Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.391
1.
Nat Commun ; 15(1): 4310, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773068

Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.


Antibodies, Neutralizing , Coral Snakes , Single-Domain Antibodies , Animals , Single-Domain Antibodies/immunology , Mice , Antibodies, Neutralizing/immunology , Coral Snakes/immunology , Disease Models, Animal , Antivenins/immunology , Elapid Venoms/immunology , Female , Snake Bites/immunology , Snake Bites/therapy , Epitopes/immunology , Mice, Inbred BALB C , Cell Surface Display Techniques
2.
Toxins (Basel) ; 16(5)2024 May 11.
Article En | MEDLINE | ID: mdl-38787076

Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz-Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus.


Coral Snakes , Elapid Venoms , Gene Expression Profiling , Transcriptome , Animals , Coral Snakes/genetics , Elapid Venoms/genetics , Elapid Venoms/chemistry , Amino Acid Sequence , Computer Simulation , Venomous Snakes
3.
Signal Transduct Target Ther ; 9(1): 109, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714712

The knee joint has long been considered a closed system. The pathological effects of joint diseases on distant organs have not been investigated. Herein, our clinical data showed that post-traumatic joint damage, combined with joint bleeding (hemarthrosis), exhibits a worse liver function compared with healthy control. With mouse model, hemarthrosis induces both cartilage degeneration and remote liver damage. Next, we found that hemarthrosis induces the upregulation in ratio and differentiation towards Th17 cells of CD4+ T cells in peripheral blood and spleen. Deletion of CD4+ T cells reverses hemarthrosis-induced liver damage. Degeneration of cartilage matrix induced by hemarthrosis upregulates serological type II collagen (COL II), which activates CD4+ T cells. Systemic application of a COL II antibody blocks the activation. Furthermore, bulk RNAseq and single-cell qPCR analysis revealed that the cartilage Akt pathway is inhibited by blood treatment. Intra-articular application of Akt activator blocks the cartilage degeneration and thus protects against the liver impairment in mouse and pig models. Taken together, our study revealed a pathological joint-liver axis mediated by matrikine-activated CD4+ T cells, which refreshes the organ-crosstalk axis and provides a new treatment target for hemarthrosis-related disease. Intra-articular bleeding induces cartilage degradation through down-reulation of cartilage Akt pathway. During this process, the soluble COL II released from the damaged cartilage can activate peripheral CD4+ T cells, differention into Th17 cells and secretion of IL-17, which consequently induces liver impairment. Intra-articular application of sc79 (inhibitor of Akt pathway) can prevent the cartilage damage as well as its peripheral influences.


CD4-Positive T-Lymphocytes , Liver , Animals , Mice , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Liver/pathology , Liver/metabolism , Hemarthrosis/genetics , Hemarthrosis/pathology , Male , Disease Models, Animal , Th17 Cells/immunology , Th17 Cells/pathology , Collagen Type II/genetics , Elapid Venoms/pharmacology , Female , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
4.
Toxicon ; 243: 107719, 2024 May 28.
Article En | MEDLINE | ID: mdl-38631492

African spitting cobra, Naja nigricincta nigricincta (Zebra snake), envenomation is an important cause of snakebite morbidity and mortality in Namibia. The snake is endemic to central and northern Namibia as well as southern Angola. The venom is mainly cytotoxic, resulting in aggressive dermo-necrosis and often accompanied by severe systemic complications. No specific antivenom exists. Rhabdomyolysis, systemic inflammatory response, haemostatic abnormalities, infective necrotising fasciitis as well as acute kidney failure have been documented. Based on murine models, this study assessed SAVP/SAIMR - and EchiTAb-Plus-ICP polyvalent antivenom neutralisation as well as subdermal necrosis. Additional muscle, cardiac, kidney and lung histology, creatine kinase measurements and post-mortems were performed. An intravenous median lethal dose (LD50) of Naja nigricincta nigricincta venom was determined at 18.4 (CI: 16.3; 20.52) µg and a subdermal lethal dose at 15.3(CI: 12.96; 17.74)µg. The SAIMR/SAVP polyvalent antivenom median effective dose (ED50) was 1.2 ml antivenom/1 mg venom equating to a potency (WHO) of 1 ml antivenom neutralising 0.63 mg venom and approximately 240 ml (24 vials) needed for initial treatment. The ED50 of the EchiTAb-Plus-ICP was 1 ml antivenom/1 mg venom and a potency of 65 mg venom/ml antivenom (3.3 x LD50), estimating 230 ml (23 vials) for treatment. Histology and serology (creatine kinase) evidenced venom induced skeletal myotoxicity, which was not prevented by the antivenoms tested. Cardiac myonecrosis, an inflammatory response, direct venom kidney tubular necrosis and cardio-pulmonary failure were documented.


