Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86.068
1.
Sci Rep ; 14(1): 12860, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834832

A common theory of motor control posits that movement is controlled by muscle synergies. However, the behavior of these synergies during highly complex movements remains largely unexplored. Skateboarding is a hardly researched sport that requires rapid motor control to perform tricks. The objectives of this study were to investigate three key areas: (i) whether motor complexity differs between skateboard tricks, (ii) the inter-participant variability in synergies, and (iii) whether synergies are shared between different tricks. Electromyography data from eight muscles per leg were collected from seven experienced skateboarders performing three different tricks (Ollie, Kickflip, 360°-flip). Synergies were extracted using non-negative matrix factorization. The number of synergies (NoS) was determined using two criteria based on the total variance accounted for (tVAF > 90% and adding an additional synergy does not increase tVAF > 1%). In summary: (i) NoS and tVAF did not significantly differ between tricks, indicating similar motor complexity. (ii) High inter-participant variability exists across participants, potentially caused by the low number of constraints given to perform the tricks. (iii) Shared synergies were observed in every comparison of two tricks. Furthermore, each participant exhibited at least one synergy vector, which corresponds to the fundamental 'jumping' task, that was shared through all three tricks.


Electromyography , Movement , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Male , Adult , Movement/physiology , Female , Young Adult , Biomechanical Phenomena , Skating/physiology , Leg/physiology
2.
Zhonghua Yi Xue Za Zhi ; 104(21): 1987-1993, 2024 Jun 04.
Article Zh | MEDLINE | ID: mdl-38825942

Objective: To test the new method of iMAX (the minimum stimulus current that elicits the maximum compound muscle action potential amplitude) electrodiagnosis, verify the feasibility of this method in evaluating the excitability of peripheral motor axons, and preliminarily explore the clinical application value. Methods: This study was a cross-sectional study. A total of 50 healthy subjects were recruited from the outpatient department of Peking University Third Hospital from June 2022 to March 2023, including 25 males and 25 females, aged 25-68 (48±8) years. Eleven patients with Charcot-Marie-Pain-1A (CMT1A), 7 males and 4 females, aged 19-55 (41±13) years and 21 patients with diabetic peripheral neuropathy (DPN), 10 males and 11 females, aged 28-79 (53±16) years were enrolled in this study. iMAX of bilateral median nerves, ulnar nerves and peroneal nerves were detected in all patients. Repeatable motor responses with minimum motor threshold and amplitude of at least 0.1 mV and the minimum stimulus current intensity, at which the maximum compound muscle action potential amplitude is elicited, were measured respectively [1 mA increment is called (iUP) and, 0.1 mA adjustment is called (iMAX)].Comparison of the parameters: the parameters of threshold, iUP and iMAX were compared among different age groups, genders and sides, body mass index(BMI) values and detection time , as well as between CMT1A patients, DPN patients and healthy subjects. Results: In healthy subjects, the threshold, iUP value and iMAX value were (1.8±0.7) mA, (4.4±1.2) mA, and (4.2±1.3) mA respectively; ulnar nerve (3.1±1.6) mA, (6.8±3.2) mA, (6.4±3.2) mA; peroneal nerve (3.7±2.0) mA, (7.8±2.8) mA, (7.4±2.9) mA. There were statistically significant differences in threshold, iUP value and iMAX value among different age groups (all P<0.001).With the increase of age, there was a trend of increasing threshold, iUP, and iMAX values in different nerves, and the differences are statistically significant (all P<0.001). There were no significant differences in gender, side and detection time threshold, iUP value and iMAX value (all P>0.05). The parameters of healthy subjects with high BMI value were higher than those of healthy subjects with low BMI value(all P<0.05). Compared with the healthy subjects, the parameters of 11 CMT1A patients were significantly increased (all P<0.05), and the parameters of 21 DPN patients were slightly increased (P<0.05). Conclusion: The new iMAX method reflects the excitability of motor axons and early axonal dysfunction, which is an important supplement to the traditional nerve conduction, and can be used to monitor motor axon excitability disorders.


