Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.451
1.
Arch Dermatol Res ; 316(7): 428, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38904694

Cannabidiol (CBD), which is derived from hemp, is gaining recognition because of its anti-inflammatory and lipid-modulating properties that could be utilized to treat acne. We conducted experiments to quantitatively assess the effects of CBD on acne-related cellular pathways. SEB-1 sebocytes and HaCaT keratinocytes were exposed to various CBD concentrations. CBD exhibited a concentration-dependent impact on cell viability and notably reduced SEB-1 viability; furthermore, it induced apoptosis and a significant increase in the apoptotic area at higher concentrations. Additionally, CBD remarkably reduced pro-inflammatory cytokines, including CXCL8, IL-1α, and IL-1ß. Additionally, it inhibited lipid synthesis by modulating the AMPK-SREBP-1 pathway and effectively reduced hyperkeratinization-related protein keratin 16. Simultaneously, CBD stimulated the synthesis of elastin, collagen 1, and collagen 3. These findings emphasize the potential of CBD for the management of acne because of its anti-inflammatory, apoptotic, and lipid-inhibitory effects. Notably, the modulation of the Akt/AMPK-SREBP-1 pathway revealed a novel and promising mechanism that could address the pathogenesis of acne.


Acne Vulgaris , Apoptosis , Cannabidiol , Cell Survival , Keratinocytes , Signal Transduction , Humans , Acne Vulgaris/drug therapy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Apoptosis/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Survival/drug effects , Signal Transduction/drug effects , Cicatrix/drug therapy , Cicatrix/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Sterol Regulatory Element Binding Protein 1/metabolism , HaCaT Cells , AMP-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type III/metabolism , Elastin/metabolism , Sebaceous Glands/pathology , Sebaceous Glands/drug effects , Sebaceous Glands/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Cell Line
2.
Physiol Rep ; 12(12): e16090, 2024 Jun.
Article En | MEDLINE | ID: mdl-38884325

Adverse effects of large artery stiffening are well established in the systemic circulation; stiffening of the proximal pulmonary artery (PPA) and its sequelae are poorly understood. We combined in vivo (n = 6) with ex vivo data from cadavers (n = 8) and organ donors (n = 13), ages 18 to 89, to assess whether aging of the PPA associates with changes in distensibility, biaxial wall strain, wall thickness, vessel diameter, and wall composition. Aging exhibited significant negative associations with distensibility and cyclic biaxial strain of the PPA (p ≤ 0.05), with decreasing circumferential and axial strains of 20% and 7%, respectively, for every 10 years after 50. Distensibility associated directly with diffusion capacity of the lung (R2 = 0.71, p = 0.03). Axial strain associated with right ventricular ejection fraction (R2 = 0.76, p = 0.02). Aging positively associated with length of the PPA (p = 0.004) and increased luminal caliber (p = 0.05) but showed no significant association with mean wall thickness (1.19 mm, p = 0.61) and no significant differences in the proportions of mural elastin and collagen (p = 0.19) between younger (<50 years) and older (>50) ex vivo samples. We conclude that age-related stiffening of the PPA differs from that of the aorta; microstructural remodeling, rather than changes in overall geometry, may explain age-related stiffening.


Aging , Pulmonary Artery , Vascular Stiffness , Humans , Pulmonary Artery/physiology , Aged , Male , Female , Middle Aged , Adult , Aging/physiology , Aged, 80 and over , Adolescent , Vascular Stiffness/physiology , Young Adult , Elastin/metabolism
3.
Int J Mol Sci ; 25(11)2024 May 27.
Article En | MEDLINE | ID: mdl-38891996

