safety profiles and offer therapeutic benefits. The consensus highlights the critical role of omega-3 polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in fish oil and other marine oils, for their anti-inflammatory properties, muscle mass preservation, and as precursors to the specialized pro-resolving mediators (SPMs). SPMs play a significant role in immune modulation, tissue repair, and the active resolution of inflammation without impairing host defense mechanisms. The panel's agreement underscores the importance of incorporating fish oil within clinical practices to facilitate recovery in conditions like surgery, critical illness, or immobility, while cautioning against therapies that might disrupt natural inflammation resolution processes. This consensus not only reaffirms the role of specific lipid components in enhancing patient outcomes, but also suggests a shift towards nutrition-based therapeutic strategies in clinical settings, advocating for the proactive evidence-based use of lipid emulsions enriched with omega-3 PUFAs. Furthermore, we should seek to apply our knowledge concerning DHA, EPA, and their SPM derivatives, to produce more informative randomized controlled trial protocols, thus allowing more authoritative clinical recommendations.


Inflammation , Humans , Inflammation/metabolism , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Eicosapentaenoic Acid/therapeutic use , Eicosapentaenoic Acid/pharmacology , Parenteral Nutrition/methods , Fish Oils/therapeutic use , Docosahexaenoic Acids/therapeutic use , Fat Emulsions, Intravenous/therapeutic use , Animals
4.
Nutrients ; 16(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38612996

Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes, such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3) fatty acid-statin interactions in the prevention and treatment of ASCVD and to provide evidence to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy, primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which overlap, including improving endothelial function, modulation of inflammation, and stabilizing atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and the possible statin-n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.


Atherosclerosis , Cardiovascular Diseases , Fatty Acids, Omega-3 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fatty Acids , Inflammation
5.
Nutr Diabetes ; 14(1): 14, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589346

BACKGROUND/OBJECTIVES: The present study investigated the effect of curcumin and eicosapentaenoic acid, as one the main components of omega-3 polyunsaturated fatty acids, on anthropometric, glucose homeostasis, and gene expression markers of cardio-metabolic risk in patients with type 2 diabetes mellitus. SUBJECTS/METHODS: This clinical trial was conducted at the Endocrinology Clinic of Imam Reza Hospital in Tabriz. It aimed to determine the impact of Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), and curcumin supplements on various health indicators in patients with Type 2 Diabetes Mellitus (DM2) from 2021.02.01 to 2022.02.01. The study was a randomized double-blinded clinical trial and conducted over 12 weeks with 100 participants randomly divided into four groups. Stratified randomization was used to assign participants to two months of supplementation based on sex and Body Mass Index (BMI). The study comprised four groups: Group 1 received 2 capsules of 500 mg EPA and 200 mg DHA, along with 1 nano-curcumin placebo; Group 2 received 1 capsule of 80 mg nano-curcumin and 2 omega 3 Fatty Acids placebos; Group 3 received 2 capsules of 500 mg EPA and 200 mg DHA, and 1 capsule of 80 mg nano-curcumin; Group 4, the control, received 2 omega 3 Fatty Acids placebos and 1 nano-curcumin placebo. RESULTS: After twelve weeks of taking EPA + Nano-curcumin supplements, the patients experienced a statistically significant reduction in insulin levels in their blood [MD: -1.44 (-2.70, -0.17)]. This decrease was significantly greater than the changes observed in the placebo group [MD: -0.63 (-1.97, 0.69)]. The EPA + Nano-curcumin group also showed a significant decrease in High-Sensitivity C-Reactive Protein (hs-CRP) levels compared to the placebo group (p < 0.05). Additionally, the EPA + Nano-curcumin group had a significant increase in Total Antioxidant Capacity (TAC) levels compared to the placebo group (p < 0.01). However, there were no significant differences in Fasting Blood Sugar (FBS), Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index, Quantitative Insulin Sensitivity Check Index (QUICKI), or Hemoglobin A1c (HbA1C) levels between the four groups (all p > 0.05). There were significant differences between the Nano-curcumin and EPA groups [MD: -17.02 (-32.99, -1.05)], and between the Nano-curcumin and control groups [MD: -20.76 (-36.73, -4.79)] in terms of lowering the serum cholesterol level. The difference in Triglycerides (TG) serum levels between the EPA + Nano-curcumin and placebo groups were not statistically significant (p = 0.093). The Nano-curcumin group showed significant decreases in Low-Density Lipoprotein (LDL) levels compared to the EPA group [MD: -20.12 (-36.90, -3.34)] and the control group [MD: -20.79 (-37.57, -4.01)]. There was a near-to-significant difference in High-Density Lipoprotein (HDL) serum levels between the EPA + Nano-curcumin and EPA groups (p = 0.056). Finally, there were significant differences in the decrease of serum Vascular Endothelial Growth Factor (VEGF) levels between the EPA and Nano-curcumin groups [MD: -127.50 (-247.91, -7.09)], the EPA and placebo groups [MD: 126.25 (5.83, 246.66)], the EPA + Nano-curcumin and Nano-curcumin groups [MD: -122.76 (-243.17, -2.35)], and the EPA + Nano- curcumin and placebo groups [MD: 121.50 (1.09, 241.92)]. CONCLUSIONS: The findings of the present study suggest that 12-week supplementation with EPA and Nano-curcumin may positively impact inflammation, oxidative stress, and metabolic parameters in patients with diabetes. The supplementation of EPA and Nano-curcumin may be a potential intervention to manage diabetes and reduce the risk of complications associated with diabetes. However, further research is needed to validate the study's findings and establish the long-term effects of EPA and Nano-curcumin supplementation in patients with diabetes.


