Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.523
Filter
1.
J Hazard Mater ; 475: 134749, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876012

ABSTRACT

Constructed wetland (CW) is considered a promising technology for the removal of emerging contaminants. However, its removal performance for antibiotic resistance genes (ARGs) is not efficient and influence of virulence factor genes (VFGs) have not been elucidated. Here, removal of intracellular and extracellular ARGs as well as VFGs by electricity-intensified CWs was comprehensively evaluated. The two electrolysis-intensified CWs can improve the removal of intracellular ARGs and MGEs to 0.96- and 0.85-logs, respectively. But cell-free extracellular ARGs (CF-eARGs) were significantly enriched with 1.8-logs in the electrolysis-intensified CW. Interestingly, adding Fe-C microelectrolysis to the electrolysis-intensified CW is conducive to the reduction of CF-eARGs. However, the detected number and relative abundances of intracellular and extracellular VFGs were increased in all of the three CWs. The biofilms attached onto the substrates and rhizosphere are also hotspots of both intracellular and particle-associated extracellular ARGs and VFGs. Structural equation models and correlation analysis indicated that ARGs and VFGs were significantly cooccurred, suggesting that VFGs may affect the dynamics of ARGs. The phenotypes of VFGs, such as biofilm, may act as protective matrix for ARGs, hindering the removal of resistance genes. Our results provide novel insights into the ecological remediation technologies to enhance the removal of ARGs.


Subject(s)
Biofilms , Drug Resistance, Microbial , Virulence Factors , Wetlands , Virulence Factors/genetics , Drug Resistance, Microbial/genetics , Electricity , Genes, Bacterial , Electrolysis , Anti-Bacterial Agents/pharmacology
2.
Environ Sci Pollut Res Int ; 31(29): 42342-42356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872036

ABSTRACT

The Electrolytic Manganese Residue (EMR) is a by-product of the electrolytic manganese metal (EMM) industry, containing high concentrations of potential pollutants such as NH4+-N and soluble Mn2+. These components pose a serious threat to the ecological environment. To explore accurate, efficient, and harmless treatment methods for EMR, this study proposes a low-temperature thermochemical approach. The orthogonal experiment design investigates the effects of reaction temperature, reaction time, quicklime (CaO), sodium carbonate (Na2CO3), sodium phosphate (Na3PO4) (Reviewer #3), and water consumption on manganese solidified and ammonia removal from EMR. The results indicate that optimal conditions are a reaction temperature of 60 ℃ (Reviewer #3) and a reaction time of 10 min. CaO precipitates Mn2+ as manganese hydroxide (Mn(OH)2) (Reviewer #3), achieving effective manganese solidified and ammonia removal. The addition of Na2CO3 causes Mn2+ to form manganesecarbonate (MnCO3) (Reviewer #3)precipitate, while Na3PO4 makes Mn2+ form Manganese phosphate trihydrate (Mn3(PO4)2·3H2O) (Reviewer #3). Increased water consumption enhances the interaction adequacy between ions. Under optimal conditions (CaO 10%, Na2CO3 1%, Na3PO4 0.5%, and 80% water consumption), the removal rate of ammonium ions reaches 98.5%, and the solidification rate of soluble Mn2+ is 99.9%. The order of influence on ammonium ion removal is CaO > water consumption > Na3PO4 > Na2CO3. Therefore, this study provides a new method for low-cost process disposal and efficient harmless treatment of EMR (Reviewer #3).


Subject(s)
Manganese , Manganese/chemistry , Temperature , Ammonia/chemistry , Electrolysis
3.
Environ Sci Technol ; 58(25): 10969-10978, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860863

ABSTRACT

Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a solution-friction transport model to study how the induced potential gradient controls ion transport across the polyamide (PA) active layer and support layers of TFC membranes during electrolysis. The set of parameters was simplified by assigning the same size-related partition and friction coefficients for all salt ions through the membrane active layer. The model was fit to experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at a current density of 10 mA cm-2. When the electrolyte concentration and current density were increased, the transport of major charge carriers was successfully predicted by the model. Ion transport calculated using the model only minimally changed when the negative active layer charge density was varied from 0 to 600 mM, indicating active layer charge was not largely responsible for controlling ion crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to occur within the supporting layer of the membrane. These results can help guide membrane design and operation conditions in water electrolyzers using TFC membranes.