Antivenins , Elapid Venoms , Necrosis , Snake Bites , Animals , Antivenins/therapeutic use , Antivenins/pharmacology , Mice , Elapid Venoms/toxicity , Snake Bites/drug therapy , Disease Models, Animal , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Inflammation/drug therapy , Lethal Dose 50 , Naja , Male , Creatine Kinase/blood , Kidney/drug effects , Kidney/pathology
5.
Toxicon ; 243: 107732, 2024 May 28.
Article En | MEDLINE | ID: mdl-38642905

Catuneragam nilotica has been used in ethnomedicine to treat snakebite, inflammation, and diarrhea among others. The aim of this research is to isolate, and characterize potential potential phospholipase A2 (PLA2) inhibitors from the roots of C. nilotica. The plant material was collected, authenticated, and sequentially extracted using solvents of increasing polarity starting from n-hexane, ethyl acetate, and methanol. The extracts as reported in our previous work, were screened in vitro for their inhibitory activity against PLA2 enzyme from N. nigricollis venom using acidimetric assay. In line with the bio-activity guided isolation, methanol extract (being the most active) was subjected to chromatographic separation using silica gel and sephadex LH-20 which resulted in the isolation and characterization of scopoletin, and scopolin; the compounds were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 67.82 to 100.00 % and 65.76-93.15 %, respectively while the standard Antisnake Venom (ASV) had 74.96-85.04 % after 10 min incubation at 37 °C. The molecular docking of the compounds against PLA2 enzyme was performed using Auto Dock Vina while ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers; The findings indicated that both compounds were able to bind to the active site of PLA2 enzyme with high affinity (-6.5 to -6.2 kcal/mol) and they exhibited favorable drug-likeness and pharmacokinetic properties, and according to toxicity predictions, scopolin was found to be non-toxic (LD50 of 5000 mg/kg) while scopoletin has a slight chance of being toxic (LD50 of 3800 mg/kg). In conclusion, the findings of the research revealed that the roots of C. nilotica contains phytoconstituents with anti-PLA2 enzyme activity and thus, validates the ethnomedicinal claim of the use of the plant as herbal therapy against N. nigricollis envenomation.


Molecular Docking Simulation , Phospholipase A2 Inhibitors , Phospholipases A2 , Plant Roots , Scopoletin , Animals , Plant Roots/chemistry , Phospholipases A2/chemistry , Scopoletin/pharmacology , Phospholipase A2 Inhibitors/pharmacology , Naja , Plant Extracts/pharmacology , Plant Extracts/chemistry , Elapid Venoms/enzymology , Elapid Venoms/chemistry
6.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38668589

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Cloning, Molecular , Coral Snakes , Elapid Venoms , Muscle, Skeletal , Receptors, Nicotinic , Animals , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Elapid Venoms/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Amino Acid Sequence , Male
7.
Toxins (Basel) ; 16(4)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38668601