Curcumin , Diabetes Mellitus, Type 2 , Fatty Acids, Omega-3 , Humans , Curcumin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/therapeutic use , Vascular Endothelial Growth Factor A , Male , Female
6.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38474148

Pain is an unpleasant sensory and emotional experience accompanied by tissue injury. Often, an individual's experience can be influenced by different physiological, psychological, and social factors. Fibromyalgia, one of the most difficult-to-treat types of pain, is characterized by general muscle pain accompanied by obesity, fatigue, sleep, and memory and psychological concerns. Fibromyalgia increases nociceptive sensations via central sensitization in the brain and spinal cord level. We used intermittent cold stress to create a mouse fibromyalgia pain model via a von Frey test (day 0: 3.69 ± 0.14 g; day 5: 2.13 ± 0.12 g). Mechanical pain could be reversed by eicosapentaenoic acid (EPA) administration (day 0: 3.72 ± 0.14 g; day 5: 3.69 ± 0.13 g). A similar trend could also be observed for thermal hyperalgesia. The levels of elements in the transient receptor potential V1 (TRPV1) signaling pathway were increased in the ascending pain pathway, including the thalamus, medial prefrontal cortex, somatosensory cortex, anterior cingulate cortex, and cerebellum. EPA intake significantly attenuated this overexpression. A novel chemogenetics method was used to inhibit SSC and ACC activities, which presented an analgesic effect through the TRPV1 downstream pathway. The present results provide insights into the role of the TRPV1 signaling pathway for fibromyalgia and its potential as a clinical target.


Fibromyalgia , Animals , Mice , Brain , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fibromyalgia/drug therapy , Hyperalgesia/drug therapy , Pain
7.
Physiol Res ; 73(1): 57-68, 2024 03 11.
Article En | MEDLINE | ID: mdl-38466005

This study investigated the effect of eicosapentaenoic acid (EPA) on insulin resistance in pregnant mice with gestational diabetes mellitus (GDM) and underlying mechanism. C57BL/6 mice fed with a high-fat diet for 4 weeks and the newly gestated were selected and injected with streptozotocin for GDM modeling. We demonstrated that the fasting insulin levels (FINS) and insulin sensitivity index (ISI) in serum and blood glucose level were significantly higher in GDM group than in normal control (NC) group. The low or high dose of EPA intervention reduced these levels, and the effect of high dose intervention was more significant. The area under the curve in GDM group was higher than that of NC group, and then gradually decreased after low or high dose of EPA treatment. The serum levels of TC, TG and LDL were increased in GDM group, while decreased in EPA group. GDM induced down-regulation of HDL level, and the low or high dose of EPA gradually increased this level. The levels of p-AKT2Ser, p-IRS-1Tyr, GLUT4, and ratios of pIRS-1Tyr/IRS-1 and pAKT2Ser/AKT2 in gastrocnemius muscle were reduced in GDM group, while low or high dose of EPA progressively increased these alterations. GDM enhanced TLR4, NF-kappaB p65, IL-1beta, IL-6 and TNF-alpha levels in placental tissues, and these expressions were declined at different dose of EPA, and the decrease was greater at high dose. We concluded that EPA receded the release of inflammatory factors in the placental tissues by inhibiting the activation of TLR4 signaling, thereby alleviating the IR.