Subject(s)
Electrolysis , Ion Transport , Membranes, Artificial , Water/chemistry
4.
Ultrason Sonochem ; 107: 106931, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823084

ABSTRACT

Thawing is the primary step in handling frozen aquatic products, which directly determines their end-product quality. This study firstly constructed a novel thawing method of ultrasound-assisted slightly basic electrolyzed water (UST), and its influences on the physicochemical and histological properties of shrimp, as well as the structural of myofibrillar proteins (MPs) in shrimp were evaluated. Results indicated that the UST treatment greatly reduced 48.9 % thawing time of frozen shrimp compared to traditional thawing approaches. Meanwhile, the UST effectively decreased the generation of malondialdehyde (MDA), total volatile basic nitrogen (TVB-N), and carbonyl compounds in the thawed shrimps. In addition, it significantly preserved the elasticity and integrity of muscle fiber. Notably, the UST reduced the damage of thawing to the spatial structures of MPs, thereby greatly keeping the stability of protein. All these favorable changes maintained the water holding capacity (WHC) and quality of shrimp. Therefore, the UST is a promising non-thermal thawing technology for aquatic products.


Subject(s)
Freezing , Penaeidae , Water , Animals , Water/chemistry , Penaeidae/chemistry , Ultrasonic Waves , Electrolysis/methods , Malondialdehyde , Food Handling/methods
5.
Environ Sci Pollut Res Int ; 31(27): 39637-39649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829499

ABSTRACT

The integrated system of anaerobic digestion and microbial electrolysis cells (AD-MEC) was a novel approach to enhance the degradation of food waste anaerobic digestate and recover methane. Through long-term operation, the start-up method, organic loading, and methane production mechanism of the digestate have been investigated. At an organic loading rate of 4000 mg/L, AD-MEC increased methane production by 3-4 times and soluble chemical oxygen demand (SCOD) removal by 20.3% compared with anaerobic digestion (AD). The abundance of bacteria Fastidiosipila and Geobacter, which participated in the acid degradation and direct electron transfer in the AD-MEC, increased dramatically compared to that in the AD. The dominant methanogenic archaea in the AD-MEC and AD were Methanobacterium (44.4-56.3%) and Methanocalculus (70.05%), respectively. Geobacter and Methanobacterium were dominant in the AD-MEC by direct electron transfer of organic matter into synthetic methane intermediates. AD-MEC showed a perfect SCOD removal efficiency of the digestate, while methane as clean energy was obtained. Therefore, AD-MEC was a promising technology for deep energy transformation from digestate.


Subject(s)
Electrolysis , Methane , Methane/metabolism , Anaerobiosis , Food , Bioreactors , Food Loss and Waste
6.
Water Sci Technol ; 89(10): 2716-2731, 2024 May.
Article in English | MEDLINE | ID: mdl-38822610

ABSTRACT

The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.


Subject(s)
Biodegradation, Environmental , Electrolysis , Polycyclic Aromatic Hydrocarbons , Wastewater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Bioreactors , Bacteria/metabolism , Electrodes , Biofilms
7.
J Sport Rehabil ; 33(5): 307-316, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38897578

