Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.938
Filter
1.
Phys Rev Lett ; 132(24): 248401, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949349

ABSTRACT

Cellular Potts models are broadly applied across developmental biology and cancer research. We overcome limitations of the traditional approach, which reinterprets a modified Metropolis sampling as ad hoc dynamics, by introducing a physical timescale through Poissonian kinetics and by applying principles of stochastic thermodynamics to separate thermal and relaxation effects from athermal noise and nonconservative forces. Our method accurately describes cell-sorting dynamics in mouse-embryo development and identifies the distinct contributions of nonequilibrium processes, e.g., cell growth and active fluctuations.


Subject(s)
Models, Biological , Stochastic Processes , Animals , Mice , Kinetics , Thermodynamics , Embryonic Development/physiology , Embryo, Mammalian/cytology
2.
Methods Mol Biol ; 2805: 171-186, 2024.
Article in English | MEDLINE | ID: mdl-39008182

ABSTRACT

Biophysical factors, including changes in mechanical stiffness, have been shown to influence the morphogenesis of developing organs. There is a lack of experimental techniques, however, that can probe the mechanical properties of embryonic tissues-especially those which are not mechanically or optically accessible, such as the visceral organs of the developing mouse embryo. Here, using the embryonic kidney as a model system, we describe a method to use microindentation to quantify tissue-level regional differences in the mechanical properties of an embryonic organ. This technique is generalizable and can be used to quantify patterns of tissue stiffness within other developing organ systems. Going forward, these data will enable new experimental studies of the role of biophysical cues during organogenesis.


Subject(s)
Kidney , Animals , Mice , Kidney/embryology , Kidney/cytology , Biomechanical Phenomena , Organogenesis , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology
5.
Cells ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38920627

ABSTRACT

Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.


Subject(s)
Embryo Culture Techniques , Embryo, Mammalian , Animals , Humans , Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Embryonic Development , Pregnancy , Female , Blastocyst/cytology , Blastocyst/metabolism
6.
Nat Cell Biol ; 26(6): 868-877, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849542

ABSTRACT

Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.


Subject(s)
Apoptosis , Cell Lineage , DNA Methylation , Endoderm , Gene Expression Regulation, Developmental , Animals , Endoderm/cytology , Endoderm/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Phagocytosis , Mice, Inbred C57BL , Mice , Cell Differentiation , Female , Embryonic Development , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Mice, Transgenic , Gastrointestinal Tract/cytology , Gastrointestinal Tract/embryology , Gastrointestinal Tract/metabolism
7.
Nat Commun ; 15(1): 5381, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918406

ABSTRACT

During human embryonic development, early cleavage-stage embryos are more susceptible to errors. Studies have shown that many problems occur during the first mitosis, such as direct cleavage, chromosome segregation errors, and multinucleation. However, the mechanisms whereby these errors occur during the first mitosis in human embryos remain unknown. To clarify this aspect, in the present study, we image discarded living human two-pronuclear stage zygotes using fluorescent labeling and confocal microscopy without microinjection of DNA or mRNA and investigate the association between spindle shape and nuclear abnormality during the first mitosis. We observe that the first mitotic spindles vary, and low-aspect-ratio-shaped spindles tend to lead to the formation of multiple nuclei at the 2-cell stage. Moreover, we observe defocusing poles in many of the first mitotic spindles, which are strongly associated with multinucleation. Additionally, we show that differences in the positions of the centrosomes cause spindle abnormality in the first mitosis. Furthermore, many multinuclei are modified to form mononuclei after the second mitosis because the occurrence of pole defocusing is firmly reduced. Our study will contribute markedly to research on the occurrence of mitotic errors during the early cleavage of human embryos.


Subject(s)
Cell Nucleus , Mitosis , Spindle Apparatus , Humans , Spindle Apparatus/metabolism , Cell Nucleus/metabolism , Zygote/cytology , Zygote/metabolism , Embryo, Mammalian/cytology , Microscopy, Confocal , Centrosome/metabolism , Embryonic Development/physiology , Female
8.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906095

ABSTRACT

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Subject(s)
Chimera , Organogenesis , Animals , Humans , Chimera/embryology , Embryo Implantation , Embryo, Mammalian/cytology , Embryonic Development , Embryonic Stem Cells , Models, Biological , Organoids , Regenerative Medicine , Tissue Engineering/methods
9.
Nature ; 630(8017): 720-727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839949