Diabetes, Gestational , Insulin Resistance , Humans , Pregnancy , Female , Mice , Animals , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Toll-Like Receptor 4/metabolism , Placenta/metabolism , Mice, Inbred C57BL , Insulin/pharmacology , Blood Glucose/metabolism
8.
Brain Behav Immun ; 118: 459-467, 2024 May.
Article En | MEDLINE | ID: mdl-38499208

Omega-3 polyunsaturated fatty acids (PUFAs) may benefit migraine improvement, though prior studies are inconclusive. This study evaluated the effect of eicosapentaenoic acid (EPA) on episodic migraine (EM) prevention. Seventy individuals with EM participated in a 12-week randomized, double-blind, placebo-controlled trial from March 2020 and May 2022. They were randomly assigned to either the EPA (N = 35, 2 g fish oil with 1.8 g of EPA as a stand-alone treatment daily), or the placebo group (N = 35, 2 g soybean oil daily). Migraine frequency and headache severity were assessed using the monthly migraine days, visual analog scale (VAS), Migraine Disability Assessment (MIDAS), Hospital Anxiety and Depression Scale (HADS), Migraine-Specific Quality-of-Life Questionnaire (MSQ), and Pittsburgh Sleep Quality Index (PSQI) in comparison to baseline measurements. The EPA group significantly outperformed the placebo in reducing monthly migraine days (-4.4 ± 5.1 days vs. - 0.6 ± 3.5 days, p = 0.001), days using acute headache medication (-1.3 ± 3.0 days vs. 0.1 ± 2.3 days, p = 0.035), improving scores for headache severity (ΔVAS score: -1.3 ± 2.4 vs. 0.0 ± 2.2, p = 0.030), disability (ΔMIDAS score: -13.1 ± 16.2 vs. 2.6 ± 20.2, p = 0.001), anxiety and depression (ΔHADS score: -3.9 ± 9.4 vs. 1.1 ± 9.1, p = 0.025), and quality of life (ΔMSQ score: -11.4 ± 19.0 vs. 3.1 ± 24.6, p = 0.007). Notably, female particularly benefited from EPA, underscoring its potential in migraine management. In conclusion, high-dose EPA has significantly reduced migraine frequency and severity, improved psychological symptoms and quality of life in EM patients, and shown no major adverse events, suggesting its potential as a prophylactic for EM.


Eicosapentaenoic Acid , Migraine Disorders , Female , Humans , Double-Blind Method , Eicosapentaenoic Acid/therapeutic use , Headache , Migraine Disorders/drug therapy , Migraine Disorders/prevention & control , Quality of Life , Treatment Outcome , Male
9.
Brain Behav Immun ; 118: 192-201, 2024 May.
Article En | MEDLINE | ID: mdl-38432599

Despite decades of research on the pathophysiology of depression, the development of new therapeutic interventions has been slow, and no biomarkers of treatment response have been clinically implemented. Several lines of evidence suggest that the clinical and biological heterogeneity among patients with major depressive disorder (MDD) has hampered progress in this field. MDD with low-grade inflammation - "inflamed depression" - is a subtype of depression that may be associated with a superior antidepressant treatment response to anti-inflammatory compounds. Omega-3 fatty acid eicosapentaenoic acid (EPA) has anti-inflammatory properties, and preliminary data suggest that it may be particularly efficacious in inflamed depression. In this study we tested the hypothesis that add-on EPA has greater antidepressant efficacy in MDD patients with high baseline high-sensitivity C-reactive protein (hs-CRP) compared to MDD patients with low hs-CRP. All subjects received 2.2 g EPA, 400 mg docosahexaenoic acid and 800 mg of other fatty acids daily for 8 weeks, added to stable ongoing antidepressant treatment. The primary outcome was change in the 17-item Hamilton Depression Rating Scale (HAMD-17). Patients and raters were blind to baseline hs-CRP status. In an intention-to-treat analysis including all subjects with at least one post baseline visit (n = 101), ahs-CRPcut-off of ≥1 mg/L, but not ≥3 mg/L, was associated with a greater improvement in HAMD-17 total score. In addition to a general antidepressant effect among patients with hs-CRP ≥ 1 mg/L, adjuvant EPA treatment improved symptoms putatively related to inflamed depression such as fatigue and sleep difficulties. This adds to the mounting evidence that delineation of MDD subgroups based on inflammation may be clinically relevant to predict treatment response to anti-inflammatory interventions.