ABSTRACT

CONTEXT: Tendon injuries are common disorders in both workers and athletes, potentially impacting performance in both conditions. This is why the search for effective treatments is continuing. OBJECTIVE(S): The objective of this study was to analyze whether the ultrasound-guided percutaneous needle electrolysis technique may be considered a procedure to reduce pain caused by tendinosis. EVIDENCE ACQUISITION: The search strategy included the PubMed, SCOPUS, CINAHL, Physiotherapy Evidence Database, SciELO, and ScienceDirect up to the date of February 25, 2024. Randomized clinical trials that assessed pain caused by tendinosis using the Visual Analog Scale and Numeric Rating Scale were included. The studies were evaluated for quality using the Cochrane Risk of Bias 2, and the evidence strength was assessed by the GRADEpro GDT. EVIDENCE SYNTHESIS: Out of the 534 studies found, 8 were included in the review. A random-effects meta-analysis and standardized mean differences (SMD) were conducted. The ultrasound-guided percutaneous needle electrolysis proved to be effective in reducing pain caused by tendinosis in the overall outcome (SMD = -0.97; 95% CI, -1.26 to -0.68; I2 = 58%; low certainty of evidence) and in the short-term (SMD = -0.83, 95% CI, -1.29 to -0.38; I2 = 65%; low certainty of evidence), midterm (SMD = -1.28; 95% CI, -1.65 to -0.91; I2 = 0%; moderate certainty of evidence), and long-term (SMD = -0.94; 95% CI, -1.62 to -0.26; I2 = 71%; low certainty of evidence) subgroups. CONCLUSION(S): The application of the ultrasound-guided percutaneous needle electrolysis technique for reducing pain caused by tendinosis appears to be effective. However, due to the heterogeneity found (partially explained), more studies are needed to define the appropriate dosimetry, specific populations that may benefit more from the technique, and possible adverse events.


Subject(s)
Electrolysis , Needles , Tendinopathy , Ultrasonography, Interventional , Humans , Tendinopathy/therapy , Randomized Controlled Trials as Topic , Pain Measurement , Pain Management/methods , Pain Management/instrumentation
8.
Aging (Albany NY) ; 16(9): 7523-7534, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38696307

ABSTRACT

Electrolyzed-reduced water has powerful antioxidant properties with constituents that scavenge reactive oxygen species (ROS), which are known to be produced by several intrinsic and extrinsic processes. When there is an imbalance between ROS production and antioxidant defenses, oxidative stress occurs. Persistent oxidative stress leads to cellular senescence, an important hallmark of aging, and is involved in several age-related conditions and illnesses. This study aims to investigate whether Weo electrolyzed water (WEW) could modulate the phenotype of senescent cells. We compared normal human lung fibroblasts (BJ) and breast cancer cells (T47D) treated with hydrogen peroxide (H2O2) to induce senescence. We assessed the molecular impact of WEW on markers of cellular senescence, senescence-associated secretory phenotype (SASP) factors, and stress response genes. Treatment with WEW modulated markers of cellular senescence, such as the senescence-associated ß-galactosidase (SA-ß-gal) activity, EdU incorporation and p21 expression, similarly in both cell types. However, WEW modulated the expression of SASP factors and stress response genes in a cell type-dependent and opposite fashion, significantly decreasing them in BJ cells, while stimulating their expression in T47D cells. Reduction in the expression of SASP factors and stress-related genes in BJ cells suggests that WEW acts as a protective factor, thereby reducing oxidative stress in normal cells, while making cancer cells more sensitive to the effects of cellular stress, thus increasing their elimination and consequently reducing their deleterious effects. These findings suggest that, due to its differential effects as a senomorphic factor, WEW could have a positive impact on longevity and age-related diseases.


Subject(s)
Cellular Senescence , Hydrogen Peroxide , Oxidative Stress , Water , Humans , Cellular Senescence/drug effects , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Cell Line, Tumor , Fibroblasts/drug effects , Fibroblasts/metabolism , Senescence-Associated Secretory Phenotype/drug effects , Reactive Oxygen Species/metabolism , Female , Electrolysis
9.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792137

ABSTRACT

Bioelectrochemical systems (BESs) are an innovative technology for the efficient degradation of antibiotics. Shewanella oneidensis (S. oneidensis) MR-1 plays a pivotal role in degrading sulfamethoxazole (SMX) in BESs. Our study investigated the effect of BES conditions on SMX degradation, focusing on microbial activity. The results revealed that BESs operating with a 0.05 M electrolyte concentration and 2 mA/cm2 current density outperformed electrolysis cells (ECs). Additionally, higher electrolyte concentrations and elevated current density reduced SMX degradation efficiency. The presence of nutrients had minimal effect on the growth of S. oneidensis MR-1 in BESs; it indicates that S. oneidensis MR-1 can degrade SMX without nutrients in a short period of time. We also highlighted the significance of mass transfer between the cathode and anode. Limiting mass transfer at a 10 cm electrode distance enhanced S. oneidensis MR-1 activity and BES performance. In summary, this study reveals the complex interaction of factors affecting the efficiency of BES degradation of antibiotics and provides support for environmental pollution control.


