Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.302
Filter
1.
Sci Adv ; 10(27): eadl1888, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959313

ABSTRACT

We present structures of three immature tick-borne encephalitis virus (TBEV) isolates. Our atomic models of the major viral components, the E and prM proteins, indicate that the pr domains of prM have a critical role in holding the heterohexameric prM3E3 spikes in a metastable conformation. Destabilization of the prM furin-sensitive loop at acidic pH facilitates its processing. The prM topology and domain assignment in TBEV is similar to the mosquito-borne Binjari virus, but is in contrast to other immature flavivirus models. These results support that prM cleavage, the collapse of E protein ectodomains onto the virion surface, the large movement of the membrane domains of both E and M, and the release of the pr fragment from the particle render the virus mature and infectious. Our work favors the collapse model of flavivirus maturation warranting further studies of immature flaviviruses to determine the sequence of events and mechanistic details driving flavivirus maturation.


Subject(s)
Encephalitis Viruses, Tick-Borne , Viral Envelope Proteins , Encephalitis Viruses, Tick-Borne/physiology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Models, Molecular , Flavivirus/physiology , Animals , Virion , Encephalitis, Tick-Borne/virology , Humans
2.
Parasit Vectors ; 17(1): 259, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879603

ABSTRACT

BACKGROUND: Powassan virus, a North American tick-borne flavivirus, can cause severe neuroinvasive disease in humans. While Ixodes scapularis are the primary vectors of Powassan virus lineage II (POWV II), also known as deer tick virus, recent laboratory vector competence studies showed that other genera of ticks can horizontally and vertically transmit POWV II. One such tick is the Haemaphysalis longicornis, an invasive species from East Asia that recently established populations in the eastern USA and already shares overlapping geographic range with native vector species such as I. scapularis. Reports of invasive H. longicornis feeding concurrently with native I. scapularis on multiple sampled hosts highlight the potential for interspecies co-feeding transmission of POWV II. Given the absence of a clearly defined vertebrate reservoir host for POWV II, it is possible that this virus is sustained in transmission foci via nonviremic transmission between ticks co-feeding on the same vertebrate host. The objective of this study was to evaluate whether uninfected H. longicornis co-feeding in close proximity to POWV II-infected I. scapularis can acquire POWV independent of host viremia. METHODS: Using an in vivo tick transmission model, I. scapularis females infected with POWV II ("donors") were co-fed on mice with uninfected H. longicornis larvae and nymphs ("recipients"). The donor and recipient ticks were infested on mice in various sequences, and mouse infection status was monitored by temporal screening of blood for POWV II RNA via quantitative reverse transcription polymerase chain reaction (q-RT-PCR). RESULTS: The prevalence of POWV II RNA was highest in recipient H. longicornis that fed on viremic mice. However, nonviremic mice were also able to support co-feeding transmission of POWV, as demonstrated by the detection of viral RNA in multiple H. longicornis dispersed across different mice. Detection of viral RNA at the skin site of tick feeding but not at distal skin sites indicates that a localized skin infection facilitates transmission of POWV between donor and recipient ticks co-feeding in close proximity. CONCLUSIONS: This is the first report examining transmission of POWV between co-feeding ticks. Against the backdrop of multiple unknowns related to POWV ecology, findings from this study provide insight on possible mechanisms by which POWV could be maintained in nature.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Ixodidae , Animals , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Encephalitis, Tick-Borne/virology , Ixodes/virology , Ixodes/physiology , Mice , Ixodidae/virology , Ixodidae/physiology , Female , Feeding Behavior , Introduced Species , Haemaphysalis longicornis , East Asian People
3.
PLoS One ; 19(6): e0305120, 2024.
Article in English | MEDLINE | ID: mdl-38848332

