Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Front Immunol ; 15: 1354074, 2024.
Article in English | MEDLINE | ID: mdl-39148732

ABSTRACT

Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2 KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1ß, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.


Subject(s)
Cell Differentiation , Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Mice, Knockout , Receptors, Formyl Peptide , Th17 Cells , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Inbred C57BL , Cytokines/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Female , Spinal Cord/immunology , Spinal Cord/metabolism
2.
Sci Rep ; 14(1): 19337, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164311

ABSTRACT

General anesthesia is thought to suppress the immune system and negatively affect postoperative infection and the long-term prognosis of cancer. However, the mechanism underlying immunosuppression induced by general anesthetics remains unclear. In this study, we focused on propofol, which is widely used for sedation under general anesthesia and intensive care and examined its effects on the T cell function and T cell-dependent immune responses. We found that propofol suppressed T cell glycolytic metabolism, differentiation into effector T cells, and cytokine production by effector T cells. CD8 T cells activated and differentiated into effector cells in the presence of propofol in vitro showed reduced antitumor activity. Furthermore, propofol treatment suppressed the increase in the number of antigen-specific CD8 T cells during Listeria infection. In contrast, the administration of propofol improved inflammatory conditions in mouse models of inflammatory diseases, such as OVA-induced allergic airway inflammation, hapten-induced contact dermatitis, and experimental allergic encephalomyelitis. These results suggest that propofol may reduce tumor and infectious immunity by suppressing the T cell function and T cell-dependent immune responses while improving the pathogenesis and prognosis of chronic inflammatory diseases by suppressing inflammation.


Subject(s)
CD8-Positive T-Lymphocytes , Propofol , Propofol/pharmacology , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Mice, Inbred C57BL , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , Inflammation/immunology , Cell Differentiation/drug effects , Cytokines/metabolism , Listeriosis/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female
3.
Proc Natl Acad Sci U S A ; 121(32): e2400153121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088391

ABSTRACT

Although many cytokine pathways are important for dendritic cell (DC) development, it is less clear what cytokine signals promote the function of mature dendritic cells. The signal transducer and activator of transcription 4 (STAT4) promotes protective immunity and autoimmunity downstream of proinflammatory cytokines including IL-12 and IL-23. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), Stat4-/- mice are resistant to the development of inflammation and paralysis. To define whether STAT4 is required for intrinsic signaling in mature DC function, we used conditional mutant mice in the EAE model. Deficiency of STAT4 in CD11c-expressing cells resulted in decreased T cell priming and inflammation in the central nervous system. EAE susceptibility was recovered following adoptive transfer of wild-type bone marrow-derived DCs to mice with STAT4-deficient DCs, but not adoptive transfer of STAT4- or IL-23R-deficient DCs. Single-cell RNA-sequencing (RNA-seq) identified STAT4-dependent genes in DC subsets that paralleled a signature in MS patient DCs. Together, these data define an IL-23-STAT4 pathway in DCs that is key to DC function during inflammatory disease.


Subject(s)
Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Interleukin-23 , STAT4 Transcription Factor , Signal Transduction , Animals , STAT4 Transcription Factor/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-23/metabolism , Interleukin-23/immunology , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Knockout , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Central Nervous System/metabolism , Central Nervous System/immunology , Inflammation/metabolism , Inflammation/immunology , Adoptive Transfer , Mice, Inbred C57BL , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
J Neuroimmune Pharmacol ; 19(1): 45, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158758

ABSTRACT

Multiple Sclerosis (MS) is a debilitating disease that severely affects the central nervous system (CNS). Apart from neurological symptoms, it is also characterized by neuropsychiatric comorbidities, such as anxiety and depression. Phosphodiesterase-5 inhibitors (PDE5Is) such as Sildenafil and Tadalafil have been shown to possess antidepressant-like effects, but the mechanisms underpinning such effects are not fully characterized. To address this question, we used the EAE model of MS, behavioral tests, immunofluorescence, immunohistochemistry, western blot, and 16 S rRNA sequencing. Here, we showed that depressive-like behavior in Experimental Autoimmune Encephalomyelitis (EAE) mice is due to neuroinflammation, reduced synaptic plasticity, dysfunction in glutamatergic neurotransmission, glucocorticoid receptor (GR) resistance, increased blood-brain barrier (BBB) permeability, and immune cell infiltration to the CNS, as well as inflammation, increased intestinal permeability, and immune cell infiltration in the distal colon. Furthermore, 16 S rRNA sequencing revealed that behavioral dysfunction in EAE mice is associated with changes in the gut microbiota, such as an increased abundance of Firmicutes and Saccharibacteria and a reduction in Proteobacteria, Parabacteroides, and Desulfovibrio. Moreover, we detected an increased abundance of Erysipelotrichaceae and Desulfovibrionaceae and a reduced abundance of Lactobacillus johnsonii. Surprisingly, we showed that Tadalafil likely exerts antidepressant-like effects by targeting all aforementioned disease aspects. In conclusion, our work demonstrated that anxiety- and depressive-like behavior in EAE is associated with a plethora of neuroimmune and gut microbiota-mediated mechanisms and that Tadalafil exerts antidepressant-like effects probably by targeting these mechanisms. Harnessing the knowledge of these mechanisms of action of Tadalafil is important to pave the way for future clinical trials with depressed patients.