ABSTRACT

Spermatozoa harbour a complex and environment-sensitive pool of small non-coding RNAs (sncRNAs)1, which influences offspring development and adult phenotypes1-7. Whether spermatozoa in the epididymis are directly susceptible to environmental cues is not fully understood8. Here we used two distinct paradigms of preconception acute high-fat diet to dissect epididymal versus testicular contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) as sperm-borne factors. In humans, mt-tsRNAs in spermatozoa correlate with body mass index, and paternal overweight at conception doubles offspring obesity risk and compromises metabolic health. Sperm sncRNA sequencing of mice mutant for genes involved in mitochondrial function, and metabolic phenotyping of their wild-type offspring, suggest that the upregulation of mt-tsRNAs is downstream of mitochondrial dysfunction. Single-embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tRNAs at fertilization and suggested their involvement in the control of early-embryo transcription. Our study supports the importance of paternal health at conception for offspring metabolism, shows that mt-tRNAs are diet-induced and sperm-borne and demonstrates, in a physiological setting, father-to-offspring transfer of sperm mitochondrial RNAs at fertilization.


Subject(s)
Diet, High-Fat , Epigenesis, Genetic , Mitochondria , RNA, Mitochondrial , Spermatozoa , Animals , Female , Humans , Male , Mice , Body Mass Index , Diet, High-Fat/adverse effects , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Epididymis/cytology , Epigenesis, Genetic/genetics , Fertilization/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Obesity/genetics , Obesity/metabolism , Obesity/etiology , Oocytes/metabolism , Overweight/genetics , Overweight/metabolism , Paternal Inheritance/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Spermatozoa/metabolism , Testis/cytology , Transcription, Genetic
10.
Nat Commun ; 15(1): 5055, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871742

ABSTRACT

The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm. Notably, clusters of AVE cells also form in pure visceral endoderm cultures upon activation of Nodal signaling, indicating that tissue-intrinsic factors can restrict AVE differentiation. We identify ß-catenin activity as a tissue-intrinsic factor that antagonizes AVE-inducing Nodal signals. Together, our results show how an AVE-like population can arise through interactions between epiblast and visceral endoderm alone. This mechanism may be a flexible solution for axis patterning in a wide range of embryo geometries, and provide robustness to axis patterning when coupled with signal gradients.


Subject(s)
Body Patterning , Cell Differentiation , Endoderm , Nodal Protein , Signal Transduction , beta Catenin , Animals , Endoderm/cytology , Endoderm/metabolism , Endoderm/embryology , beta Catenin/metabolism , Mice , Nodal Protein/metabolism , Nodal Protein/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology
11.
Dev Cell ; 59(12): 1487-1488, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889690

ABSTRACT

In this issue of Developmental Cell, Bolondi et al. systematically assesses neuro-mesodermal progenitor (NMP) dynamics by combining a mouse stem-cell-based embryo model with molecular recording of single cells, shedding light on the dynamics of neural tube and paraxial mesoderm formation during mammalian development.


Subject(s)
Mesoderm , Animals , Mice , Mesoderm/cytology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Neural Tube/cytology , Neural Tube/embryology , Cell Differentiation/physiology , Stem Cells/cytology , Stem Cells/metabolism , Body Patterning
13.
Nat Commun ; 15(1): 5210, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890321

ABSTRACT

Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.


Subject(s)
Embryo, Mammalian , Endoderm , Gastrulation , Gene Expression Regulation, Developmental , Single-Cell Analysis , Animals , Endoderm/cytology , Endoderm/metabolism , Endoderm/embryology , Swine , Mice , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Cell Differentiation , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Transcriptome , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Cell Lineage , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Epithelial-Mesenchymal Transition/genetics
15.
Curr Top Dev Biol ; 160: 31-64, 2024.
Article in English | MEDLINE | ID: mdl-38937030

ABSTRACT

Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.


Subject(s)
Embryonic Development , Animals , Humans , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Biomechanical Phenomena
16.
Nat Struct Mol Biol ; 31(6): 964-976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789684

ABSTRACT

The mouse and human embryo gradually loses totipotency before diversifying into the inner cell mass (ICM, future organism) and trophectoderm (TE, future placenta). The transcription factors TFAP2C and TEAD4 with activated RHOA accelerate embryo polarization. Here we show that these factors also accelerate the loss of totipotency. TFAP2C and TEAD4 paradoxically promote and inhibit Hippo signaling before lineage diversification: they drive expression of multiple Hippo regulators while also promoting apical domain formation, which inactivates Hippo. Each factor activates TE specifiers in bipotent cells, while TFAP2C also activates specifiers of the ICM fate. Asymmetric segregation of the apical domain reconciles the opposing regulation of Hippo signaling into Hippo OFF and the TE fate, or Hippo ON and the ICM fate. We propose that the bistable switch established by TFAP2C and TEAD4 is exploited to trigger robust lineage diversification in the developing embryo.