ABSTRACT

BACKGROUND: Tick-borne encephalitis (TBE) is a human viral infectious disease involving the central nervous system (CNS). It is caused by the tick-borne encephalitis virus (TBEV). At present, there is very limited information regarding the clinical importance and health burden of TBE infections without signs of CNS inflammation. Moreover, such cases are omitted from official TBE surveillances and there are no reports of population-based studies. METHODS AND FINDINGS: A nationwide population-based study was conducted in Latvia by intensively searching for symptomatic TBEV infections recorded in outpatient and hospital settings between 2007 and 2022. In total, 4,124 symptomatic TBEV infections were identified, of which 823 (20.0%) had no CNS involvement. Despite the lack of neurological symptoms, non-CNS TBE patients still experienced severe health conditions that required management in a hospital setting for a median duration of 7 days. Furthermore, lumbar puncture information was available for 708 of these patients, with 100 (14.1%) undergoing the procedure, suggesting a high suspicion of CNS involvement. CONCLUSIONS: Clearly, non-CNS TBE has the potential to negatively impact the health of patients. The actual burden of non-CNS TBEV cases may be higher than we think as these cases are omitted from official TBE surveillances and are challenging to recognize.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Humans , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Latvia/epidemiology , Male , Female , Middle Aged , Adult , Aged , Adolescent , Young Adult , Child , Child, Preschool , Central Nervous System/virology , Central Nervous System/pathology , Aged, 80 and over
4.
Vet Med Sci ; 10(4): e1477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896036

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a significant cause of flaviviral infections affecting the human central nervous system, primarily transmitted through tick bites and the consumption of unpasteurized milk. This study aimed to assess the prevalence of TBEV and identify new natural foci of TBEV in livestock milk. In this cross-sectional study, unpasteurized milk samples were collected from livestock reared on farms and analysed for the presence and subtyping of TBEV using nested reverse transcription-polymerase chain reaction , alongside the detection of anti-TBEV total IgG antibodies using ELISA. The findings revealed that the highest prevalence of TBEV was observed in goat and sheep milk combined, whereas no TBEV was detected in cow milk samples. All identified strains were of the Siberian subtype. Moreover, the highest prevalence of anti-TBEV antibodies was detected in sheep milk. These results uncover new foci of TBEV in Iran, underscoring the importance of thermal processing (pasteurization) of milk prior to consumption to mitigate the risk of TBEV infection.


Subject(s)
Encephalitis Viruses, Tick-Borne , Goats , Milk , Animals , Milk/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Iran/epidemiology , Sheep , Cross-Sectional Studies , Cattle , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Sheep Diseases/virology , Sheep Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Prevalence , Female , Sheep, Domestic
5.
Viruses ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38932113

ABSTRACT

Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, and Trojan horse routes. Flaviviruses may utilize different or multiple mechanisms of neuroinvasion depending on the specific virus, infection site, and host variability. In this work we have shown that the infection of BALB/cJ mice with either Powassan virus lineage I (Powassan virus) or lineage II (deer tick virus) results in distinct spatial tropism of infection in the CNS which correlates with unique clinical presentations for each lineage. Comparative transcriptomics of infected brains demonstrates the activation of different immune pathways and downstream host responses. Ultimately, the comparative pathology and transcriptomics are congruent with different clinical signs in a murine model. These results suggest that the different disease presentations occur in clinical cases due to the inherent differences in the two lineages of Powassan virus.


Subject(s)
Brain , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Mice, Inbred BALB C , Animals , Mice , Encephalitis Viruses, Tick-Borne/pathogenicity , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/pathology , Brain/virology , Brain/pathology , Inflammation/virology , Disease Models, Animal , Female , Transcriptome
6.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932123

ABSTRACT

Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12-20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick-virus association is stable across diverse viral genotypes.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Animals , Ixodes/virology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/classification , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Encephalitis, Tick-Borne/virology , Humans , Female , Arachnid Vectors/virology
7.
PLoS One ; 19(6): e0305603, 2024.
Article in English | MEDLINE | ID: mdl-38913668