Action Potentials , Electrodiagnosis , Humans , Female , Male , Middle Aged , Adult , Cross-Sectional Studies , Aged , Electrodiagnosis/methods , Motor Neurons/physiology , Median Nerve/physiopathology , Neural Conduction , Ulnar Nerve , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/physiopathology , Peripheral Nerves/physiopathology , Electric Stimulation , Electromyography
3.
J Morphol ; 285(6): e21741, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837268

It is largely unknown how the tongue base and soft palate deform to alter the configuration of the oropharyngeal airway during respiration. This study is to address this important gap. After live sleep monitoring of five Yucatan and two Panepinto minipigs to verify obstructive sleep apnea (OSA), eight and four ultrasonic crystals were implanted into the tongue base and soft palate to circumscribe a cubic and square region, respectively. The 3D and 2D deformational changes of the circumscribed regions were measured simultaneously with electromyographic activity of the oropharyngeal muscles during spontaneous respiration under sedated sleep. The results indicated that both obese Yucatan and Panepinto minipigs presented spontaneous OSA, but not in three nonobese Yucatan minipigs. During inspiration, the tongue base showed elongation in both dorsal and ventral regions but thinning and thickening in the anterior and posterior regions, respectively. The widths showed opposite directions, widening in the dorsal but narrowing in the ventral regions. The soft palate expanded in both length and width. Compared to normal controls, obese/OSA ones showed similar directions of deformational changes, but the magnitude of change was two times larger in the tongue base and soft palate, and obese/OSA Panepinto minipigs presented 10 times larger changes in all dimensions of both the tongue base and the soft palate. The distance changes between the dorsal surface of tongue base and soft palate during inspiration increased in normal but decreased in obese OSA minipigs.


Obesity , Palate, Soft , Sleep Apnea, Obstructive , Swine, Miniature , Tongue , Animals , Swine , Sleep Apnea, Obstructive/physiopathology , Tongue/physiopathology , Palate, Soft/physiopathology , Obesity/physiopathology , Obesity/complications , Obesity/pathology , Biomechanical Phenomena , Electromyography , Respiration , Male
4.
BMJ Case Rep ; 17(6)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839420

We report a case of a woman in her early 80s with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis presented as myalgia mimicking polymyalgia rheumatica (PMR). She had positive results for the Neer and Hawkins-Kennedy impingement tests, and a normal serum creatine kinase (CK) concentration. At first, we suspected PMR; however, the patient did not strictly meet the classification criteria. Electromyography revealed an abnormal myogenic pattern, and muscle MRI revealed intramuscular and fascial hyperintensity. Moreover, chest CT revealed interstitial lung disease, and test results for ANCAs were positive. We diagnosed the patient with ANCA-associated vasculitis based on the criteria and treated her with corticosteroids and rituximab. Thus, ANCA-associated vasculitis can cause muscle involvement without elevation of the CK concentration and mimic PMR.


Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Polymyalgia Rheumatica , Humans , Polymyalgia Rheumatica/diagnosis , Polymyalgia Rheumatica/drug therapy , Female , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Diagnosis, Differential , Aged, 80 and over , Rituximab/therapeutic use , Magnetic Resonance Imaging , Electromyography , Myalgia/etiology
5.
J Musculoskelet Neuronal Interact ; 24(2): 107-119, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825993

OBJECTIVES: The current study investigated performance fatigability (PF) and time course of changes in force, electromyographic amplitude (EMG AMP) and frequency (EMG MPF), and neuromuscular efficiency (NME) during a sustained, isometric, handgrip hold to failure (HTF) using the rating of perceived exertion (RPE)-Clamp Model. METHODS: Twelve males performed a handgrip HTF anchored to RPE=5. The time to task failure (Tlim), force (N), EMG AMP and MPF, and NME (normalized force/ normalized EMG AMP) were recorded. Analyses included a paired samples t-test for PF at an alpha of p<0.05, 1-way repeated measures ANOVA across time and post-hoc t-tests (p<0.0025) for force, EMG AMP and MPF, and NME responses. RESULTS: The PF (pre- to post- maximal force % decline) was 38.2±11.5%. There were decreases in responses, relative to 0% Tlim, from 40% to 100% Tlim (force), at 30%, 60%, and 100% Tlim (EMG AMP), from 10% to 100% Tlim(EMP MPF), and from 50% to 65%, and 80% to 100% Tlim (NME) (p<0.0025). CONCLUSIONS: The RPE-Clamp Model in this study demonstrated that pacing strategies may be influenced by the integration of anticipatory, feedforward, and feedback mechanisms, and provided insights into the relationship between neuromuscular and perceptual responses, and actual force generating capacity.


Electromyography , Hand Strength , Muscle Fatigue , Muscle, Skeletal , Humans , Male , Hand Strength/physiology , Muscle Fatigue/physiology , Young Adult , Adult , Electromyography/methods , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Physical Exertion/physiology
6.
J Musculoskelet Neuronal Interact ; 24(2): 148-158, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825997