Subject(s)
Anti-Anxiety Agents , Antidepressive Agents , Brain-Gut Axis , Encephalomyelitis, Autoimmune, Experimental , Gastrointestinal Microbiome , Mice, Inbred C57BL , Phosphodiesterase 5 Inhibitors , Tadalafil , Animals , Tadalafil/pharmacology , Tadalafil/therapeutic use , Phosphodiesterase 5 Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/therapeutic use , Mice , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Female , Depression/drug therapy , Autoimmunity/drug effects
5.
Proc Natl Acad Sci U S A ; 121(28): e2322577121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968104

ABSTRACT

Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Vagus Nerve Stimulation , Vagus Nerve , Animals , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Rats , Multiple Sclerosis/therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Vagus Nerve Stimulation/methods , Inflammation/therapy , Inflammation/pathology , Disease Models, Animal , Female , Myelin Sheath/metabolism , Blood-Brain Barrier
6.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000478

ABSTRACT

Monocytes play a critical role in the initiation and progression of multiple sclerosis (MS). Recent research indicates the importance of considering the roles of monocytes in the management of MS and the development of effective interventions. This systematic review examined published research on the roles of nonclassical monocytes in MS and how they influence disease management. Reputable databases, such as PubMed, EMBASE, Cochrane, and Google Scholar, were searched for relevant studies on the influence of monocytes on MS. The search focused on studies on humans and patients with experimental autoimmune encephalomyelitis (EAE) published between 2014 and 2024 to provide insights into the study topic. Fourteen articles that examined the role of monocytes in MS were identified; the findings reported in these articles revealed that nonclassical monocytes could act as MS biomarkers, aid in the development of therapeutic interventions, reveal disease pathology, and improve approaches for monitoring disease progression. This review provides support for the consideration of monocytes when researching effective diagnostics, therapeutic interventions, and procedures for managing MS pathophysiology. These findings may guide future research aimed at gaining further insights into the role of monocytes in MS.


Subject(s)
Monocytes , Multiple Sclerosis , Humans , Monocytes/immunology , Monocytes/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Biomarkers , Animals , Disease Progression
7.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013878

ABSTRACT

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Subject(s)
Cell Differentiation , Forkhead Box Protein O1 , Interferon-beta , T-Lymphocytes, Regulatory , Ubiquitin-Protein Ligases , Ubiquitination , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mice , Humans , Interferon-beta/metabolism , Mice, Inbred C57BL , Cell Nucleus/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Active Transport, Cell Nucleus , Female , Mice, Knockout , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , HEK293 Cells
8.
Nat Commun ; 15(1): 6282, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060233

ABSTRACT

Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.


Subject(s)
Apelin , Encephalomyelitis, Autoimmune, Experimental , Endothelial Cells , Leukocytes , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Animals , Apelin/metabolism , Mice , Endothelial Cells/metabolism , Endothelial Cells/immunology , Leukocytes/immunology , Leukocytes/metabolism , Female , Lung/immunology , Lung/pathology , Inflammation/metabolism , Inflammation/immunology , Apelin Receptors/metabolism , Apelin Receptors/genetics , Humans , Brain/metabolism , Brain/pathology , Brain/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Transendothelial and Transepithelial Migration/drug effects , Mice, Knockout , Disease Models, Animal
9.
Cell Rep ; 43(7): 114458, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996070

ABSTRACT

Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.


Subject(s)
Cell Movement , Inflammation , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Mice , Inflammation/pathology , Inflammation/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Humans , Transcription Factors/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Colitis/metabolism , Colitis/pathology , Colitis/immunology , Colitis/genetics
10.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000569

ABSTRACT

Regulation of neuroinflammation is critical for maintaining central nervous system (CNS) homeostasis and holds therapeutic promise in autoimmune diseases such as multiple sclerosis (MS). Previous studies have highlighted the significance of selective innate signaling in triggering anti-inflammatory mechanisms, which play a protective role in an MS-like disease, experimental autoimmune encephalomyelitis (EAE). However, the individual intra-CNS administration of specific innate receptor ligands or agonists, such as for toll-like receptor 7 (TLR7) and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2), failed to elicit the desired anti-inflammatory response in EAE. In this study, we investigated the potential synergistic effect of targeting both TLR7 and NOD2 simultaneously to prevent EAE progression. Our findings demonstrate that simultaneous intrathecal administration of NOD2- and TLR7-agonists led to synergistic induction of Type I IFN (IFN I) and effectively suppressed EAE in an IFN I-dependent manner. Suppression of EAE was correlated with a significant decrease in the infiltration of monocytes, granulocytes, and natural killer cells, reduced demyelination, and downregulation of IL-1ß, CCL2, and IFNγ gene expression in the spinal cord. These results underscore the therapeutic promise of concurrently targeting the TLR7 and NOD2 pathways in alleviating neuroinflammation associated with MS, paving the way for novel and more efficacious treatment strategies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nod2 Signaling Adaptor Protein , Toll-Like Receptor 7 , Animals , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/agonists , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Mice , Mice, Inbred C57BL , Immunity, Innate/drug effects , Female , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/drug effects , Membrane Glycoproteins/metabolism , Interferon Type I/metabolism , Signal Transduction/drug effects
11.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200278, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954781