ABSTRACT

Tick-borne encephalitis (TBE) is usually diagnosed based on the presence of TBE virus (TBEV)-specific IgM and IgG antibodies in serum. However, antibodies induced by vaccination or cross-reactivity to previous flavivirus infections may result in false positive TBEV serology. Detection of TBEV RNA may be an alternative diagnostic approach to detect viral presence and circumvent the diagnostic difficulties present when using serology. Viral RNA in blood is commonly detectable only in the first viremic phase usually lasting up to two weeks, and not in the second neurologic phase, when the patients contact the health care system and undergo diagnostic work-up. TBEV RNA has previously been detected in urine in a few retrospective TBE cases in the neurologic phase, and furthermore RNA of other flaviviruses has been detected in patient saliva. In this study, blood, saliva and urine were collected from 31 hospitalised immunocompetent patients with pleocytosis and symptoms of aseptic meningitis and/or encephalitis, suspected to have TBE. We wanted to pursue if molecular testing of TBEV RNA in these patient materials may be useful in the diagnostics. Eleven of the 31 study patients were diagnosed with TBE based on ELISA detection of TBEV specific IgG and IgM antibodies. None of the study patients had TBEV RNA detectable in any of the collected patient material.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Immunoglobulin M , RNA, Viral , Saliva , Humans , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/urine , Encephalitis, Tick-Borne/blood , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/genetics , Saliva/virology , RNA, Viral/urine , Male , Female , Middle Aged , Adult , Aged , Immunoglobulin M/blood , Immunoglobulin M/urine , Immunoglobulin G/blood , Immunoglobulin G/urine , Antibodies, Viral/blood , Aged, 80 and over , Immunocompetence , Hospitalization
8.
Emerg Microbes Infect ; 13(1): 2356140, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38742328

ABSTRACT

Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.


Subject(s)
Arboviruses , Encephalitis Viruses, Tick-Borne , Reverse Genetics , Animals , Mice , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/physiology , Reverse Genetics/methods , Arboviruses/genetics , Chikungunya virus/genetics , Encephalitis Virus, Japanese/genetics , DNA, Viral/genetics , Encephalitis, Tick-Borne/virology , Female , Genome, Viral , Chikungunya Fever/virology , Humans
9.
Euro Surveill ; 29(18)2024 May.
Article in English | MEDLINE | ID: mdl-38699900

ABSTRACT

BackgroundTick-borne encephalitis (TBE) is a severe, vaccine-preventable viral infection of the central nervous system. Symptoms are generally milder in children and adolescents than in adults, though severe disease does occur. A better understanding of the disease burden and duration of vaccine-mediated protection is important for vaccination recommendations.AimTo estimate TBE vaccination coverage, disease severity and vaccine effectiveness (VE) among individuals aged 0-17 years in Switzerland.MethodsVaccination coverage between 2005 and 2022 was estimated using the Swiss National Vaccination Coverage Survey (SNVCS), a nationwide, repeated cross-sectional study assessing vaccine uptake. Incidence and severity of TBE between 2005 and 2022 were determined using data from the Swiss disease surveillance system and VE was calculated using a case-control analysis, matching TBE cases with SNVCS controls.ResultsOver the study period, vaccination coverage increased substantially, from 4.8% (95% confidence interval (CI): 4.1-5.5%) to 50.1% (95% CI: 48.3-52.0%). Reported clinical symptoms in TBE cases were similar irrespective of age. Neurological involvement was less likely in incompletely (1-2 doses) and completely (≥ 3 doses) vaccinated cases compared with unvaccinated ones. For incomplete vaccination, VE was 66.2% (95% CI: 42.3-80.2), whereas VE for complete vaccination was 90.8% (95% CI: 87.7-96.4). Vaccine effectiveness remained high, 83.9% (95% CI: 69.0-91.7) up to 10 years since last vaccination.ConclusionsEven children younger than 5 years can experience severe TBE. Incomplete and complete vaccination protect against neurological manifestations of the disease. Complete vaccination offers durable protection up to 10 years against TBE.


Subject(s)
Encephalitis, Tick-Borne , Vaccination Coverage , Vaccination , Viral Vaccines , Humans , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/epidemiology , Adolescent , Case-Control Studies , Switzerland/epidemiology , Child , Cross-Sectional Studies , Male , Female , Child, Preschool , Infant , Vaccination/statistics & numerical data , Vaccination Coverage/statistics & numerical data , Viral Vaccines/administration & dosage , Incidence , Vaccine Efficacy/statistics & numerical data , Encephalitis Viruses, Tick-Borne/immunology , Infant, Newborn , Population Surveillance
10.
Cell Rep ; 43(6): 114298, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38819991

ABSTRACT

Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.