OBJECTIVE: Scapular dyskinesis is one of the causes of shoulder disorders and involves muscle weakness in the serratus anterior. This study investigated whether motor unit (MU) recruitment and firing property, which are important for muscle exertion, have altered in serratus anterior of the individuals with scapular dyskinesis. METHODS: Asymptomatic adults with (SD) and without (control) scapular dyskinesis were analyzed. Surface electromyography (sEMG) waveforms were collected at submaximal voluntary contraction of the serratus anterior. The sEMG waveform was decomposed into MU action potential amplitude (MUAPAMP), mean firing rate (MFR), and recruitment threshold. MUs were divided into low, moderate, and high thresholds, and MU recruitment and firing properties of the groups were compared. RESULTS: High-threshold MUAPAMP was significantly smaller in the SD group than in the control group. The control group also exhibited recruitment properties that reflected the size principle, however, the SD group did not. Furthermore, the SD group had a lower MFR than the control group. CONCLUSIONS: Individuals with scapular dyskinesis exhibit altered MU recruitment properties and lower firing rates of the serratus anterior; this may be detrimental to muscle performance. Thus, it may be necessary to improve the neural drive of the serratus anterior when correcting scapular dyskinesis.


Dyskinesias , Electromyography , Scapula , Humans , Male , Scapula/physiopathology , Adult , Dyskinesias/physiopathology , Electromyography/methods , Female , Recruitment, Neurophysiological/physiology , Young Adult , Muscle, Skeletal/physiopathology , Action Potentials/physiology , Motor Neurons/physiology , Muscle Contraction/physiology
7.
J Musculoskelet Neuronal Interact ; 24(2): 200-208, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38826003

OBJECTIVES: Bilateral Deficit (BLD) occurs when the force generated by both limbs together is smaller than the sum of the forces developed separately by the two limbs. BLD may be modulated by physical training. Here, were investigated the effects of unilateral or bilateral plyometric training on BLD and neuromuscular activation during lower limb explosive extensions. METHODS: Fourteen young males were randomized into the unilateral (UL_) or bilateral (BL_) training group. Plyometric training (20 sessions, 2 days/week) was performed on a sled ergometer, and consisted of UL or BL consecutive, plyometric lower limb extensions (3-to-5 sets; 8-to-10 repetitions). Before and after training, maximal explosive efforts with both lower limbs or with each limb separately were assessed. Electromyography of representative lower limb muscles was measured. RESULTS: BL_training significantly and largely decreased BLD (p=0.003, effect size=1.63). This was accompanied by the reversion from deficit to facilitation of the electromyography amplitude of knee extensors during bilateral efforts (p=0.007). Conversely, UL_training had negligible effects on BLD (p=0.781). Also, both groups showed similar improvements in their maximal explosive power generated after training. CONCLUSIONS: Bilateral plyometric training can mitigate BLD, and should be considered for training protocols focused on improving bilateral lower limb motor performance.


Electromyography , Lower Extremity , Muscle, Skeletal , Plyometric Exercise , Humans , Male , Plyometric Exercise/methods , Lower Extremity/physiology , Young Adult , Electromyography/methods , Muscle, Skeletal/physiology , Adult , Muscle Strength/physiology
8.
Sci Rep ; 14(1): 12994, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844574

Women frequently express heightened neck discomfort even though they exhibit smaller neck flexion (NF) during smartphone use. Differences in natural posture while using smartphones may result in varying muscle activation patterns between genders. However, no study focused on this issue. This study investigated the influence of gender on neck muscle activity and NF when using smartphones, ranging from slight (20°) to nearly maximal forward head flexion, across different postures. We analyzed smartphone usage patterns in 16 men and 16 women and examined these behaviors across different scenarios: standing, supported sitting, and unsupported sitting, at 20°, 30°, 40°, and the maximum head angles. During data collection, muscle activity was measured, expressed as a percentage of the maximum voluntary contraction (%MVC), in the cervical erector spinae (CES) and upper trapezius (UTZ), along with NF. Results show significant influences of gender, head angle, and posture on all measures, with notable interactions among these variables. Women displayed higher muscle activities in CES and UTZ, yet exhibited lesser NF, while using smartphones in both standing (12.3%MVC, 10.7% MVC, and 69.0°, respectively) and unsupported sitting (10.8%MVC, 12.3%MVC, and 71.8°, respectively) compared to men (standing: 9.5%MVC, 8.8%MVC, and 76.1°; unsupported sitting: 9.7%MVC, 10.8%MVC, and 76.1°). This study provides a potential rationale for gender-related disparities in injury outcomes, emphasizing that women experience higher neck and shoulder discomfort level, despite their smaller NF during smartphone use, as found in previous research. Additionally, the cervical flexion-relaxation phenomenon may occur when the head angle exceeded 40°. The near-maximum head angle during smartphone use might induce the cervical flexion-relaxation phenomenon, potentially aggravating neck issues. We recommend limiting smartphone usage postures that exceed the near-maximum head angle, as they are commonly adopted by individuals in the daily smartphone activities.