Human abdominal aortic aneurysms (AAAs) are characterized by increased activity of matrix metalloproteinases (MMP), including MMP-12, alongside macrophage accumulation and elastin degradation, in conjunction with superimposed atherosclerosis. Previous genetic ablation studies have proposed contradictory roles for MMP-12 in AAA development. In this study, we aimed to elucidate if pharmacological inhibition of MMP-12 activity with a phosphinic peptide inhibitor protects from AAA formation and progression in angiotensin (Ang) II-infused Apoe-/- mice. Complimentary studies were conducted in a human ex vivo model of early aneurysm development. Administration of an MMP-12 inhibitor (RXP470.1) protected hypercholesterolemia Apoe-/- mice from Ang II-induced AAA formation and rupture-related death, associated with diminished medial thinning and elastin fragmentation alongside increased collagen deposition. Proteomic analyses confirmed a beneficial effect of MMP-12 inhibition on extracellular matrix remodeling proteins combined with inflammatory pathways. Furthermore, RXP470.1 treatment of mice with pre-existing AAAs exerted beneficial effects as observed through suppressed aortic dilation and rupture, medial thinning, and elastin destruction. Our findings indicate that pharmacological inhibition of MMP-12 activity retards AAA progression and improves survival in mice providing proof-of-concept evidence to motivate translational work for MMP-12 inhibitor therapy in humans.


Angiotensin II , Aortic Aneurysm, Abdominal , Apolipoproteins E , Matrix Metalloproteinase 12 , Matrix Metalloproteinase Inhibitors , Animals , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/etiology , Matrix Metalloproteinase 12/metabolism , Mice , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/therapeutic use , Male , Disease Models, Animal , Mice, Knockout , Mice, Inbred C57BL , Elastin/metabolism , Proteomics/methods
4.
J Phys Chem B ; 128(23): 5756-5765, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38830627

Elastin-like polymers are a class of stimuli-responsive protein polymers that hold immense promise in applications such as drug delivery, hydrogels, and biosensors. Yet, understanding the intricate interplay of factors influencing their stimuli-responsive behavior remains a challenging frontier. Using temperature-controlled dynamic light scattering and zeta potential measurements, we investigate the interactions between buffer, pH, salt, water, and protein using an elastin-like polymer containing ionizable lysine residues. We observed the elevation of transition temperature in the presence of the common buffering agent HEPES at low concentrations, suggesting a "salting-in" effect of HEPES as a cosolute through weak association with the protein. Our findings motivate a more comprehensive investigation of the influence of buffer and other cosolute molecules on elastin-like polymer behavior.


Dynamic Light Scattering , Elastin , Elastin/chemistry , Hydrogen-Ion Concentration , Phase Transition , Water/chemistry , Polymers/chemistry
5.
J Drugs Dermatol ; 23(5): 347-352, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709700

This paper outlines a process undertaken by a physician to design a peptide aimed at impacting the extracellular matrix. From a position of very little expertise, a new peptide was designed with amino acid constituents based on the structural proteins collagen and elastin. Sequencing was also considered, given the periodic repetition observed in these proteins, and a peptide with reasonable molecular weight and physical characteristics was designed using available software. The sequence of events concerning intellectual property, functionality investigation, and eventual use of the peptide in new formulations is detailed. This may be of interest to physicians who consider this exercise out of the scope of the usual practice. J Drugs Dermatol. 2024;23(5):347-352.    doi:10.36849/JDD.7921.


Peptides , Humans , Peptides/chemistry , Drug Design , Elastin/chemistry , Collagen/chemistry , Extracellular Matrix , Intellectual Property , Physicians
6.
Sci Rep ; 14(1): 10157, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698072

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.


COVID-19 , Elastin , Peptides , SARS-CoV-2 , Elastin/chemistry , Hydrogen-Ion Concentration , Peptides/chemistry , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Liquid-Liquid Extraction/methods , Nucleic Acids/isolation & purification , Nucleic Acids/chemistry , DNA/chemistry , DNA/isolation & purification , Elastin-Like Polypeptides , Phase Separation
7.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704431

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
8.
Article En | MEDLINE | ID: mdl-38758686

The management of complex and severe lower-extremity injuries is challenging for the orthopedic surgeon. When the primary or secondary closure of the defect is not feasible, complex procedures with graft (split-thickness or full-thickness) or flap (pedicled or free) are required. These procedures are performed by specialized plastic surgeons and are at high risk for adverse effects, even high morbidity among both the donor and acceptor sites. Furthermore, split-thickness skin grafts (STSGs) often lead to unsatisfactory results in terms of mechanical stability, flexibility, and aesthetics due to the lack of underlying dermal tissue. Consequently, dermal substitutes, such as MatriDerm (MedSkin Solutions Dr Suwelack AG, Billerbeck, Germany), have been proposed and further developed as a treatment option addressing the management of full-thickness wound defects in conjunction with STSGs. We aimed to present a case of post-traumatic full-thickness wound defect of the left foot after traumatic amputation of the digits that was treated with MatriDerm combined with autologous STSG. In addition, we performed a systematic review of the literature to delineate the efficacy of the use of MatriDerm combined with STSGs in orthopedic cases exclusively.