Subject(s)
Antibodies, Neutralizing , Humans , Brazil , Antibodies, Neutralizing/immunology , Mexico , Antibodies, Viral/immunology , Animals , Encephalitis Viruses, Tick-Borne/immunology , Flavivirus/immunology , Epitopes/immunology , Antibodies, Monoclonal/immunology , Ticks/virology , Ticks/immunology , Female , Male
11.
BMC Vet Res ; 20(1): 228, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796429

ABSTRACT

BACKGROUND: Tick-borne encephalitis (TBE) is a severe human neuroinfection caused by TBE virus (TBEV). TBEV is transmitted by tick bites and by the consumption of unpasteurized dairy products from infected asymptomatic ruminants. In France, several food-borne transmission events have been reported since 2020, raising the question of the level of exposure of domestic ungulates to TBEV. In this study, our objectives were (i) to estimate TBEV seroprevalence and quantify antibodies titres in cattle in the historical endemic area of TBEV in France using the micro virus neutralisation test (MNT) and (ii) to compare the performance of two veterinary cELISA kits with MNT for detecting anti-TBEV antibodies in cattle in various epidemiological contexts. A total of 344 cattle sera from four grid cells of 100 km² in Alsace-Lorraine (endemic region) and 84 from western France, assumed to be TBEV-free, were investigated. RESULTS: In Alsace-Lorraine, cattle were exposed to the virus with an overall estimated seroprevalence of 57.6% (95% CI: 52.1-62.8%, n = 344), varying locally from 29.9% (95% CI: 21.0-40.0%) to 92.1% (95% CI: 84.5-96.8%). Seroprevalence did not increase with age, with one- to three-year-old cattle being as highly exposed as older ones, suggesting a short-life duration of antibodies. The proportion of sera with MNT titres lower than 1:40 per grid cell decreased with increased seroprevalence. Both cELISA kits showed high specificity (> 90%) and low sensitivity (less than 78.1%) compared with MNT. Sensitivity was lower for sera with neutralising antibodies titres below 1:40, suggesting that sensitivity of these tests varied with local virus circulation intensity. CONCLUSIONS: Our results highlight that cattle were highly exposed to TBEV. Screening strategy and serological tests should be carefully chosen according to the purpose of the serological study and with regard to the limitations of each method.


Subject(s)
Antibodies, Viral , Cattle Diseases , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Animals , Cattle , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/virology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/isolation & purification , France/epidemiology , Seroepidemiologic Studies , Cattle Diseases/epidemiology , Cattle Diseases/virology , Antibodies, Viral/blood , Female , Male , Neutralization Tests/veterinary , Endemic Diseases/veterinary
12.
J Clin Immunol ; 44(5): 116, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676861

ABSTRACT

PURPOSE: A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS: ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS: The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION: TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.


Subject(s)
Agammaglobulinemia , Antibodies, Viral , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Genetic Diseases, X-Linked , Immunoglobulin G , T-Lymphocytes , Humans , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/therapy , Male , Agammaglobulinemia/immunology , Agammaglobulinemia/therapy , Encephalitis Viruses, Tick-Borne/immunology , Genetic Diseases, X-Linked/immunology , Genetic Diseases, X-Linked/therapy , Immunoglobulin G/blood , Immunoglobulin G/immunology , Antibodies, Viral/blood , T-Lymphocytes/immunology , Treatment Outcome , Adult , Immunization, Passive/methods
13.
Vet Q ; 44(1): 1-7, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38596900

ABSTRACT

In a retrospective metatranscriptomics study, we identified tick-borne encephalitis virus (TBEV) to be the causative agent for a fatal non-suppurative meningoencephalitis in a three-week-old Dalmatian puppy in Switzerland. Further investigations showed that the two other littermates with similar signs and pathological lesions were also positive for TBEV. By using an unbiased approach of combining high-throughput sequencing (HTS) and bioinformatics we were able to solve the etiology and discover an unusual case of TBEV in three young puppies. Based on our findings, we suggest that a vector-independent transmission of TBEV occurred and that most likely an intrauterine infection led to the severe and fulminant disease of the entire litter. We were able to demonstrate the presence of TBEV RNA by in situ hybridization (ISH) in the brain of all three puppies. Furthermore, we were able to detect TBEV by RT-qPCR in total RNA extracted from formalin-fixed and paraffin embedded (FFPE) blocks containing multiple peripheral organs. Overall, our findings shed light on alternative vector-independent transmission routes of TBEV infections in dogs and encourage veterinary practitioners to consider TBEV as an important differential diagnosis in neurological cases in dogs.