Depressive Disorder, Major , Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/diagnosis , Depression/drug therapy , C-Reactive Protein/metabolism , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids/therapeutic use , Antidepressive Agents/therapeutic use , Inflammation/drug therapy , Inflammation/chemically induced , Anti-Inflammatory Agents/therapeutic use
10.
Expert Rev Neurother ; 24(3): 313-324, 2024 Mar.
Article En | MEDLINE | ID: mdl-38379273

INTRODUCTION: Targeted interventions are needed to delay or prevent the onset of neurodegenerative diseases. Poor dietary habits are associated with cognitive decline, highlighting the benefits of a healthy diet with fish and polyunsaturated fatty acids (PUFAs). Intake of omega-3 PUFAs docosahexaenoic acid (DHA), α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) is linked with healthy aging, cardiovascular benefits, and reduced risk of Alzheimer's disease. Although omega-3 has health benefits, its intake is often inadequate and insufficient in modern diets. Although fish oil supplements offer an alternative source, inconsistent results from clinical trials raise questions about the factors determining their success. AREAS COVERED: In this this review, the authors discuss the aforementioned determining factors and highlight strategies that could enhance the effectiveness of omega-3 PUFAs interventions for dementia and cognitive decline. Moreover, the authors provide suggestions for potential future research. EXPERT OPINION: Factors such as diet, lifestyle, and genetic predisposition can all influence the effectiveness of omega-3 supplementation. When implementing clinical trials, it is crucial to consider these factors and recognize their potential impact on the interpretation of results. It is important to study each variable independently and the interactions between them.


Dementia , Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/therapeutic use , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids/therapeutic use , Dietary Supplements , Dementia/prevention & control , Dementia/drug therapy
11.
Crit Care ; 28(1): 38, 2024 02 01.
Article En | MEDLINE | ID: mdl-38302945

The optimal feeding strategy for critically ill patients is still debated, but feeding must be adapted to individual patient needs. Critically ill patients are at risk of muscle catabolism, leading to loss of muscle mass and its consequent clinical impacts. Timing of introduction of feeding and protein targets have been explored in recent trials. These suggest that "moderate" protein provision (maximum 1.2 g/kg/day) is best during the initial stages of illness. Unresolved inflammation may be a key factor in driving muscle catabolism. The omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are substrates for synthesis of mediators termed specialized pro-resolving mediators or SPMs that actively resolve inflammation. There is evidence from other settings that high-dose oral EPA + DHA increases muscle protein synthesis, decreases muscle protein breakdown, and maintains muscle mass. SPMs may be responsible for some of these effects, especially upon muscle protein breakdown. Given these findings, provision of EPA and DHA as part of medical nutritional therapy in critically ill patients at risk of loss of muscle mass seems to be a strategy to prevent the persistence of inflammation and the related anabolic resistance and muscle loss.


Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Humans , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Critical Illness/therapy , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Inflammation/drug therapy , Muscle, Skeletal , Muscle Proteins
12.
J Affect Disord ; 350: 403-410, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38244783