Subject(s)
Bioelectric Energy Sources , Shewanella , Sulfamethoxazole , Sulfamethoxazole/metabolism , Shewanella/metabolism , Electrodes , Biodegradation, Environmental , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Electrolysis , Electrochemical Techniques
10.
Bioresour Technol ; 403: 130872, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777232

ABSTRACT

Humic substances as major components of waste activated sludge are refractory to degrade and have inhibition in traditional anaerobic digestion (AD). This study for the first time investigated the feasibility and mechanism of microbial electrolysis cell assisted anaerobic digestion (MEC-AD) to break the recalcitrance and inhibition of humic substances. The cumulative methane production of AD decreased from 134.7 to 117.6 mL/g-VS with the addition of humic acids and fulvic acids at 25.2-102.1 mg/g-VS. However, 0.6 V MEC-AD maintained stable methane production (155.5-158.2 mL/g-VS) under the effect of humic substances. 0.6 V MEC-AD formed electrical stimulation on microbial cells, provided anodic oxidation and cathodic reduction transformation pathways for humic substances (acting as carbon sources and electron shuttles), and aggregated functional microorganisms on electrodes, facilitating the degradation of humic substances and generation of methane. This study provides a theoretical basis for improving the energy recovery and system stability of sludge treatment.


Subject(s)
Electrolysis , Humic Substances , Methane , Sewage , Sewage/microbiology , Methane/metabolism , Anaerobiosis , Electrodes , Benzopyrans , Bioreactors
11.
Biotechnol Adv ; 73: 108372, 2024.
Article in English | MEDLINE | ID: mdl-38714276

ABSTRACT

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.


Subject(s)
Bioelectric Energy Sources , Biofuels , Electrolysis , Anaerobiosis , Bioelectric Energy Sources/microbiology , Bioreactors , Methane/metabolism
12.
Environ Sci Technol ; 58(21): 9272-9282, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38749055

ABSTRACT

Triclocarban (TCC), as a widely used antimicrobial agent, is accumulated in waste activated sludge at a high level and inhibits the subsequent anaerobic digestion of sludge. This study, for the first time, investigated the effectiveness of microbial electrolysis cell-assisted anaerobic digestion (MEC-AD) in mitigating the inhibition of TCC to methane production. Experimental results showed that 20 mg/L TCC inhibited sludge disintegration, hydrolysis, acidogenesis, and methanogenesis processes and finally reduced methane production from traditional sludge anaerobic digestion by 19.1%. Molecular docking revealed the potential inactivation of binding of TCC to key enzymes in these processes. However, MEC-AD with 0.6 and 0.8 V external voltages achieved much higher methane production and controlled the TCC inhibition to less than 5.8%. TCC in the MEC-AD systems was adsorbed by humic substances and degraded to dichlorocarbanilide, leading to a certain detoxification effect. Methanogenic activities were increased in MEC-AD systems, accompanied by complete VFA consumption. Moreover, the applied voltage promoted cell apoptosis and sludge disintegration to release biodegradable organics. Metagenomic analysis revealed that the applied voltage increased the resistance of electrode biofilms to TCC by enriching functional microorganisms (syntrophic VFA-oxidizing and electroactive bacteria and hydrogenotrophic methanogens), acidification and methanogenesis pathways, multidrug efflux pumps, and SOS response.


Subject(s)
Electrolysis , Anaerobiosis , Sewage/microbiology , Methane/metabolism , Carbanilides/pharmacology
13.
Chemosphere ; 358: 142119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697567

ABSTRACT

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Subject(s)
Biofuels , Bioreactors , Carbon Dioxide , Methane , Carbon Dioxide/analysis , Electrolysis , Electrodes , Bioelectric Energy Sources , Methanobacterium/metabolism , Membranes, Artificial , Proteobacteria/metabolism
14.
Bioresour Technol ; 402: 130842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750828