The evolutionary interplay between predator and prey has significantly shaped the development of snake venom, a critical adaptation for subduing prey. This arms race has spurred the diversification of the components of venom and the corresponding emergence of resistance mechanisms in the prey and predators of venomous snakes. Our study investigates the molecular basis of venom resistance in pythons, focusing on electrostatic charge repulsion as a defense against α-neurotoxins binding to the alpha-1 subunit of the postsynaptic nicotinic acetylcholine receptor. Through phylogenetic and bioactivity analyses of orthosteric site sequences from various python species, we explore the prevalence and evolution of amino acid substitutions that confer resistance by electrostatic repulsion, which initially evolved in response to predatory pressure by Naja (cobra) species (which occurs across Africa and Asia). The small African species Python regius retains the two resistance-conferring lysines (positions 189 and 191) of the ancestral Python genus, conferring resistance to sympatric Naja venoms. This differed from the giant African species Python sebae, which has secondarily lost one of these lysines, potentially due to its rapid growth out of the prey size range of sympatric Naja species. In contrast, the two Asian species Python brongersmai (small) and Python bivittatus (giant) share an identical orthosteric site, which exhibits the highest degree of resistance, attributed to three lysine residues in the orthosteric sites. One of these lysines (at orthosteric position 195) evolved in the last common ancestor of these two species, which may reflect an adaptive response to increased predation pressures from the sympatric α-neurotoxic snake-eating genus Ophiophagus (King Cobras) in Asia. All these terrestrial Python species, however, were less neurotoxin-susceptible than pythons in other genera which have evolved under different predatory pressure as: the Asian species Malayopython reticulatus which is arboreal as neonates and juveniles before rapidly reaching sizes as terrestrial adults too large for sympatric Ophiophagus species to consider as prey; and the terrestrial Australian species Aspidites melanocephalus which occupies a niche, devoid of selection pressure from α-neurotoxic predatory snakes. Our findings underline the importance of positive selection in the evolution of venom resistance and suggest a complex evolutionary history involving both conserved traits and secondary evolution. This study enhances our understanding of the molecular adaptations that enable pythons to survive in environments laden with venomous threats and offers insights into the ongoing co-evolution between venomous snakes and their prey.


Boidae , Static Electricity , Animals , Boidae/genetics , Boidae/physiology , Neurotoxins/genetics , Neurotoxins/chemistry , Phylogeny , Elapid Venoms/genetics , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Predatory Behavior , Snake Venoms/genetics , Snake Venoms/chemistry
8.
Toxins (Basel) ; 16(4)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38668608

In Colombia, Micrurus snakebites are classified as severe according to the national clinical care guidelines and must be treated with specific antivenoms. Unfortunately, these types of antivenoms are scarce in certain areas of the country and are currently reported as an unavailable vital medicine. To address this issue, La Universidad de Antioquia, through its spin-off Tech Life Saving, is leading a project to develop third-generation polyvalent freeze-dried antivenom. The goal is to ensure access to this therapy, especially in rural and dispersed areas. This project aims to evaluate the physicochemical and preclinical parameters (standard quality characteristics) of a lab-scale anti-elapid antivenom batch. The antivenom is challenged against the venoms of several Micrurus species, including M. mipartitus, M. dumerilii, M. ancoralis, M. dissoleucus, M. lemniscatus, M. medemi, M. spixii, M. surinamensis, and M. isozonus, following the standard quality characteristics set by the World Health Organization (WHO). The antivenom demonstrates an appearance consistent with standards, 100% solubility within 4 min and 25 s, an extractable volume of 10.39 mL, a pH of 6.04, an albumin concentration of 0.377 mg/mL (equivalent to 1.22% of total protein), and a protein concentration of 30.97 mg/mL. Importantly, it maintains full integrity of its F(ab')2 fragments and exhibits purity over 98.5%. Furthermore, in mice toxicity evaluations, doses up to 15 mg/mouse show no toxic effects. The antivenom also demonstrates a significant recognition pattern against Micrurus venoms rich in phospholipase A2 (PLA2) content, as observed in M. dumerilii, M. dissoleucus, and M. isozonus. The effective dose 50 (ED50) indicates that a single vial (10 mL) can neutralize 2.33 mg of M. mipartitus venom and 3.99 mg of M. dumerilii venom. This new anti-elapid third-generation polyvalent and freeze-dried antivenom meets the physicochemical parameters set by the WHO and the regulators in Colombia. It demonstrates significant efficacy in neutralizing the venom of the most epidemiologically important Micrurus species in Colombia. Additionally, it recognizes seven other species of Micrurus venom with a higher affinity for venoms exhibiting PLA2 toxins. Fulfilling these parameters represents the first step toward proposing a new pharmacological alternative for treating snakebites in Colombia, particularly in dispersed rural areas, given that this antivenom is formulated as a freeze-dried product.