INTRODUCTION: Cognitive impairments are found in most patients with major depressive disorder (MDD). It is believed that low Omega-3 polyunsaturated fatty acids (n-3 PUFAs) level raise the risk of anxiety, depressive symptoms and cognition dysfunction. Since our previous research has found n-3 PUFAs supplementation improves anxiety in MDD, this study was to further explore the effectiveness on cognitive impairment among depressed patients. METHODS: A total of 72 venlafaxine treated outpatients with first-diagnosed, drug-naïve depression were enrolled. Daily n-3 PUFAs supplementation (2.4 g/d of fish oil, including 1440 mg eicosapentaenoic acid and 960 mg of docosahexaenoic acid) or placebo was used for 12 weeks. Cognitive function, measure by repeatable battery for the assessment of neuropsychological status ([RBANS]) scores, was compared over time. RESULTS: Immediate memory, delayed memory and RBANS total scores were significant higher in both groups at week 4 and week 12 compared with baseline. Both groups exhibited improvement on attention scores at week 12. No significant differences were observed comparing n-3 PUFAs with placebo groups in the improvement of total RBANS scores and other subscales except in the change of immediate memory at both week 4 and week 12 (p < 0.05). LIMITATIONS: Sample size was relatively low. Moreover, multiple ethnic populations and the income of patients should be considered. Lastly, we used raw scores instead of the standardized scores of RBANS. CONCLUSION: N-3 PUFAs supplementation yielded a small but statistically significant improvement on immediate memory in first-diagnosed, drug-naïve depressed patients. While, antidepressant treatment resulted in significant improvement of cognitive function.


Depressive Disorder, Major , Fatty Acids, Omega-3 , Humans , Depression/drug therapy , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/drug therapy , Dietary Supplements , Double-Blind Method , Fatty Acids, Omega-3/therapeutic use , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids/therapeutic use
14.
Atherosclerosis ; 388: 117407, 2024 Jan.
Article En | MEDLINE | ID: mdl-38091778

BACKGROUND: Recent data indicate considerable variability in response to very long chain omega-3 fatty acid supplementation on cardiovascular disease risk. This inconsistency may be due to differential effects of EPA vs DHA and/or sex-specific responses. METHODS: Sixteen subjects (eight men and eight women) 50-75 y and with low-grade chronic inflammation participated in a randomized controlled crossover trial comparing 3 g/d EPA, 3 g/d DHA, and placebo (3 g/d high oleic acid sunflower oil). Blood monocytes were isolated at the end of each phase for RNA-sequencing. RESULTS: Sex dimorphism in monocyte gene expression was observed, therefore, data for men and women were analyzed separately. 1088 genes were differentially expressed in men and 997 in women (p < 0.05). In both men and women, EPA and DHA repressed genes involved in protein turnover and mitochondrial energy metabolism, relative to placebo. In men only, EPA and DHA upregulated genes related to wound healing and PPARα activation. In women only, EPA and DHA activated genes related to ER stress response. Relative to DHA, EPA resulted in lower expression of genes involved in inflammatory processes in men, and lower expression of genes involved in ER stress response in women. CONCLUSIONS: EPA and DHA supplementation elicited both similar and differential effects on monocyte transcriptome, some of which were sex specific. The observed variability in response to EPA and DHA in men and women could in part explain the conflicting results from previous cardiovascular clinical trials using omega-3 fatty acids.


Fatty Acids, Omega-3 , Monocytes , Male , Humans , Female , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids , Transcriptome , Inflammation , Dietary Supplements , Gene Expression Profiling , Double-Blind Method
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 357-369, 2024 01.
Article En | MEDLINE | ID: mdl-37450014

Disrupted spermatogenesis and testicular injury are among the devastating outcomes of methotrexate. A major contributor to methotrexate-induced testiculopathy is oxidative damage which triggers apoptosis and altered autophagy responses. Eicosapentaenoic acid ethyl ester (EPA-E) is an antihyperlipidemic derivative of omega-3 fatty acids that exhibited affinity to peroxisome proliferator-activated receptor-γ (PPAR-γ) that possesses both antioxidant and autophagy modulating properties. This is an exploratory study aiming at assessing the effectiveness of EPA-E to alleviate testicular damage induced by methotrexate. The specific exploratory hypothesis of this experiment is: EPA-E administration for 1 week to methotrexate-treated rats reduces testicular damage compared to control rats. As a secondary outcome, we were interested in identifying the implicated mechanism that mediates the action of EPA-E. In adult male Wistar rats, testiculopathy was achieved by a single methotrexate injection (20 mg/kg, ip). Rats received vehicle, EPA-E (0.3 g/kg/day, po) alone or with selective PPAR-γ antagonist (bisphenol A diglycidyl ether, BADGE) at 30 mg/kg/day, ip for 1 week. EPA-E recuperated methotrexate-attenuated serum total testosterone while reduced testicular inflammation and oxidative stress, restoring superoxide dismutase (SOD) while reducing malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methotrexate-induced testicular apoptosis (caspase-3 and p53) was suppressed upon EPA-E treatment. Besides, EPA-E curbed methotrexate-induced abnormal autophagy by downregulating LC3A/B and beclin-1. Interestingly, BADGE-coadministration reversed EPA-E beneficial actions. Collectively, our findings suggest PPAR-γ role in EPA-E-mediated mitigation of methotrexate-evoked testiculopathy via suppression of oxidative stress, apoptosis, as well as abnormal autophagy. Furthermore, EPA-E could be used as a preventive therapy for some testiculopathies mediated by oxidative stress.