ABSTRACT

Hydrophilic porous membranes, exemplified by polyvinylidene fluoride (PVDF) membranes, have demonstrated significant potential for replacing ion exchange membranes in microbial electrolysis cells (MECs). Membrane fouling remains a major challenge in MECs, impeding proton transport and consequently limiting hydrogen production. This study aims to investigate a synergistic antifouling strategy for PVDF membrane through the incorporation of a coating composed of polydopamine (PDA), polyethyleneimine (PEI), and silver nanoparticles (AgNPs). The PDA-PEI-Ag@PVDF membrane not only effectively mitigates fouling through steric and electrostatic repulsion forces, but also amplifies ion transport by facilitating water diffusion and electromigration. The PDA-PEI-Ag@PVDF membrane exhibited a reduced membrane resistance of 1.01 mΩ m2 and PDA-PEI-Ag modifying PVDF membrane was found to be effective in enhancing the proton transportation of PVDF membrane. Therefore, the enhanced hydrogen production rate of 2.65 ± 0.02 m3/m3/d was achieved in PDA-PEI-Ag@PVDF-MECs.


Subject(s)
Bioelectric Energy Sources , Biofouling , Electrolysis , Hydrogen , Indoles , Membranes, Artificial , Polyvinyls , Protons , Silver , Polyvinyls/chemistry , Hydrogen/metabolism , Biofouling/prevention & control , Silver/chemistry , Silver/pharmacology , Indoles/metabolism , Indoles/chemistry , Polymers/chemistry , Metal Nanoparticles/chemistry , Polyethyleneimine/chemistry , Fluorocarbon Polymers
15.
J Prosthet Dent ; 132(1): 267.e1-267.e10, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38622046

ABSTRACT

STATEMENT OF PROBLEM: Denture stomatitis can pose serious health risks, especially to older people. Chemical denture cleaning agents must be effective, yet not adversely affect the longevity of removable dentures. Ready-to-use (RTU) neutral pH electrolyzed oxidizing water (EOW) is an effective biocide against Candida albicans biofilms on denture resins, but the effects of daily disinfection with EOW on the physical and mechanical properties of resins have not been established. PURPOSE: The purpose of this in vitro study was to investigate the effects of simulated long-term exposure to RTU EOW on the color, surface characteristics, and flexural strength of denture base resins. MATERIAL AND METHODS: Heat-polymerized (HP), 3D printed (3D) and computer-aided design and computer-aided manufacture (CAD-CAM)-milled (CC) denture resin specimens (square: 20×20×3.3 mm; beam: 64×10×3.3 mm) were immersed in tap water (TW), RTU EOW (Neutral Anolyte ANK; Envirolyte; EOW), or a commercial denture cleaning tablet solution (Polident 3-Minute; Glaxo SmithKline; PD), mimicking a 5-minute once daily disinfection routine performed up to 3.0 years. Color and surface roughness were recorded (n=3, squares), and changes in color (∆E00) and surface roughness (∆Ra) were calculated. Flexural strength (n=12, beams) and surface hardness (n=18, beams) were measured with a universal testing machine. The fractured surfaces of specimens were examined by scanning electron microscopy and energy dispersive spectroscopy. Data were assessed by performing the Shapiro-Wilk or D'Agostino and Pearson normality tests. Two-way ANOVA or the Kruskal-Wallis test with a post hoc Tukey HSD or Dunn multiple comparisons (α=.05) was used for statistical analyses. RESULTS: No significant changes were found in either color or surface roughness for HP, 3D, and CC resins after 1.5-year and 3.0-year immersion in any of the agents (P>.05). The surface hardness of 3D resins reduced by 14% with TW and by 23% with EOW and PD at 3.0 years. The flexural strengths of all 3 resins were unaffected by 3.0-year immersion (P>.05). CONCLUSIONS: Simulated long-term immersion disinfection with RTU neutral pH EOW did not adversely affect the physical and mechanical properties of HP or CC denture resins.