Antivenins , Elapid Venoms , Animals , Antivenins/pharmacology , Colombia , Elapid Venoms/toxicity , Elapid Venoms/immunology , Mice , Snake Bites/drug therapy , Coral Snakes , Male
9.
Proc Natl Acad Sci U S A ; 121(19): e2315597121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687786

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.


Acetates , Elapid Venoms , Indoles , Keto Acids , Necrosis , Snake Bites , Animals , Snake Bites/drug therapy , Mice , Humans , Acrylamides/pharmacology , Phospholipases A2/metabolism , Naja , Elapidae , Keratinocytes/drug effects , Skin/drug effects , Skin/pathology , Drug Repositioning
10.
Toxins (Basel) ; 16(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38668606

This study provides a new methodology for the rapid analysis of numerous venom samples in an automated fashion. Here, we use LC-MS (Liquid Chromatography-Mass Spectrometry) for venom separation and toxin analysis at the accurate mass level combined with new in-house written bioinformatic scripts to obtain high-throughput results. This analytical methodology was validated using 31 venoms from all members of a monophyletic clade of Australian elapids: brown snakes (Pseudonaja spp.) and taipans (Oxyuranus spp.). In a previous study, we revealed extensive venom variation within this clade, but the data was manually processed and MS peaks were integrated into a time-consuming and labour-intensive approach. By comparing the manual approach to our new automated approach, we now present a faster and more efficient pipeline for analysing venom variation. Pooled venom separations with post-column toxin fractionations were performed for subsequent high-throughput venomics to obtain toxin IDs correlating to accurate masses for all fractionated toxins. This workflow adds another dimension to the field of venom analysis by providing opportunities to rapidly perform in-depth studies on venom variation. Our pipeline opens new possibilities for studying animal venoms as evolutionary model systems and investigating venom variation to aid in the development of better antivenoms.


Computational Biology , Elapid Venoms , Animals , Elapid Venoms/chemistry , Elapid Venoms/analysis , Elapidae , Liquid Chromatography-Mass Spectrometry
11.
PLoS Negl Trop Dis ; 18(4): e0012057, 2024 Apr.
Article En | MEDLINE | ID: mdl-38557658