Subject(s)
Dog Diseases , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Animals , Dogs , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/veterinary , Encephalitis Viruses, Tick-Borne/genetics , Retrospective Studies , RNA , Dog Diseases/diagnosis
14.
J Infect Public Health ; 17(6): 986-993, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631068

ABSTRACT

Alkhumra hemorrhagic fever virus (AHFV) has spread beyond the Middle East. However, the actual global prevalence of the virus is yet unknown. This systematic review and meta-analysis, thus, followed the standard reporting guidelines to provide comprehensive details on the prevalence of Alkhumra virus infection globally. The pooled prevalence of AHFV globally was estimated at 1.3% (95% CI: 0.3-6.3), with higher prevalence in humans (3.4%, 95% CI: 0.4-25.0) compared to animals (0.7%, 95% CI: 0.3-1.8). The prevalence in ticks and camels were 0.7% and 0.2%, respectively. Overall, there was a high prevalence rate in Asia (2.6%) compared to Africa (0.5%), and a distinctly higher prevalence in Saudi Arabia (4.6%) compared to other parts of the world (<1%). Lower surveillance rate in humans was observed in recent years. These findings will aid public health preparedness, surveillance, and development of preventive measures due to AHFV's potential for outbreaks and severe health consequences.


Subject(s)
Global Health , Animals , Humans , Africa/epidemiology , Asia/epidemiology , Camelus/virology , Encephalitis Viruses, Tick-Borne , Prevalence , Saudi Arabia/epidemiology , Ticks/virology
15.
Nature ; 628(8009): 844-853, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570685

ABSTRACT

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Subject(s)
Alleles , DNA Polymerase gamma , Encephalitis Viruses, Tick-Borne , Herpesvirus 1, Human , Immune Tolerance , SARS-CoV-2 , Animals , Female , Humans , Male , Mice , Age of Onset , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , DNA Polymerase gamma/genetics , DNA Polymerase gamma/immunology , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/immunology , DNA, Mitochondrial/metabolism , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/genetics , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Founder Effect , Gene Knock-In Techniques , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Immune Tolerance/genetics , Immune Tolerance/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon Type I/immunology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Mutation , RNA, Mitochondrial/immunology , RNA, Mitochondrial/metabolism , SARS-CoV-2/immunology
16.
Int J Infect Dis ; 143: 107038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580070

ABSTRACT

A 76-year-old woman infected with Yezo virus (YEZV) developed liver dysfunction and thrombocytopenia following a tick bite. Despite the severity of her elevated liver enzymes and reduced platelet counts, the patient's condition improved spontaneously without any specific treatment. To our knowledge, this represents the first documented case where the YEZV genome was detected simultaneously in a patient's serum and the tick (Ixodes persulcatus) that bit the patient. This dual detection not only supports the hypothesis that YEZV is a tick-borne pathogen but also underscores the importance of awareness and diagnostic readiness for emerging tick-borne diseases, particularly in regions where these ticks are prevalent.


Subject(s)
Ixodes , Tick Bites , Humans , Female , Aged , Animals , Tick Bites/complications , Ixodes/virology , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Thrombocytopenia/virology , Thrombocytopenia/diagnosis
17.
Vaccine ; 42(13): 3180-3189, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38614954

ABSTRACT

BACKGROUND: Tick-borne encephalitis (TBE) virus infects the central nervous system and may lead to severe neurological complications or death. This study assessed immunogenicity, safety, and tolerability of TBE vaccine in Japanese participants 1 year of age and older. METHODS: This phase 3, multicenter, single-arm, open-label study was conducted in Japanese adult (≥ 16 years) and pediatric (1-< 16 years) populations. Participants received a single 0.5-mL (adult) or 0.25-mL (pediatric) dose of TBE vaccine at each of 3 visits. The primary endpoint was the proportion of participants who were seropositive (neutralization test [NT] titer ≥ 1:10) 4 weeks after Dose 3. Secondary and exploratory endpoints included NT seropositivity rates 4 weeks after Dose 2, immunoglobulin G (IgG) seropositivity 4 weeks after Doses 2 and 3, NT geometric mean titers (GMTs), IgG geometric mean concentrations (GMCs), and geometric mean fold rises. Primary safety endpoints were frequencies of local reactions, systemic events, adverse events (AEs), and serious AEs. RESULTS: Among 100 adult and 65 pediatric participants, 99.0 % and 100.0 % completed the study, respectively. NT seropositivity was achieved in 98.0 % adult and 100.0 % pediatric participants after Dose 3; seropositivity after Dose 2 was 93.0 % and 92.3 %, respectively. In both age groups, IgG seropositivity was ≥ 90.0 % and ≥ 96.0 % after Doses 2 and 3, respectively; GMTs and GMCs were highest 4 weeks after Dose 3. Reactogenicity events were generally mild to moderate in severity and short-lived. AEs were reported by 15.0 % (adult) and 43.1 % (pediatric) of participants. No life-threatening AEs, AEs leading to discontinuation, immediate AEs, related AEs, or deaths were reported. No serious AEs were considered related to TBE vaccine. CONCLUSIONS: TBE vaccine elicited robust immune responses in Japanese participants 1 year of age and older. The 3-dose regimen was safe and well tolerated, and findings were consistent with the known safety profile of this TBE vaccine. CLINICALTRIALS: gov: NCT04648241.