Subject(s)
Denture Bases , Denture Cleansers , Surface Properties , Water , Water/chemistry , Hydrogen-Ion Concentration , Denture Cleansers/chemistry , Materials Testing , Flexural Strength , Humans , Dental Materials/chemistry , Computer-Aided Design , In Vitro Techniques , Electrolysis , Acrylic Resins/chemistry , Color , Borates , Sulfates
16.
J Biomater Appl ; 38(10): 1100-1117, 2024 05.
Article in English | MEDLINE | ID: mdl-38580320

ABSTRACT

The surface topological features of bioimplants are among the key indicators for bone tissue replacement because they directly affect cell morphology, adhesion, proliferation, and differentiation. In this study, we investigated the physical, electrochemical, and biological responses of sandblasted titanium (SB-Ti) surfaces with pore geometries fabricated using a plasma electrolytic oxidation (PEO) process. The PEO treatment was conducted at an applied voltage of 280 V in a solution bath consisting of 0.15 mol L-1 calcium acetate monohydrate and 0.02 mol L-1 calcium glycerophosphate for 3 min. The surface chemistry, wettability, mechanical properties and corrosion behavior of PEO-treated sandblasted Ti implants using hydroxyapatite particles (PEO-SB-Ti) were improved with the distribution of calcium phosphorous porous oxide layers, and showed a homogeneous and hierarchically porous surface with clusters of nanopores in a bath containing calcium acetate monohydrate and calcium glycerophosphate. To demonstrate the efficacy of PEO-SB-Ti, we investigated whether the implant affects biological responses. The proposed PEO-SB-Ti were evaluated with the aim of obtaining a multifunctional bone replacement model that could efficiently induce osteogenic differentiation as well as antibacterial activities. These physical and biological responses suggest that the PEO-SB-Ti may have a great potential for use an artificial bone replacement compared to that of the controls.


Subject(s)
Durapatite , Oxidation-Reduction , Surface Properties , Titanium , Titanium/chemistry , Porosity , Durapatite/chemistry , Bone Screws , Animals , Wettability , Materials Testing , Osteogenesis/drug effects , Electrolysis , Plasma Gases/chemistry , Cell Differentiation/drug effects , Corrosion , Biocompatible Materials/chemistry , Osteoblasts/cytology , Mice
17.
Environ Res ; 252(Pt 4): 119030, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677409

ABSTRACT

Bifunctional electrocatalysts are the attractive research in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in the overall water-splitting reactions. The design and development of the cost-effective OER/HER bifunctional electrocatalysts with superior catalytic activity are still remaining as the big challenges. Herein, we have developed the CuO-ZnO nanocomposite as a bifunctional OER/HER electrocatalyst via simple chemical precipitation method. The nanocomposite was investigated for its crystalline structure, surface morphology and the functions of elements using XRD, FT-IR, SEM, TEM and XPS characterization techniques, respectively. The nanocomposite exhibited the excellent activity for the overall water-splitting in an alkaline medium. The CuO-ZnO nanocomposite showed the less onset potential of 1.4 and 0.15 V versus RHE in 1M KOH (Tafel slopes value of 0.180 and 0.400 V dec-1) for OER and HER, respectively. Hence, the as-prepared bifunctional electrocatalyst displayed the high stability for 10 h in the water electrolysis processes.


Subject(s)
Copper , Oxygen , Zinc Oxide , Copper/chemistry , Zinc Oxide/chemistry , Catalysis , Oxygen/chemistry , Hydrogen/chemistry , Electrochemical Techniques , Nanocomposites/chemistry , Nanostructures/chemistry , Water/chemistry , Electrolysis
18.
Environ Sci Pollut Res Int ; 31(19): 28719-28733, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558346

ABSTRACT

Green hydrogen generation technologies are currently the most pressing worldwide issues, offering promising alternatives to existing fossil fuels that endanger the globe with growing global warming. The current research focuses on the creation of green hydrogen in alkaline electrolytes utilizing a Ni-Co-nano-graphene thin film cathode with a low overvoltage. The recommended conditions for creating the target cathode were studied by electrodepositing a thin Ni-Co-nano-graphene film in a glycinate bath over an iron surface coated with a thin copper interlayer. Using a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) mapping analysis, the obtained electrode is physically and chemically characterized. These tests confirm that Ni, Co, and nano-graphene are homogeneously dispersed, resulting in a lower electrolysis voltage in green hydrogen generation. Tafel plots obtained to analyze electrode stability revealed that the Ni-Co-nano-graphene cathode was directed to the noble direction, with the lowest corrosion rate. The Ni-Co-nano-graphene generated was used to generate green hydrogen in a 25% KOH solution. For the production of 1 kg of green hydrogen utilizing Ni-Co-nano-graphene electrode, the electrolysis efficiency was 95.6% with a power consumption of 52 kwt h-1, whereas it was 56.212. kwt h-1 for pure nickel thin film cathode and 54. kwt h-1 for nickel cobalt thin film cathode, respectively.