Skin Transplantation , Adult , Humans , Male , Amputation, Traumatic/surgery , Chondroitin Sulfates/therapeutic use , Collagen/therapeutic use , Elastin , Foot Injuries/surgery , Skin Transplantation/methods , Wound Healing
9.
J Nanobiotechnology ; 22(1): 293, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802812

BACKGROUND: The exogenous delivery of miRNA to mimic and restore miRNA-34a activity in various cancer models holds significant promise in cancer treatment. Nevertheless, its effectiveness is often impeded by challenges, including a short half-life, propensity for off-target accumulation, susceptibility to inactivation by blood-based enzymes, concerns regarding patient safety, and the substantial cost associated with scaling up. As a means of overcoming these barriers, we propose the development of miRNA-loaded Tat-A86 nanoparticles by virtue of Tat-A86's ability to shield the loaded agent from external environmental factors, reducing degradation and inactivation, while enhancing circulation time and targeted accumulation. RESULTS: Genetically engineered Tat-A86, featuring 16 copies of the interleukin-4 receptor (IL-4R)-binding peptide (AP1), Tat for tumor penetration, and an elastin-like polypeptide (ELP) for presenting target ligands and ensuring stability, served as the basis for this delivery system. Comparative groups, including Tat-E60 and A86, were employed to discern differences in binding and penetration. The designed ELP-based nanoparticle Tat-A86 effectively condensed miRNA, forming stable nanocomplexes under physiological conditions. The miRNA/Tat-A86 formulation bound specifically to tumor cells and facilitated stable miRNA delivery into them, effectively inhibiting tumor growth. The efficacy of miRNA/Tat-A86 was further evaluated using three-dimensional spheroids of lewis lung carcinoma (LLC) as in vitro model and LLC tumor-bearing mice as an in vivo model. It was found that miRNA/Tat-A86 facilitates effective cell killing by markedly improving miRNA penetration, leading to a substantial reduction in the size of LLC spheroids. Compared to other controls, Tat-A86 demonstrated superior efficacy in suppressing the growth of 3D cellular aggregates. Moreover, at equivalent doses, miRNA-34a delivered by Tat-A86 inhibited the growth of LLC cells in allograft mice. CONCLUSIONS: Overall, these studies demonstrate that Tat-A86 nanoparticles can deliver miRNA systemically, overcoming the basic hurdles impeding miRNA delivery by facilitating both miRNA uptake and stability, ultimately leading to improved therapeutic effects.


Elastin , MicroRNAs , Nanoparticles , Peptides , Animals , MicroRNAs/genetics , Elastin/chemistry , Mice , Peptides/chemistry , Humans , Nanoparticles/chemistry , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/drug therapy , Drug Carriers/chemistry , Female , Elastin-Like Polypeptides
10.
Commun Biol ; 7(1): 577, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755434

Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).


Calcinosis , Elastin , Fibroblasts , Pseudoxanthoma Elasticum , Pseudoxanthoma Elasticum/metabolism , Pseudoxanthoma Elasticum/pathology , Pseudoxanthoma Elasticum/genetics , Humans , Elastin/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Calcinosis/metabolism , Calcinosis/pathology , Dermis/metabolism , Dermis/pathology , Middle Aged , Female , Male , Adult , Cells, Cultured , Extracellular Matrix/metabolism , Elastic Tissue/metabolism , Elastic Tissue/pathology
11.
ACS Appl Bio Mater ; 7(6): 3714-3720, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38748757