BACKGROUND: Intraspecific variations in snake venom composition have been extensively documented, contributing to the diverse clinical effects observed in envenomed patients. Understanding these variations is essential for developing effective snakebite management strategies and targeted antivenom therapies. We aimed to comprehensively investigate venoms from three distinct populations of N. mossambica from Eswatini, Limpopo, and KwaZulu-Natal regions in Africa in terms of their protein composition and reactivity with three commercial antivenoms (SAIMR polyvalent, EchiTAb+ICP, and Antivipmyn Africa). METHODOLOGY/PRINCIPAL FINDINGS: Naja mossambica venoms from Eswatini region exhibited the highest content of neurotoxic proteins, constituting 20.70% of all venom proteins, compared to Limpopo (13.91%) and KwaZulu-Natal (12.80%), and was characterized by the highest diversity of neurotoxic proteins, including neurotoxic 3FTxs, Kunitz-type inhibitors, vespryns, and mamba intestinal toxin 1. KwaZulu-Natal population exhibited considerably lower cytotoxic 3FTx, higher PLA2 content, and significant diversity in low-abundant proteins. Conversely, Limpopo venoms demonstrated the least diversity as demonstrated by electrophoretic and mass spectrometry analyses. Immunochemical assessments unveiled differences in venom-antivenom reactivity, particularly concerning low-abundance proteins. EchiTAb+ICP antivenom demonstrated superior reactivity in serial dilution ELISA assays compared to SAIMR polyvalent. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a substantial presence of neurotoxic proteins in N. mossambica venoms, challenging previous understandings of their composition. Additionally, the detection of numerous peptides aligning to uncharacterized proteins or proteins with unknown functions underscores a critical issue with existing venom protein databases, emphasizing the substantial gaps in our knowledge of snake venom protein components. This underscores the need for enhanced research in this domain. Moreover, our in vitro immunological assays suggest EchiTAb+ICP's potential as an alternative to SAIMR antivenom, requiring confirmation through prospective in vivo neutralization studies.


Antivenins , Naja , Animals , Humans , Antivenins/pharmacology , Naja/metabolism , Proteomics , Prospective Studies , South Africa , Elapid Venoms/toxicity , Proteins
12.
Ren Fail ; 46(1): 2344658, 2024 Dec.
Article En | MEDLINE | ID: mdl-38644359

Previous studies have highlighted the significant role of complement activation in kidney injuries induced by rhabdomyolysis, intravascular hemolysis, sepsis, and ischemia-reperfusion. Nevertheless, the specific role and mechanism of complement activation in acute kidney injury (AKI) caused by wasp venom remain unclear. The aim of this study was to elucidate the specific complement pathway activated and investigate complement activation in AKI induced by wasp venom. In this study, a complement-depleted mouse model was used to investigate the role of complement in wasp venom-induced AKI. Mice were randomly categorized into control, cobra venom factor (CVF), AKI, and CVF + AKI groups. Compared to the AKI group, the CVF + AKI group showed improved pathological changes in kidneys and reduced blood urea nitrogen (BUN) levels. The expression levels of renal complement 3 (C3), complement 5 (C5), complement 1q (C1q), factor B (FB), mannose-binding lectin (MBL), and C5b-9 in AKI group were upregulated compared with the control group. Conversely, the renal tissue expression levels of C3, C5, C1q, FB, MBL, and C5b-9 were decreased in the CVF + AKI group compared to those in the AKI group. Complement activation occurs through all three pathways in AKI induced by wasp venom. Furthermore, complement depletion by CVF attenuates wasp venom-induced nephrotoxicity, suggesting that complement activation plays a primary role in the pathogenesis of wasp venom-induced AKI.


Acute Kidney Injury , Complement Activation , Disease Models, Animal , Wasp Venoms , Animals , Acute Kidney Injury/immunology , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/chemically induced , Mice , Wasp Venoms/immunology , Wasp Venoms/adverse effects , Male , Kidney/pathology , Elapid Venoms , Blood Urea Nitrogen , Complement C3/metabolism , Complement System Proteins/metabolism
13.
Toxicon ; 242: 107708, 2024 May 06.
Article En | MEDLINE | ID: mdl-38574827