Subject(s)
Cobalt , Electrodes , Graphite , Hydrogen , Nickel , Graphite/chemistry , Hydrogen/chemistry , Nickel/chemistry , Cobalt/chemistry , Electrolysis
19.
Water Res ; 256: 121616, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657305

ABSTRACT

Microbial electrolysis cells (MECs) have garnered significant attention as a promising solution for industrial wastewater treatment, enabling the simultaneous degradation of organic compounds and biohydrogen production. Developing efficient and cost-effective cathodes to drive the hydrogen evolution reaction is central to the success of MECs as a sustainable technology. While numerous lab-scale experiments have been conducted to investigate different cathode materials, the transition to pilot-scale applications remains limited, leaving the actual performance of these scaled-up cathodes largely unknown. In this study, nickel-foam and stainless-steel wool cathodes were employed as catalysts to critically assess hydrogen production in a 150 L MEC pilot plant treating sugar-based industrial wastewater. Continuous hydrogen production was achieved in the reactor for more than 80 days, with a maximum COD removal efficiency of 40 %. Nickel-foam cathodes significantly enhanced hydrogen production and energy efficiency at non-limiting substrate concentration, yielding the maximum hydrogen production ever reported at pilot-scale (19.07 ± 0.46 L H2 m-2 d-1 and 0.21 ± 0.01 m3 m-3 d-1). This is a 3.0-fold improve in hydrogen production compared to the previous stainless-steel wool cathode. On the other hand, the higher price of Ni-foam compared to stainless-steel should also be considered, which may constrain its use in real applications. By carefully analysing the energy balance of the system, this study demonstrates that MECs have the potential to be net energy producers, in addition to effectively oxidize organic matter in wastewater. While higher applied potentials led to increased energy requirements, they also resulted in enhanced hydrogen production. For our system, a conservative applied potential range from 0.9 to 1.0 V was found to be optimal. Finally, the microbial community established on the anode was found to be a syntrophic consortium of exoelectrogenic and fermentative bacteria, predominantly Geobacter and Bacteroides, which appeared to be well-suited to transform complex organic matter into hydrogen.


Subject(s)
Electrodes , Electrolysis , Hydrogen , Nickel , Wastewater , Wastewater/chemistry , Hydrogen/metabolism , Nickel/chemistry , Bioelectric Energy Sources , Waste Disposal, Fluid/methods , Pilot Projects , Industrial Waste
20.
Arch Oral Biol ; 163: 105966, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657440

ABSTRACT

OBJECTIVE: This study evaluated the antimicrobial effect and cytotoxicity of hypochlorous acid(HClO) obtained from an innovative electrolytic device. DESIGN: The root canals of fifty extracted human teeth were inoculated with Enterococcus faecalis and divided into 5 groups (n = 10): DW (control); 2% chlorhexidine gel(CHX); 2.5% sodium hypochlorite(NaOCl); 250 ppm HClO and 500 ppm HClO. The counting of colony forming units evaluated the decontamination potential of each group. Cytotoxicity was evaluated after inoculation of tested protocols in fibroblastic cells for 3 min, calculating the cell viability. Specific statistical analysis was performed (α = 5%). RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences from each other (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences from each other (p < 0.05). CONCLUSIONS: It could be concluded that HClO presented high antimicrobial activity and low cytotoxicity at both tested concentrations.


Subject(s)
Cell Survival , Enterococcus faecalis , Hypochlorous Acid , Root Canal Irrigants , Sodium Hypochlorite , Hypochlorous Acid/pharmacology , Enterococcus faecalis/drug effects , Humans , Sodium Hypochlorite/pharmacology , Cell Survival/drug effects , Root Canal Irrigants/pharmacology , In Vitro Techniques , Chlorhexidine/pharmacology , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/drug effects , Fibroblasts/drug effects , Anti-Infective Agents/pharmacology , Electrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...