Biological water-responsive (WR) materials are abundant in nature, and they are used as mechanical actuators for seed dispersal by many plants such as wheat awns and pinecones. WR biomaterials are of interest for applications as high-energy actuators, which can be useful in soft robotics or for capturing energy from natural water evaporation. Recent work on WR silk proteins has shown that ß-sheet nanocrystalline domains with high stiffness correlate with the high WR actuation energy density, but the fundamental mechanisms to drive water responsiveness in proteins remain poorly understood. Here, we design, synthesize, and study protein block copolymers consisting of two α-helical domains derived from cartilage oligomeric matrix protein coiled-coil (C) flanking an elastin-like peptide domain (E), namely, CEC. We use these protein materials to create WR actuators with energy densities that outperform mammalian muscle. To elucidate the effect of structure on WR actuation, CEC was compared to a variant, CECL44A, in which a point mutation disrupts the α-helical structure of the C domain. Surprisingly, CECL44A outperformed CEC, showing higher energy density and less susceptibility to degradation after repeated cycling. We show that CECL44A exhibits a higher degree of intermolecular interactions and is stiffer than CEC at high relative humidity (RH), allowing for less energy dissipation during water responsiveness. These results suggest that strong intermolecular interactions and the resulting, relatively steady protein structure are important for water responsiveness.


Biocompatible Materials , Materials Testing , Water , Water/chemistry , Biocompatible Materials/chemistry , Polymers/chemistry , Particle Size , Cartilage Oligomeric Matrix Protein/chemistry , Cartilage Oligomeric Matrix Protein/metabolism , Elastin/chemistry , Elastin/metabolism
12.
J Immunol ; 213(1): 75-85, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38758115

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Elastin , Neutrophils , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminase Type 4 , Proteolysis , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Neutrophils/immunology , Elastin/metabolism , Female , Male , Protein-Arginine Deiminase Type 4/metabolism , Middle Aged , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Pulmonary Emphysema/immunology , Aged , Protein-Arginine Deiminase Type 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Citrullination , Protein-Arginine Deiminases/metabolism , Leukocyte Elastase/metabolism , Lung/immunology , Lung/pathology
13.
Colloids Surf B Biointerfaces ; 240: 113988, 2024 Aug.
Article En | MEDLINE | ID: mdl-38810467

Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.


Cell Adhesion , Cell Proliferation , Nanofibers , Polyesters , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Proliferation/drug effects , Humans , Cell Adhesion/drug effects , Animals , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Elastin/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Mice , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/cytology
14.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L812-L820, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38712445

Chronic obstructive pulmonary disease (COPD) is a condition characterized by chronic airway inflammation and obstruction, primarily caused by tobacco smoking. Although the involvement of immune cells in COPD pathogenesis is well established, the contribution of innate lymphoid cells (ILCs) remains poorly understood. ILCs are a type of innate immune cells that participate in tissue remodeling processes, but their specific role in COPD has not been fully elucidated. During COPD, the breakdown of pulmonary elastin generates elastin peptides that elicit biological activities on immune cells. This study aimed to investigate the presence of ILC in patients with COPD and examine the impact of elastin peptides on their functionality. Our findings revealed an elevated proportion of ILC2 in the peripheral blood of patients with COPD, and a general activation of ILC as indicated by an increase in their cytokine secretion capacity. Notably, our study demonstrated that serum from patients with COPD promotes ILC2 phenotype, likely due to the elevated concentration of IL-5, a cytokine known to favor ILC2 activation. Furthermore, we uncovered that this increase in IL-5 secretion is partially attributed to its secretion by macrophages upon stimulation by elastin peptides, suggesting an indirect role of elastin peptides on ILC in COPD. These findings shed light on the involvement of ILC in COPD and provide insights into the potential interplay between elastin breakdown, immune cells, and disease progression. Further understanding of the mechanisms underlying ILC activation and their interaction with elastin peptides could contribute to the development of novel therapeutic strategies for COPD management.NEW & NOTEWORTHY Elastin-derived peptides, generated following alveolar degradation during emphysema in patients with COPD, are able to influence the response of type 2 innate lymphoid cells. We show that the orientation of innate lymphoid cells in patients with COPD is shifted toward a type 2 profile and that elastin peptides are indirectly participating in that shift through their influence of macrophages, which in turn impact innate lymphoid cells.