Head , Neck Muscles , Posture , Smartphone , Humans , Female , Male , Neck Muscles/physiology , Posture/physiology , Adult , Head/physiology , Young Adult , Neck/physiology , Sex Factors , Electromyography , Sex Characteristics , Neck Pain/physiopathology , Muscle Contraction/physiology , Range of Motion, Articular/physiology
9.
Sci Rep ; 14(1): 13057, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844650

Combined action observation and motor imagery (AOMI) facilitates corticospinal excitability (CSE) and may potentially induce plastic-like changes in the brain in a similar manner to physical practice. This study used transcranial magnetic stimulation (TMS) to explore changes in CSE for AOMI of coordinative lower-limb actions. Twenty-four healthy adults completed two baseline (BLH, BLNH) and three AOMI conditions, where they observed a knee extension while simultaneously imagining the same action (AOMICONG), plantarflexion (AOMICOOR-FUNC), or dorsiflexion (AOMICOOR-MOVE). Motor evoked potential (MEP) amplitudes were recorded as a marker of CSE for all conditions from two knee extensor, one dorsi flexor, and two plantar flexor muscles following TMS to the right leg representation of the left primary motor cortex. A main effect for experimental condition was reported for all three muscle groups. MEP amplitudes were significantly greater in the AOMICONG condition compared to the BLNH condition (p = .04) for the knee extensors, AOMICOOR-FUNC condition compared to the BLH condition (p = .03) for the plantar flexors, and AOMICOOR-MOVE condition compared to the two baseline conditions for the dorsi flexors (ps ≤ .01). The study findings support the notion that changes in CSE are driven by the imagined actions during coordinative AOMI.


Evoked Potentials, Motor , Imagination , Lower Extremity , Motor Cortex , Muscle, Skeletal , Pyramidal Tracts , Transcranial Magnetic Stimulation , Humans , Male , Female , Evoked Potentials, Motor/physiology , Adult , Motor Cortex/physiology , Imagination/physiology , Young Adult , Pyramidal Tracts/physiology , Lower Extremity/physiology , Muscle, Skeletal/physiology , Electromyography
10.
J Sports Sci Med ; 23(2): 396-409, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841629

Arm-cycling is a versatile exercise modality with applications in both athletic enhancement and rehabilitation, yet the influence of forearm orientation remains understudied. Thus, this study aimed to investigate the impact of forearm position on upper-body arm-cycling Wingate tests. Fourteen adult males (27.3 ± 5.8 years) underwent bilateral assessments of handgrip strength in standing and seated positions, followed by pronated and supinated forward arm-cycling Wingate tests. Electromyography (EMG) was recorded from five upper-extremity muscles, including anterior deltoid, triceps brachii lateral head, biceps brachii, latissimus dorsi, and brachioradialis. Simultaneously, bilateral normal and propulsion forces were measured at the pedal-crank interface. Rate of perceived exertion (RPE), power output, and fatigue index were recorded post-test. The results showed that a pronated forearm position provided significantly (p < 0.05) higher normal and propulsion forces and triceps brachii muscle activation patterns during arm-cycling. No significant difference in RPE was observed between forearm positions (p = 0.17). A positive correlation was found between seated handgrip strength and peak power output during the Wingate test while pronated (dominant: p = 0.01, r = 0.55; non-dominant: p = 0.03, r = 0.49) and supinated (dominant: p = 0.03, r = 0.51; don-dominant: p = 0.04, r = 0.47). Fatigue changed the force and EMG profile during the Wingate test. In conclusion, this study enhances our understanding of forearm position's impact on upper-body Wingate tests. These findings have implications for optimizing training and performance strategies in individuals using arm-cycling for athletic enhancement and rehabilitation.


Electromyography , Exercise Test , Forearm , Hand Strength , Muscle, Skeletal , Pronation , Humans , Male , Forearm/physiology , Hand Strength/physiology , Adult , Muscle, Skeletal/physiology , Young Adult , Biomechanical Phenomena , Pronation/physiology , Exercise Test/methods , Supination/physiology , Muscle Fatigue/physiology , Physical Exertion/physiology , Arm/physiology , Upper Extremity/physiology
11.
J Sports Sci Med ; 23(2): 425-435, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841632