Subject(s)
DNA-Binding Proteins , TEA Domain Transcription Factors , Transcription Factor AP-2 , Transcription Factors , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Humans , Signal Transduction , Cell Lineage , Gene Expression Regulation, Developmental , Muscle Proteins/metabolism , Muscle Proteins/genetics , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology , Hippo Signaling Pathway , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Embryonic Development/genetics
17.
Nature ; 629(8012): 646-651, 2024 May.
Article in English | MEDLINE | ID: mdl-38693259

ABSTRACT

The shaping of human embryos begins with compaction, during which cells come into close contact1,2. Assisted reproductive technology studies indicate that human embryos fail compaction primarily because of defective adhesion3,4. On the basis of our current understanding of animal morphogenesis5,6, other morphogenetic engines, such as cell contractility, could be involved in shaping human embryos. However, the molecular, cellular and physical mechanisms driving human embryo morphogenesis remain uncharacterized. Using micropipette aspiration on human embryos donated to research, we have mapped cell surface tensions during compaction. This shows a fourfold increase of tension at the cell-medium interface whereas cell-cell contacts keep a steady tension. Therefore, increased tension at the cell-medium interface drives human embryo compaction, which is qualitatively similar to compaction in mouse embryos7. Further comparison between human and mouse shows qualitatively similar but quantitively different mechanical strategies, with human embryos being mechanically least efficient. Inhibition of cell contractility and cell-cell adhesion in human embryos shows that, whereas both cellular processes are required for compaction, only contractility controls the surface tensions responsible for compaction. Cell contractility and cell-cell adhesion exhibit distinct mechanical signatures when faulty. Analysing the mechanical signature of naturally failing embryos, we find evidence that non-compacting or partially compacting embryos containing excluded cells have defective contractility. Together, our study shows that an evolutionarily conserved increase in cell contractility is required to generate the forces driving the first morphogenetic movement shaping the human body.


Subject(s)
Cell Adhesion , Embryo, Mammalian , Embryonic Development , Animals , Female , Humans , Male , Mice , Biomechanical Phenomena , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Surface Tension , Adult
18.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38744282

ABSTRACT

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Subject(s)
Blastomeres , Cell Lineage , Embryo, Mammalian , Female , Humans , Blastomeres/cytology , Blastomeres/metabolism , Cell Division , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development , Germ Layers/cytology , Germ Layers/metabolism , Male , Animals , Mice
19.
Dev Cell ; 59(13): 1689-1706.e8, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38636517

ABSTRACT

During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.


Subject(s)
Cell Movement , Enteric Nervous System , Neural Crest , Signal Transduction , Animals , Neural Crest/metabolism , Neural Crest/cytology , Mice , Enteric Nervous System/metabolism , Enteric Nervous System/embryology , Enteric Nervous System/cytology , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology , Cell Differentiation , Gene Expression Regulation, Developmental , Hirschsprung Disease/genetics , Hirschsprung Disease/metabolism , Hirschsprung Disease/pathology , Humans
20.
Adv Mater ; 36(25): e2313306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593372

ABSTRACT

Monochorionic twinning of human embryos increases the risk of complications during pregnancy. The rarity of such twinning events, combined with ethical constraints in human embryo research, makes investigating the mechanisms behind twinning practically infeasible. As a result, there is a significant knowledge gap regarding the origins and early phenotypic presentation of monochorionic twin embryos. In this study, a microthermoformed-based microwell screening platform is used to identify conditions that efficiently induce monochorionic twins in human stem cell-based blastocyst models, termed "twin blastoids". These twin blastoids contain a cystic GATA3+ trophectoderm-like epithelium encasing two distinct inner cell masses (ICMs). Morphological and morphokinetic analyses reveal that twinning occurs during the cavitation phase via splitting of the OCT4+ pluripotent core. Notably, each ICM in twin blastoids contains its own NR2F2+ polar trophectoderm-like region, ready for implantation. This is functionally tested in a microfluidic chip-based implantation assay with epithelial endometrium cells. Under defined flow regimes, twin blastoids show increased adhesion capacity compared to singleton blastoids, suggestive of increased implantation potential. In conclusion, the development of technology enabling large-scale formation of twin blastoids, coupled with high-sensitivity readout capabilities, presents an unprecedented opportunity for systematically exploring monochorionic twin formation and its impact on embryonic development.


Subject(s)
Twinning, Monozygotic , Humans , Female , Pregnancy , Blastocyst/cytology , Embryo, Mammalian/cytology , Chorion/cytology , Bioengineering/methods , Models, Biological , Embryo Implantation
SELECTION OF CITATIONS
SEARCH DETAIL
...