Elastin , Immunity, Innate , Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , Elastin/metabolism , Elastin/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/drug effects , Female , Male , Aged , Middle Aged , Interleukin-5/metabolism , Interleukin-5/immunology , Macrophages/immunology , Macrophages/metabolism , Peptides/pharmacology , Peptides/immunology
15.
J Cosmet Dermatol ; 23(7): 2401-2410, 2024 Jul.
Article En | MEDLINE | ID: mdl-38778550

BACKGROUND: The negative effects of skin aging are primarily related to the destruction of dermal architectural structure. More specifically, this includes changes in the spatial arrangement of collagen, elastin fibers, mucopolysaccharides, proteoglycans, and ground substances. AIMS: The purpose of this study is to investigate the histologic effects of dermal and subdermal tissue after a controlled single treatment with radiofrequency (RF) macroneedling. This therapy provides a controlled, localized, thermal effect on the dermis whereby triggering the body's own healing processes of extracellular matrix remodeling. Clinically benefits include skin tightening. METHODS: Biopsies were obtained for histologic evaluation from four patients (n = 4), 4 weeks after completing a single RF macroneedling facial treatment. RESULTS: Age-related changes of the dermal and subdermal architecture were observed at baseline. After treatment, all biopsies demonstrated an increase in epidermal cells, collagen, elastin, fibroblasts, vasculature, and a decrease in inflammatory cells. CONCLUSIONS: The results of this histologic study confirm a significant "subsurfacing" thermal effect from the noncoagulative ascendant thermal injury. The obtained results characterize RF macroneedling therapy as an effective method for correcting age-related changes in facial skin.


Radiofrequency Therapy , Skin Aging , Humans , Skin Aging/radiation effects , Female , Middle Aged , Radiofrequency Therapy/methods , Radiofrequency Therapy/adverse effects , Radiofrequency Therapy/instrumentation , Dermis/radiation effects , Dermis/pathology , Biopsy , Elastin/metabolism , Elastin/analysis , Face , Adult , Aged , Collagen/metabolism , Fibroblasts/radiation effects , Male , Skin/radiation effects , Skin/pathology , Cosmetic Techniques/adverse effects , Cosmetic Techniques/instrumentation , Treatment Outcome
16.
Biomacromolecules ; 25(6): 3519-3531, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38742604

Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly. Furthermore, it is unclear to what extent fibrous templates are needed to guide coacervate droplets into the correct architecture. The organization and shaping of coacervate droplets onto a fiber template have never been previously modeled or employed as a strategy for shaping elastin fiber materials. Using an in vitro system consisting of elastin-like polypeptides (ELPs), genipin cross-linker, electrospun polylactic-co-glycolic acid (PLGA) fibers, and tannic acid surface coatings for fibers, we explored ELP coacervation, cross-linking, and deposition onto fiber templates. We demonstrate that integration of coacervate droplets into a fibrous template is primarily influenced by two factors: (1) the balance of coacervation and cross-linking and (2) the surface energy of the fiber templates. The success of this integration affects the mechanical properties of the final fiber network. Our resulting membrane materials exhibit highly tunable morphologies and a range of elastic moduli (0.8-1.6 MPa) comparable to native elastic fibers.


Elastin , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Elastin/chemistry , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Iridoids/chemistry , Tropoelastin/chemistry , Cross-Linking Reagents/chemistry , Tannins/chemistry , Peptides/chemistry , Elasticity
17.
Biomacromolecules ; 25(5): 3011-3017, 2024 May 13.
Article En | MEDLINE | ID: mdl-38689515

Stabilization against the dilution-dependent disassembly of self-assembled nanoparticles is a requirement for in vivo application. Herein, we propose a simple and biocompatible cross-linking reaction for the stabilization of a series of nanoparticles formed by the self-assembly of amphiphilic HA-b-ELP block copolymers, through the alkylation of methionine residues from the ELP block with diglycidyl ether compounds. The core-cross-linked nanoparticles retain their colloidal properties, with a spherical core-shell morphology, while maintaining thermoresponsive behavior. As such, instead of a reversible disassembly when non-cross-linked, a reversible swelling of nanoparticles' core and increase of hydrodynamic diameter are observed with lowering of the temperature.