Non-local muscle fatigue (NLMF) refers to a transient decline in the functioning of a non-exercised muscle following the fatigue of a different muscle group. Most studies examining NLMF conducted post-tests immediately after the fatiguing protocols, leaving the duration of these effects uncertain. The aim of this study was to investigate the duration of NLMF (1-, 3-, and 5-minutes). In this randomized crossover study, 17 recreationally trained participants (four females) were tested for the acute effects of unilateral knee extensor (KE) muscle fatigue on the contralateral homologous muscle strength, and activation. Each of the four sessions included testing at either 1-, 3-, or 5-minutes post-test, as well as a control condition for non-dominant KE peak force, instantaneous strength (force produced within the first 100-ms), and vastus lateralis and biceps femoris electromyography (EMG). The dominant KE fatigue intervention protocol involved two sets of 100-seconds maximal voluntary isometric contractions (MVIC) separated by 1-minute of rest. Non-dominant KE MVIC forces showed moderate and small magnitude reductions at 1-min (p < 0.0001, d = 0.72) and 3-min (p = 0.005, d = 0.30) post-test respectively. The KE MVIC instantaneous strength revealed large magnitude, significant reductions between 1-min (p = 0.021, d = 1.33), and 3-min (p = 0.041, d = 1.13) compared with the control. In addition, EMG data revealed large magnitude increases with the 1-minute versus control condition (p = 0.03, d = 1.10). In summary, impairments of the non-exercised leg were apparent up to 3-minutes post-exercise with no significant deficits at 5-minutes. Recovery duration plays a crucial role in the manifestation of NLMF.


Cross-Over Studies , Electromyography , Isometric Contraction , Knee , Muscle Fatigue , Muscle Strength , Humans , Muscle Fatigue/physiology , Female , Male , Isometric Contraction/physiology , Muscle Strength/physiology , Young Adult , Knee/physiology , Time Factors , Adult , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Hamstring Muscles/physiology
12.
J Sports Sci Med ; 23(2): 326-341, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841639

In the recent past, practical blood flow restriction (pBFR) using non-pneumatic, usually elastic cuffs has been established as a cost-effective alternative to traditional blood flow restriction (BFR) using pneumatic cuffs, especially for training in large groups. This study investigated whether low-load resistance exercise with perceptually primed pBFR using an elastic knee wrap is suitable to induce similar motor performance fatigue as well as physiological and perceptual responses compared to traditional BFR using a pneumatic nylon cuff in males and females. In a randomized, counterbalanced cross-over study, 30 healthy subjects performed 4 sets (30-15-15-15 repetitions) of unilateral knee extensions at 20% of their one-repetition-maximum. In the pBFR condition, each individual was perceptually primed to a BFR pressure corresponding to 60% of their arterial occlusion pressure. Before and after exercise, maximal voluntary torque, maximal muscle activity, and cuff pressure-induced discomfort were assessed. Moreover, physiological (i.e., muscle activity, muscle oxygenation) and perceptual responses (i.e., effort and exercise-induced leg muscle pain) were recorded during exercise. Moderate correlations with no differences between pBFR and BFR were found regarding the decline in maximal voluntary torque and maximal muscle activity. Furthermore, no to very strong correlations between conditions, with no differences, were observed for muscle activity, muscle oxygenation, and perceptual responses during exercise sets. However, cuff pressure-induced discomfort was lower in the pBFR compared to the BFR condition. These results indicate that low-load resistance exercise combined with perceptually primed pBFR is a convenient and less discomfort inducing alternative to traditional BFR. This is especially relevant for BFR training with people who have a low cuff-induced discomfort tolerance.


Cross-Over Studies , Muscle Fatigue , Muscle, Skeletal , Resistance Training , Humans , Female , Resistance Training/methods , Male , Muscle Fatigue/physiology , Adult , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Regional Blood Flow , Torque , Myalgia/etiology , Myalgia/prevention & control , Perception/physiology , Oxygen Consumption , Blood Flow Restriction Therapy/methods , Electromyography , Knee/physiology
13.
J Sports Sci Med ; 23(2): 436-444, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841644

The purpose of this study was to examine the differences in thoracolumbar fascia (TLF) and lumbar muscle modulus in individuals with and without hamstring injury using shear wave elastography (SWE). Thirteen male soccer players without a previous hamstring injury and eleven players with a history of hamstring injury performed passive and active (submaximal) knee flexion efforts from 0°, 45° and 90° angle of knee flexion as well as an active prone trunk extension test. The elastic modulus of the TLF, the erector spinae (ES) and the multifidus (MF) was measured using ultrasound SWE simultaneously with the surface electromyography (EMG) signal of the ES and MF. The TLF SWE modulus was significantly (p < 0.05) higher in the injured group (range: 29.86 ± 8.58 to 66.57 ± 11.71 kPa) than in the uninjured group (range: 17.47 ± 9.37 to 47.03 ± 16.04 kPa). The ES and MF modulus ranged from 14.97 ± 4.10 to 66.57 ± 11.71 kPa in the injured group and it was significantly (p < .05) greater compared to the uninjured group (range: 11.65 ± 5.99 to 40.49 ± 12.35 kPa). TLF modulus was greater than ES and MF modulus (p < 0.05). Active modulus was greater during the prone trunk extension test compared to the knee flexion tests and it was greater in the knee flexion test at 0° than at 90° (p < 0.05). The muscle EMG was greater in the injured compared to the uninjured group in the passive tests only (p < 0.05). SWE modulus of the TLF and ES and MF was greater in soccer players with previous hamstring injury than uninjured players. Further research could establish whether exercises that target the paraspinal muscles and the lumbar fascia can assist in preventing individuals with a history of hamstring injury from sustaining a new injury.