Hepatocellular carcinoma and bacterial resistance are major health burdens nowadays. Thus, providing new therapies that overcome that resistance is of great interest, particularly those derived from nature rather than chemotherapeutics to avoid cytotoxicity on normal cells. Venomous animals are among the natural sources that assisted in the discovery of novel therapeutic regimens. L-amino acid oxidase Nh-LAAO (140 kDa), purified from Egyptian Naja haje venom by a successive two-step chromatography protocol, has an optimal pH and temperature of 8 and 37 °C. Under standard assay conditions, Nh-LAAO exhibited the highest specificity toward L-Arg, L-Met and L-Leu, with Km and Vmax values of 3.5 mM and 10.4 µmol/min/ml, respectively. Among the metal ions, Ca+2, Na+, and K+ ions are activators, whereas Fe+2 inhibited LAAO activity. PMSF and EDTA slightly inhibited the Nh-LAAO activity. In addition, Nh-LAAO showed antibacterial and antifungal activities, particularly against Gentamicin-resistant P. aeruginosa and E. coli strains with MIC of 18 ± 2 µg/ml, as well as F. proliferatum and A. parasiticus among the selected human pathogenic strains. Furthermore, Nh-LAAO exhibited anti-proliferative activity against cancer HepG2 and Huh7 cells with IC50 of 79.37 and 60.11 µg/ml, respectively, with no detectable effect on normal WI-38 cells. Consequently, the apoptosis % of the HepG2 and Huh7 cells were 12 ± 1 and 34.5 ± 2.5 %, respectively, upon Nh-LAAO treatment. Further, the Nh-LAAO arrested the HepG2 and Huh7 cell cycles in the G0/G1 phase. Thus, the powerful selective cytotoxicity of L-amino acid oxidase opens up the possibility as a good candidate for clinical cancer therapy.


Antineoplastic Agents , Elapid Venoms , L-Amino Acid Oxidase , L-Amino Acid Oxidase/pharmacology , L-Amino Acid Oxidase/chemistry , Animals , Humans , Antineoplastic Agents/pharmacology , Elapid Venoms/pharmacology , Elapid Venoms/chemistry , Hep G2 Cells , Naja naja , Cell Line, Tumor , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Egypt , Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects
14.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38473875

The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms compared to the Australian species V. giganteus, V. komodoensis, and V. mertensi, likely due to increased predation by sympatric venomous snakes on V. exanthematicus. To understand venom resistance among varanid lizards, we analyzed the receptor site targeted by venoms in 27 varanid lizards, including 25 Australian varanids. The results indicate an active evolutionary arms race between Australian varanid lizards and sympatric neurotoxic elapid snakes. Large species preying on venomous snakes exhibit inherited neurotoxin resistance, a trait potentially linked to their predatory habits. Consistent with the 'use it or lose it' aspect of venom resistance, this trait was secondarily reduced in two lineages that had convergently evolved gigantism (V. giganteus and the V. komodoensis/V. varius clade), suggestive of increased predatory success accompanying extreme size and also increased mechanical protection against envenomation due to larger scale osteoderms. Resistance was completely lost in the mangrove monitor V. indicus, consistent with venomous snakes not being common in their arboreal and aquatic niche. Conversely, dwarf varanids demonstrate a secondary loss at the base of the clade, with resistance subsequently re-evolving in the burrowing V. acanthurus/V. storri clade, suggesting an ongoing battle with neurotoxic predators. Intriguingly, within the V. acanthurus/V. storri clade, resistance was lost again in V. kingorum, which is morphologically and ecologically distinct from other members of this clade. Resistance was also re-evolved in V. glebopalma which is terrestrial in contrast to the arboreal/cliff dwelling niches occupied by the other members of its clade (V. glebopalma, V. mitchelli, V. scalaris, V. tristis). This 'Russian doll' pattern of venom resistance underscores the dynamic interaction between dwarf varanids and Australian neurotoxic elapid snakes. Our research, which included testing Acanthophis (death adder) venoms against varanid receptors as models for alpha-neurotoxic interactions, uncovered a fascinating instance of the Red Queen Hypothesis: some death adders have developed more potent toxins specifically targeting resistant varanids, a clear sign of the relentless predator-prey arms race. These results offer new insight into the complex dynamics of venom resistance and highlight the intricate ecological interactions that shape the natural world.