Subject(s)
Antibodies, Viral , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Immunoglobulin G , Viral Vaccines , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , East Asian People , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/immunology , Healthy Volunteers , Immunogenicity, Vaccine , Immunoglobulin G/blood , Japan , Neutralization Tests , Viral Vaccines/immunology , Viral Vaccines/adverse effects , Viral Vaccines/administration & dosage , Aged, 80 and over
19.
Viruses ; 16(4)2024 04 19.
Article in English | MEDLINE | ID: mdl-38675977

ABSTRACT

(1) Background: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia, although effective vaccines are available. Caused by the tick-borne encephalitis virus (TBEV, syn. Orthoflavivirus encephalitidis), in Europe, it is transmitted by ticks like Ixodes ricinus and Dermacentor reticulatus. TBEV circulates in natural foci, making it endemic to specific regions, such as southern Germany and northeastern Poland. Our study aimed to identify new TBEV natural foci and genetically characterize strains in ticks in previously nonendemic areas in Eastern Germany and Western Poland. (2) Methods: Ticks were collected from vegetation in areas reported by TBE patients. After identification, ticks were tested for TBEV in pools of a maximum of 10 specimens using real-time RT-PCR. From the positive TBEV samples, E genes were sequenced. (3) Results: Among 8400 ticks from 19 sites, I. ricinus (n = 4784; 56.9%) was predominant, followed by D. reticulatus (n = 3506; 41.7%), Haemaphysalis concinna (n = 108; 1.3%), and I. frontalis (n = 2; <0.1%). TBEV was detected in 19 pools originating in six sites. The phylogenetic analyses revealed that TBEV strains from Germany and Poland clustered with other German strains, as well as those from Finland and Estonia. (4) Conclusions: Although there are still only a few cases are reported from these areas, people spending much time outdoors should consider TBE vaccination.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Phylogeny , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/classification , Encephalitis Viruses, Tick-Borne/isolation & purification , Animals , Poland , Germany/epidemiology , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/epidemiology , Humans , Ixodes/virology
20.
Vaccine ; 42(9): 2429-2437, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38458875

ABSTRACT

Louping ill virus (LIV) is a tick-borne flavivirus that predominantly causes disease in livestock, especially sheep in the British Isles. A preventive vaccine, previously approved for veterinary use but now discontinued, was based on an inactivated whole virion that likely provided protection by induction of neutralizing antibodies recognizing the viral envelope (E) protein. A major disadvantage of the inactivated vaccine was the need for high containment facilities for the propagation of infectious virus, as mandated by the hazard group 3 status of the virus. This study aimed to develop high-efficacy non-infectious protein-based vaccine candidates. Specifically, soluble envelope protein (sE), and virus-like particles (VLPs), comprised of the precursor of membrane and envelope proteins, were generated, characterized, and studied for their immunogenicity in mice. Results showed that the VLPs induced more potent virus neutralizing response compared to sE, even though the total anti-envelope IgG content induced by the two antigens was similar. Depletion of anti-monomeric E protein antibodies from mouse immune sera suggested that the neutralizing antibodies elicited by the VLPs targeted epitopes spanning the highly organized structure of multimer of the E protein, whereas the antibody response induced by sE focused on E monomers. Thus, our results indicate that VLPs represent a promising LIV vaccine candidate.


Subject(s)
Encephalitis Viruses, Tick-Borne , Vaccines, Virus-Like Particle , Vaccines , Animals , Mice , Sheep , Antibodies, Neutralizing , Antibodies, Viral , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...