Cross-Linking Reagents , Nanoparticles , Nanoparticles/chemistry , Cross-Linking Reagents/chemistry , Temperature , Polymers/chemistry , Elastin/chemistry , Particle Size
18.
J Mech Behav Biomed Mater ; 156: 106597, 2024 Aug.
Article En | MEDLINE | ID: mdl-38810542

The skin, the outermost organ of the human body, is vital for sensing and responding to stimuli through mechanotransduction. It is constantly exposed to mechanical stress. Consequently, various mechanical therapies, including compression, massage, and microneedling, have become routine practices for skin healing and regeneration. However, these traditional methods require direct skin contact, restricting their applicability. To address this constraint, we developed shear wave stimulation (SWS), a contactless mechanical stimulation technique. The effectiveness of SWS was compared with that of a commercial compression bioreactor used on reconstructed skin at various stages of maturity. Despite the distinct stimulus conditions applied by the two methods, SWS yielded remarkable outcomes, similar to the effects of the compression bioreactor. It significantly increased the shear modulus of tissue-engineered skin, heightened the density of collagen and elastin fibers, and resulted in an augmentation of fibroblasts in terms of their number and length. Notably, SWS exhibited diverse effects in the low- and high-frequency modes, highlighting the importance of fine-tuning the stimulus intensity. These results unequivocally demonstrated the capability of SWS to enhance the mechanical functions of the skin in vitro, making it a promising option for addressing wound healing and stretch mark recovery.


Skin , Skin/cytology , Humans , Stress, Mechanical , Tissue Engineering , Mechanical Phenomena , Biomechanical Phenomena , Fibroblasts/cytology , Animals , Collagen , Shear Strength , Elastin/metabolism
19.
Medicina (Kaunas) ; 60(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674297

Background and Objectives: Wound healing encompasses a multitude of factors and entails the establishment of interactions among components of the basement membrane. The quantification of particle concentrations can serve as valuable biomarkers for assessing biomechanical muscle properties. The objective of this study was to examine the immunoexpression and immunoconcentration of myometrial collagen type VI, elastin, alpha-smooth muscle actin, and smooth muscle myosin heavy chain, as well as the expression of platelets and clusters of differentiation 31 in the uterine scar following a cesarean section (CS). Materials and Methods: A total of 177 biopsies were procured from a cohort of pregnant women who were healthy, specifically during the surgical procedure of CS. The participants were categorized into seven distinct groups. Group 1 consisted of primiparas, with a total of 52 individuals. The subsequent groups were organized based on the duration of time that had elapsed since their previous CS. The analysis focused on the immunoexpression and immunoconcentration of the particles listed. Results: No significant variations were observed in the myometrial immunoconcentration of collagen type VI, elastin, smooth muscle myosin, and endothelial cell cluster of differentiation 31 among the analyzed groups. The concentration of alpha-smooth muscle actin in the myometrium was found to be significantly higher in patients who underwent CS within a period of less than 2 years since their previous CS, compared to those with a longer interval between procedures. Conclusions: Our findings indicate that the immunoconcentration of uterine myometrial scar collagen type VI, elastin, smooth muscle myosin heavy chain, alpha-smooth muscle actin, and endothelial cell marker cluster of differentiation 31 remains consistent regardless of the duration elapsed since the previous CS. The findings indicate that there are no significant alterations in the biomechanical properties of the uterine muscle beyond a period of 13 months following a CS.


Cesarean Section , Cicatrix , Immunohistochemistry , Humans , Female , Cesarean Section/adverse effects , Adult , Immunohistochemistry/methods , Pregnancy , Myometrium , Actins/analysis , Elastin/analysis , Biomarkers/analysis , Wound Healing/physiology , Cohort Studies
20.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38588467

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Drug Design , Elastin , Pulmonary Fibrosis , Receptors, Cell Surface , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Mice , Elastin/chemistry , Elastin/metabolism , Humans , Matrix Metalloproteinase 12/metabolism , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Male
...