Lizards , Animals , Lizards/physiology , Australia , Elapidae , Snake Venoms , Venomous Snakes , Russia , Elapid Venoms
15.
FEBS J ; 291(10): 2273-2286, 2024 May.
Article En | MEDLINE | ID: mdl-38437249

Atrial natriuretic peptide (ANP) plays a central role in the regulation of blood pressure and volume. ANP activities are mediated by natriuretic peptide receptor-A (NPR-A), a single-pass transmembrane receptor harboring intrinsic guanylate cyclase activity. This study investigated the mechanism underlying NPR-A-dependent hormone recognition through the determination of the crystal structures of the NPR-A extracellular hormone-binding domain complexed with full-length ANP, truncated mutants of ANP, and dendroaspis natriuretic peptide (DNP) isolated from the venom of the green Mamba snake, Dendroaspis angusticeps. The bound peptides possessed pseudo-two-fold symmetry, despite the lack of two-fold symmetry in the primary sequences, which enabled the tight coupling of the peptide to the receptor, and evidently contributes to guanylyl cyclase activity. The binding of DNP to the NPR-A was essentially identical to that of ANP; however, the affinity of DNP for NPR-A was higher than that of ANP owing to the additional interactions between distinctive sequences in the DNP and NPR-A. Consequently, our findings provide valuable insights that can be applied to the development of novel agonists for the treatment of various human diseases.


Atrial Natriuretic Factor , Receptors, Atrial Natriuretic Factor , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/chemistry , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/genetics , Animals , Humans , Protein Binding , Crystallography, X-Ray , Elapid Venoms/chemistry , Elapid Venoms/metabolism , Elapid Venoms/genetics , Amino Acid Sequence , Models, Molecular , Guanylate Cyclase/metabolism , Guanylate Cyclase/chemistry , Guanylate Cyclase/genetics , Natriuretic Peptides/chemistry , Natriuretic Peptides/metabolism , Natriuretic Peptides/genetics , Binding Sites
16.
Toxicon ; 242: 107694, 2024 May 06.
Article En | MEDLINE | ID: mdl-38556061

Snakebite envenomation often leads to severe visceral injuries, including acute liver injury (ALI). However, the toxicity mechanism remains unclear. Moreover, varespladib can directly inhibit phospholipase A2 (PLA2) in snake venom, but its protective effect on snakebite-induced ALI and the mechanism have not been clarified. Previous studies have shown that snake venom PLA2 leads to neuron cell death via reactive oxygen species (ROS), one of the initial factors related to the mitophagy pathway. The present study group also found that ROS accumulation occurred after Naja atra envenoming. Hematoxylin and eosin (H/E) staining and immunohistochemistry (IHC) were performed to identify the expression of inflammatory factors in the liver tissue, and flow cytometry and immunofluorescence were used to detect ROS levels and mitochondrial function. Immunofluorescence and western blotting were also used for detecting mitophagy pathway-related proteins. The results showed that N. atra bite induced ALI by activating mitophagy and inducing inflammation and that varespladib had a protective effect. Collectively, these results showed the pathological mechanism of ALI caused by N. atra bite and revealed the protective effect of varespladib.


Acetates , Indoles , Mitophagy , Phospholipases A2 , Snake Bites , Animals , Mice , Mitophagy/drug effects , Phospholipases A2/metabolism , Snake Bites/drug therapy , Snake Bites/complications , Keto Acids/pharmacology , Male , Reactive Oxygen Species/metabolism , Elapid Venoms/toxicity , Liver/drug effects , Liver/pathology , Chemical and Drug Induced Liver Injury
17.
J Biosci ; 492024.
Article En | MEDLINE | ID: mdl-38516910