Elasticity Imaging Techniques , Electromyography , Fascia , Hamstring Muscles , Soccer , Humans , Male , Soccer/injuries , Soccer/physiology , Young Adult , Hamstring Muscles/injuries , Hamstring Muscles/physiology , Hamstring Muscles/diagnostic imaging , Fascia/injuries , Fascia/diagnostic imaging , Fascia/physiology , Fascia/physiopathology , Elastic Modulus , Athletic Injuries/physiopathology , Athletic Injuries/diagnostic imaging , Adult , Lumbosacral Region/injuries , Lumbosacral Region/diagnostic imaging , Paraspinal Muscles/diagnostic imaging , Paraspinal Muscles/physiology , Paraspinal Muscles/physiopathology , Adolescent
14.
Article En | MEDLINE | ID: mdl-38829756

Following tetraplegia, independence for completing essential daily tasks, such as opening doors and eating, significantly declines. Assistive robotic manipulators (ARMs) could restore independence, but typically input devices for these manipulators require functional use of the hands. We created and validated a hands-free multimodal input system for controlling an ARM in virtual reality using combinations of a gyroscope, eye-tracking, and heterologous surface electromyography (sEMG). These input modalities are mapped to ARM functions based on the user's preferences and to maximize the utility of their residual volitional capabilities following tetraplegia. The two participants in this study with tetraplegia preferred to use the control mapping with sEMG button functions and disliked winking commands. Non-disabled participants were more varied in their preferences and performance, further suggesting that customizability is an advantageous component of the control system. Replacing buttons from a traditional handheld controller with sEMG did not substantively reduce performance. The system provided adequate control to all participants to complete functional tasks in virtual reality such as opening door handles, turning stove dials, eating, and drinking, all of which enable independence and improved quality of life for these individuals.


Arm , Electromyography , Quadriplegia , Robotics , Self-Help Devices , Humans , Quadriplegia/rehabilitation , Quadriplegia/physiopathology , Male , Robotics/instrumentation , Adult , Female , Virtual Reality , Activities of Daily Living , User-Computer Interface , Eye Movements/physiology , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/physiopathology
15.
Medicine (Baltimore) ; 103(23): e38446, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847683

BACKGROUND: Stair-climbing (SC) is an essential daily life skill, and stair-climbing exercise (SCE) serves as a valuable method for promoting physical activity in older adults. This study aimed to compare the impact of SCEs with heel contact (HC) and heel off (HO) during SC on functional mobility and trunk muscle (TM) activation amplitudes in community-dwelling older adults. METHODS: In the pilot randomized controlled trial, participants were randomly allocated to either the HC group (n = 17; mean age 75.9 ± 6.3 years) or the HO group (n = 17; mean age 76.5 ± 4.6 years). The HC participants performed SCE with the heel of the ankle in contact with the ground, while the HO participants performed SCE with the heel of the ankle off the ground during SC. Both groups participated in progressive SCE for one hour per day, three days per week, over four consecutive weeks (totaling 12 sessions) at the community center. We measured timed stair-climbing (TSC), timed up and go (TUG), and electromyography (EMG) amplitudes of the TMs including rectus abdominis (RA), external oblique (EO), transverse abdominus and internal oblique abdominals (TrA-IO), and erector spinae (ES) during SC before and after the intervention. RESULTS: Both groups showed a significant improvement in TSC and TUG after the intervention (P < .01, respectively), with no significant difference between the groups. There was no significant difference in the EMG activity of the TMs between the groups after the intervention. The amplitude of TMs significantly decreased after the intervention in both groups (P < .01, respectively). CONCLUSION: Both SCE methods could improve balance and SC ability in older adults while reducing the recruitment of TMs during SC. Both SCE strategies are effective in improving functional mobility and promoting appropriate posture control during SC in older adults.