Eicosapentaenoic Acid , Methotrexate , Rats , Male , Animals , Methotrexate/toxicity , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Rats, Wistar , Peroxisome Proliferator-Activated Receptors/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress
17.
Arterioscler Thromb Vasc Biol ; 44(1): 89-107, 2024 01.
Article En | MEDLINE | ID: mdl-37916414

Both cardiovascular disease (CVD) and cognitive decline are common features of aging. One in 5 deaths is cardiac for both men and women in the United States, and an estimated 50 million are currently living with dementia worldwide. In this review, we summarize sex and racial differences in the role of fish and its very long chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in preventing CVD events and cognitive decline. In prospective studies, women with higher nonfried and fatty fish intake and women and Black individuals with higher plasma levels of EPA and DHA had a lower risk of CVD. In randomized controlled trials of EPA and DHA supplementation in primary CVD prevention, Black subjects benefited in a secondary outcome. In secondary CVD prevention, both men and women benefited, and Asians benefited as a prespecified subgroup. Fish and omega-3 polyunsaturated fatty acids are associated with prevention of cognitive decline in prospective studies. In randomized controlled trials of EPA and DHA supplementation, women have cognitive benefit. DHA seems more beneficial than EPA, and supplementation is more beneficial when started before cognitive decline. Although studies in women and racial groups are limited, life-long intake of nonfried and fatty fish lowers the risk of CVD and cognitive decline, and randomized controlled trials also show the benefit of EPA and DHA supplementation. These findings should be factored into recommendations for future research and clinical recommendations as dietary modalities could be cost-effective for disease prevention.


Cardiovascular Diseases , Fatty Acids, Omega-3 , Male , Animals , Female , Humans , Fatty Acids, Omega-3/therapeutic use , Prospective Studies , Race Factors , Dietary Supplements , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids/therapeutic use , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy , Cognition
18.
J Am Heart Assoc ; 13(1): e032413, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38156550

BACKGROUND: In 3146 REDUCE-IT USA (Reduction of Cardiovascular Events With Icosapent Ethyl Intervention Trial USA) participants, icosapent ethyl (IPE) reduced first and total cardiovascular events by 31% and 36%, respectively, over 4.9 years of follow-up. METHODS AND RESULTS: We used participant-level data from REDUCE-IT USA, 2021 US costs, and IPE costs ranging from $4.59 to $11.48 per day, allowing us to examine a range of possible medication costs. The in-trial analysis was participant-level, whereas the lifetime analysis used a Markov model. Both analyses considered value from a US health sector perspective. The incremental cost-effectiveness ratio (incremental costs divided by incremental quality-adjusted life-years) of IPE compared with standard care (SC) was the primary outcome measure. There was incremental gain in quality-adjusted life-years with IPE compared with SC using in-trial (3.28 versus 3.13) and lifetime (10.36 versus 9.83) horizons. Using an IPE cost of $4.59 per day, health care costs were lower with IPE compared with SC for both in-trial ($29 420 versus $30 947) and lifetime ($216 243 versus $219 212) analyses. IPE versus SC was a dominant strategy in trial and over the lifetime, with 99.7% lifetime probability of an incremental cost-effectiveness ratio <$50 000 per quality-adjusted life-year gained. At a medication cost of $11.48 per day, the cost per quality-adjusted life-year gained was $36 208 in trial and $9582 over the lifetime. CONCLUSIONS: In this analysis, at $4.59 per day, IPE offers better outcomes than SC at lower costs in trial and over a lifetime and is cost-effective at $11.48 per day for conventional willingness-to-pay thresholds. Treatment with IPE should be strongly considered in US patients like those enrolled in REDUCE-IT USA. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01492361.