Snake venom L-amino acid oxidases (LAAOs) are flavoenzymes with diverse physiological and pharmacological effects. These enzymes are found to showcase anticoagulant, antiplatelet, cytotoxicity and other biological effects in bite victims. However, the exact mechanism through which they exhibit several biological properties is not yet fully understood. The current study focussed on the purification of cobra venom LAAO and the functional characterization of purified LAAO. A novel L-amino acid oxidase NNLAAO70 with a molecular weight ~70 kDa was purified from the venom of an Indian spectacled cobra (Naja naja). NNLAAO70 showed high substrate specificity for L-His, L-Leu, and L-Arg during its LAAO activity. It inhibited adenosine di-phosphate (ADP) and collagen-induced platelet aggregation process in a dosedependent manner. About 60% inhibition of collagen-induced and 40% inhibition of ADP-induced platelet aggregation was observed with a 40 µg/ml dose of NNLAAO70. NNLAAO70 exhibited bactericidal activity on Bacillus subtilis, Escherichia coli, Bacillus megaterium, and Pseudomonas fluorescens. NNLAAO70 also showed cytotoxicity on A549 cells in vitro. It showed severe bactericidal activity on P. fluorescens and lysed 55% of cells. NNLAAO70 also exhibited drastic cytotoxicity on A549 cells. At 1 lg/ml dosage, it demonstrated a 60% reduction in A549 viability and induced apoptosis upon 24-h incubation. H2O2 released during oxidative deamination reactions played a major role in NNLAAO70-induced cytotoxicity. NNLAAO70 significantly increased intracellular reactive oxygen species (ROS) levels in A549 cells by six fold when compared to untreated cells. Oxidative stress-mediated cell injury is the primary cause of NNLAAO70-induced apoptosis in A549 cells and prolonged oxidative stress caused DNA fragmentation and activated cellular secondary necrosis.


Elapidae , Neoplasms , Animals , Humans , Naja naja , L-Amino Acid Oxidase/genetics , L-Amino Acid Oxidase/pharmacology , L-Amino Acid Oxidase/chemistry , Hydrogen Peroxide/pharmacology , Elapid Venoms/pharmacology , Apoptosis , Necrosis , Collagen/pharmacology , Lung
18.
Toxins (Basel) ; 16(2)2024 01 23.
Article En | MEDLINE | ID: mdl-38393141

Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.


Naja , Proteomics , Toxins, Biological , Venomous Snakes , Proteomics/methods , Proteome/analysis , Protein Structure, Quaternary , Elapid Venoms/chemistry , Toxins, Biological/analysis , Snake Venoms , Phospholipases A2/metabolism , Antivenins/pharmacology
19.
Toxins (Basel) ; 16(2)2024 02 15.
Article En | MEDLINE | ID: mdl-38393182

Snakebite accident treatment requires the administration of antivenoms that provide efficacy and effectiveness against several snake venoms of the same genus or family. The low number of immunogenic components in venom mixtures that allow the production of antivenoms consequently gives them partial neutralization and a suboptimal pharmacological response. This study evaluates the immunorecognition and neutralizing efficacy of the polyvalent anticoral antivenom from the Instituto Nacional de Salud (INS) of Colombia against the heterologous endemic venoms of Micrurus medemi, and M. sangilensis, and M. helleri by assessing immunoreactivity through affinity chromatography, ELISA, Western blot, and neutralization capability. Immunorecognition towards the venoms of M. medemi and M. sangilensis showed values of 62% and 68% of the protein composition according to the immunoaffinity matrix, respectively. The analysis by Western blot depicted the highest recognition patterns for M. medemi, followed by M. sangilensis, and finally by M. helleri. These findings suggest that the venom compositions are closely related and exhibit similar recognition by the antivenom. According to enzyme immunoassays, M. helleri requires a higher amount of antivenom to achieve recognition than the others. Besides reinforcing the evaluation of INS antivenom capability, this work recommends the use of M. helleri in the production of Colombian antisera.


Antivenins , Coral Snakes , Animals , Coral Snakes/metabolism , Colombia , Elapid Venoms/chemistry , Snake Venoms/chemistry
20.
Toxicon ; 240: 107637, 2024 Mar.
Article En | MEDLINE | ID: mdl-38331109

Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity.


Crotalid Venoms , Naja , Venomous Snakes , Animals , Crotalus , Cardiotoxicity , Elapid Venoms/toxicity , Elapidae , Crotalid Venoms/toxicity
...