Electromyography , Independent Living , Stair Climbing , Humans , Aged , Male , Pilot Projects , Female , Stair Climbing/physiology , Aged, 80 and over , Torso/physiology , Muscle, Skeletal/physiology
16.
J Contemp Dent Pract ; 25(3): 207-212, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690691

AIM: This longitudinal study aimed to evaluate the electromyographic activity of the masseter and temporal muscles in adult women who underwent buccal fat removal. MATERIALS AND METHODS: The sample consisted of 20 healthy adult women with no temporomandibular dysfunction and normal occlusion, who were assessed before, 30, and 60 days after the surgery. The electromyographic signal of the masseter and temporal muscles was captured through mandibular tasks including rest, protrusion, right and left laterality, and maximum voluntary contraction with and without parafilm. The results obtained were tabulated and the Shapiro-Wilk normality test was performed, which indicated a normal distribution. Statistical analysis was performed using the repeated measures test (p < 0.05). RESULTS: Significant differences were observed between time periods in maximum voluntary contraction for the left masseter muscle (p = 0.006) and in maximum voluntary contraction with parafilm for the right temporal (p = 0.03) and left temporal (p = 0.03) muscles. CONCLUSION: Bichectomy surgery did not modify the electromyographic activity of the masseter and temporal muscles during the rest task but may have influenced variations in the electromyographic signal during different mandibular tasks after 60 days of surgery, suggesting compensatory adaptations and functional recovery. CLINICAL SIGNIFICANCE: Understanding the impact of buccal fat removal surgery on the stomatognathic system function provides insights into postoperative functional recovery and potential compensatory adaptations, guiding clinical management and rehabilitation strategies for patients undergoing such procedures. How to cite this article: Cardoso AHDLS, Palinkas M, Bettiol NB, et al. Bichectomy Surgery and EMG Masticatory Muscles Function in Adult Women: A Longitudinal Study. J Contemp Dent Pract 2024;25(3):207-212.


Electromyography , Masseter Muscle , Temporal Muscle , Humans , Female , Longitudinal Studies , Adult , Temporal Muscle/physiology , Masseter Muscle/physiology , Muscle Contraction/physiology , Masticatory Muscles/physiology , Young Adult
17.
Channels (Austin) ; 18(1): 2349823, 2024 Dec.
Article En | MEDLINE | ID: mdl-38720415

Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.


Asian People , Chloride Channels , Myotonia Congenita , Humans , Myotonia Congenita/genetics , Myotonia Congenita/physiopathology , Male , Female , Chloride Channels/genetics , Child , Adolescent , Asian People/genetics , Adult , Young Adult , Electromyography , Retrospective Studies , China , Mutation , East Asian People
18.
BMC Neurol ; 24(1): 144, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724916

BACKGROUND: Restoring shoulder function is critical for upper-extremity rehabilitation following a stroke. The complex musculoskeletal anatomy of the shoulder presents a challenge for safely assisting elevation movements through robotic interventions. The level of shoulder elevation assistance in rehabilitation is often based on clinical judgment. There is no standardized method for deriving an optimal level of assistance, underscoring the importance of addressing abnormal movements during shoulder elevation, such as abnormal synergies and compensatory actions. This study aimed to investigate the effectiveness and safety of a newly developed shoulder elevation exoskeleton robot by applying a novel optimization technique derived from the muscle synergy index. METHODS: Twelve chronic stroke participants underwent an intervention consisting of 100 robot-assisted shoulder elevation exercises (10 × 10 times, approximately 40 min) for 10 days (4-5 times/week). The optimal robot assist rate was derived by detecting the change points using the co-contraction index, calculated from electromyogram (EMG) data obtained from the anterior deltoid and biceps brachii muscles during shoulder elevation at the initial evaluation. The primary outcomes were the Fugl-Meyer assessment-upper extremity (FMA-UE) shoulder/elbow/forearm score, kinematic outcomes (maximum angle of voluntary shoulder flexion and elbow flexion ratio during shoulder elevation), and shoulder pain outcomes (pain-free passive shoulder flexion range of motion [ROM] and visual analogue scale for pain severity during shoulder flexion). The effectiveness and safety of robotic therapy were examined using the Wilcoxon signed-rank sum test. RESULTS: All 12 patients completed the procedure without any adverse events. Two participants were excluded from the analysis because the EMG of the biceps brachii was not obtained. Ten participants (five men and five women; mean age: 57.0 [5.5] years; mean FMA-UE total score: 18.7 [10.5] points) showed significant improvement in the FMA-UE shoulder/elbow/forearm score, kinematic outcomes, and pain-free passive shoulder flexion ROM (P < 0.05). The shoulder pain outcomes remained unchanged or improved in all patients. CONCLUSIONS: The study presents a method for deriving the optimal robotic assist rate. Rehabilitation using a shoulder robot based on this derived optimal assist rate showed the possibility of safely improving the upper-extremity function in patients with severe stroke in the chronic phase.