Cardiovascular Diseases , Health Care Costs , Humans , United States/epidemiology , Cost-Benefit Analysis , Eicosapentaenoic Acid/therapeutic use , Quality-Adjusted Life Years , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control
19.
Adv Nutr ; 15(2): 100163, 2024 Feb.
Article En | MEDLINE | ID: mdl-38110000

Migraine is a highly prevalent neurologic disorder with prevalence rates ranging from 9% to 18% worldwide. Current pharmacologic prophylactic strategies for migraine have limited efficacy and acceptability, with relatively low response rates of 40% to 50% and limited safety profiles. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered promising therapeutic agents for migraine prophylaxis. The aim of this network meta-analysis (NMA) was to compare the efficacy and acceptability of various dosages of EPA/DHA and other current Food and Drug Administration-approved or guideline-recommended prophylactic pharmacologic interventions for migraine. Randomized controlled trials (RCTs) were eligible for inclusion if they enrolled participants with a diagnosis of either episodic or chronic migraine. All NMA procedures were conducted under the frequentist model. The primary outcomes assessed were 1) changes in migraine frequency and 2) acceptability (i.e., dropout for any reason). Secondary outcomes included response rates, changes in migraine severity, changes in the frequency of using rescue medications, and frequency of any adverse events. Forty RCTs were included (N = 6616; mean age = 35.0 y; 78.9% women). Our analysis showed that supplementation with high dosage EPA/DHA yields the highest decrease in migraine frequency [standardized mean difference (SMD): -1.36; 95% confidence interval (CI): -2.32, -0.39 compared with placebo] and the largest decrease in migraine severity (SMD: -2.23; 95% CI: -3.17, -1.30 compared with placebo) in all studied interventions. Furthermore, supplementation with high dosage EPA/DHA showed the most favorable acceptability rates (odds ratio: 1.00; 95% CI: 0.06, 17.41 compared with placebo) of all examined prophylactic treatments. This study provides compelling evidence that high dosage EPA/DHA supplementation can be considered a first-choice treatment of migraine prophylaxis because this treatment displayed the highest efficacy and highest acceptability of all studied treatments. This study was registered in PROSPERO as CRD42022319577.


Fatty Acids, Omega-3 , Migraine Disorders , Female , Humans , Adult , Male , Fatty Acids, Omega-3/therapeutic use , Network Meta-Analysis , Docosahexaenoic Acids , Eicosapentaenoic Acid/therapeutic use , Migraine Disorders/prevention & control , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Dietary Supplements
20.
Atherosclerosis ; 387: 117388, 2023 12.
Article En | MEDLINE | ID: mdl-38056242

BACKGROUND AND AIMS: We previously reported that an omega-3 fatty acid index ≥4% with high-dose eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) prevented progression of noncalcified plaque. Higher coronary artery calcium (CAC) scores and progression of CAC are associated with increased cardiovascular events and mortality. We examined the effect of EPA + DHA on CAC score. METHODS: A total of 242 patients with coronary artery disease (CAD) on statin therapy were randomized to 1.86 g EPA and 1.5 g DHA daily or none (control) for 30 months. The CAC score was measured at baseline and 30-months with non-contrast, cardiac computed tomography. RESULTS: Both EPA + DHA and control groups had significant progression in CAC scores over 30 months (median change:183.5 vs 221.0, respectively, p < 0.001) despite a 13.6% reduction in triglyceride level with EPA + DHA. No significant difference was observed between groups for the total group, by baseline CAC scores of <100, 100-399, 400-999 and ≥1000 or quartiles of achieved levels of EPA, DHA and the omega-3 fatty acid index. Similar rates of CAC progression were noted in those on high-intensity statin compared to low- and moderate-intensity statin. CONCLUSIONS: EPA and DHA added to statin resulted in similar CAC progression over 30 months regardless of baseline CAC categories, statin intensity and achieved levels of EPA, DHA and the omega-3 fatty acid index.


Coronary Artery Disease , Fatty Acids, Omega-3 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/drug therapy , Docosahexaenoic Acids , Calcium , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Fatty Acids, Omega-3/therapeutic use , Eicosapentaenoic Acid/therapeutic use , Calcium, Dietary , Dietary Supplements
...