Electromyography , Exoskeleton Device , Feasibility Studies , Muscle, Skeletal , Shoulder , Stroke Rehabilitation , Humans , Male , Female , Stroke Rehabilitation/methods , Middle Aged , Aged , Shoulder/physiopathology , Shoulder/physiology , Electromyography/methods , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Exercise Therapy/methods , Stroke/physiopathology , Robotics/methods , Biomechanical Phenomena/physiology , Adult
19.
J Neuroeng Rehabil ; 21(1): 69, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725065

BACKGROUND: In the practical application of sarcopenia screening, there is a need for faster, time-saving, and community-friendly detection methods. The primary purpose of this study was to perform sarcopenia screening in community-dwelling older adults and investigate whether surface electromyogram (sEMG) from hand grip could potentially be used to detect sarcopenia using machine learning (ML) methods with reasonable features extracted from sEMG signals. The secondary aim was to provide the interpretability of the obtained ML models using a novel feature importance estimation method. METHODS: A total of 158 community-dwelling older residents (≥ 60 years old) were recruited. After screening through the diagnostic criteria of the Asian Working Group for Sarcopenia in 2019 (AWGS 2019) and data quality check, participants were assigned to the healthy group (n = 45) and the sarcopenic group (n = 48). sEMG signals from six forearm muscles were recorded during the hand grip task at 20% maximal voluntary contraction (MVC) and 50% MVC. After filtering recorded signals, nine representative features were extracted, including six time-domain features plus three time-frequency domain features. Then, a voting classifier ensembled by a support vector machine (SVM), a random forest (RF), and a gradient boosting machine (GBM) was implemented to classify healthy versus sarcopenic participants. Finally, the SHapley Additive exPlanations (SHAP) method was utilized to investigate feature importance during classification. RESULTS: Seven out of the nine features exhibited statistically significant differences between healthy and sarcopenic participants in both 20% and 50% MVC tests. Using these features, the voting classifier achieved 80% sensitivity and 73% accuracy through a five-fold cross-validation. Such performance was better than each of the SVM, RF, and GBM models alone. Lastly, SHAP results revealed that the wavelength (WL) and the kurtosis of continuous wavelet transform coefficients (CWT_kurtosis) had the highest feature impact scores. CONCLUSION: This study proposed a method for community-based sarcopenia screening using sEMG signals of forearm muscles. Using a voting classifier with nine representative features, the accuracy exceeds 70% and the sensitivity exceeds 75%, indicating moderate classification performance. Interpretable results obtained from the SHAP model suggest that motor unit (MU) activation mode may be a key factor affecting sarcopenia.


Electromyography , Hand Strength , Independent Living , Machine Learning , Sarcopenia , Humans , Sarcopenia/diagnosis , Sarcopenia/physiopathology , Electromyography/methods , Aged , Male , Female , Hand Strength/physiology , China , Middle Aged , Muscle, Skeletal/physiopathology , Support Vector Machine , Aged, 80 and over , East Asian People
20.
Sci Rep ; 14(1): 10448, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714802

Hip muscle weakness can be a precursor to or a result of lower limb injuries. Assessment of hip muscle strength and muscle motor fatigue in the clinic is important for diagnosing and treating hip-related impairments. Muscle motor fatigue can be assessed with surface electromyography (sEMG), however sEMG requires specialized equipment and training. Inertial measurement units (IMUs) are wearable devices used to measure human motion, yet it remains unclear if they can be used as a low-cost alternative method to measure hip muscle fatigue. The goals of this work were to (1) identify which of five pre-selected exercises most consistently and effectively elicited muscle fatigue in the gluteus maximus, gluteus medius, and rectus femoris muscles and (2) determine the relationship between muscle fatigue using sEMG sensors and knee wobble using an IMU device. This work suggests that a wall sit and single leg knee raise activity fatigue the gluteus medius, gluteus maximus, and rectus femoris muscles most reliably (p < 0.05) and that the gluteus medius and gluteus maximus muscles were fatigued to a greater extent than the rectus femoris (p = 0.031 and p = 0.0023, respectively). Additionally, while acceleration data from a single IMU placed on the knee suggested that more knee wobble may be an indicator of muscle fatigue, this single IMU is not capable of reliably assessing fatigue level. These results suggest the wall sit activity could be used as simple, static exercise to elicit hip muscle fatigue in the clinic, and that assessment of knee wobble in addition to other IMU measures could potentially be used to infer muscle fatigue under controlled conditions. Future work examining the relationship between IMU data, muscle fatigue, and multi-limb dynamics should be explored to develop an accessible, low-cost, fast and standardized method to measure fatiguability of the hip muscles in the clinic.


Electromyography , Exercise , Hip , Muscle Fatigue , Humans , Electromyography/methods , Muscle Fatigue/physiology , Male , Exercise/physiology , Adult , Hip/physiology , Female , Muscle, Skeletal/physiology , Young Adult , Knee/physiology
...