ABSTRACT

BACKGROUND AND OBJECTIVES: Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS: Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS: Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION: Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Neutrophils , Single-Cell Analysis , Triggering Receptor Expressed on Myeloid Cells-1 , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Neutrophils/metabolism , Neutrophils/immunology , Animals , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Mice , Female , Sequence Analysis, RNA , Lymph Nodes/metabolism
12.
Int Immunopharmacol ; 139: 112646, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39002520

ABSTRACT

Neuroinflammation and neurodegeneration are hallmarks of multiple sclerosis (MS). Bromodomain-containing protein 4 (BRD4), a bromodomain and extra-terminal domain (BET) protein family member, is indispensable for the transcription of pro-inflammatory genes. Therefore, inhibiting BRD4 may be a prospective therapeutic approach for modulating the inflammatory response and regulating the course of MS. dBET1, a newly synthesized proteolysis-targeting chimera (PROTAC), exhibits effectively degrades of BRD4. However, the precise effects of dBET1 on MS require further investigation. Therefore, we assessed the effect of dBET1 in experimental autoimmune encephalomyelitis (EAE), a typical MS experimental model. Our findings revealed that BRD4 is mainly expressed in astrocytes and neurons of the spinal cords, and is up-regulated in the spinal cords of EAE mice. The dBET1 attenuated lipopolysaccharide-induced expression of astrocytic pro-inflammatory mediators and inhibited deleterious molecular activity in astrocytes. Correspondingly, dBET1, used in preventive and therapeutic settings, alleviated the behavioral symptoms in EAE mice, as demonstrated by decreased demyelination, alleviated leukocyte infiltration, reduced microglial and astrocyte activation, and diminished inflammatory mediator levels. In addition, dBET1 corrected the imbalance in peripheral T cells and protected blood-brain barrier integrity in EAE mice. The underlying mechanism involved suppressing the phosphoinositide-3-kinase/protein kinase B, mitogen-activated protein kinase /extracellular signal-regulated kinase, and nuclear factor kappa B pathways. In summary, our data strongly suggests that dBET1 is a promising treatment option for MS.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Spinal Cord , Transcription Factors , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Astrocytes/drug effects , Astrocytes/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/immunology , Female , Multiple Sclerosis/drug therapy , Proteolysis/drug effects , Humans , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Nuclear Proteins/metabolism , Bromodomain Containing Proteins
13.
Nat Immunol ; 25(8): 1395-1410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009838

ABSTRACT

Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Chromatin , Th17 Cells , Th17 Cells/immunology , Th17 Cells/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Animals , Chromatin/metabolism , Mice , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Mice, Knockout , Th1 Cells/immunology , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Inflammation/immunology , Inflammation/genetics , Single-Cell Analysis , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Female
14.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200275, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996203

ABSTRACT

At one time considered a possible form of neuromyelitis optica (NMO) spectrum disorder (NMOSD), it is now accepted that myelin oligodendrocyte glycoprotein (MOG) antibody (Ab)-associated disorder (MOGAD) is a distinct entity from either NMO or multiple sclerosis (MS) and represents a broad spectrum of clinical phenotypes. Whereas Abs targeting aquaporin-4 (AQP4) in NMO are pathogenic, the extent that anti-MOG Abs contribute to CNS damage in MOGAD is unclear. Both AQP4-specific Abs in NMO and MOG-specific Abs in MOGAD are predominantly IgG1, a T cell-dependent immunoglobulin (Ig) subclass. Key insights in neuroimmunology and MOGAD pathogenesis have been learned from MOG experimental autoimmune encephalomyelitis (EAE), described 2 decades before the term MOGAD was introduced. MOG-specific T cells are required in MOG EAE, and while anti-MOG Abs can exacerbate EAE and CNS demyelination, those Abs are neither necessary nor sufficient to cause EAE. Knowledge regarding the spectrum of MOGAD clinical and radiologic presentations is advancing rapidly, yet our grasp of MOGAD pathogenesis is incomplete. Understanding both the humoral and cellular immunology of MOGAD has implications for diagnosis, treatment, and prognosis.


Subject(s)
Autoantibodies , Myelin-Oligodendrocyte Glycoprotein , Neuromyelitis Optica , Myelin-Oligodendrocyte Glycoprotein/immunology , Humans , Animals , Autoantibodies/immunology , Neuromyelitis Optica/immunology , Autoimmunity/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Demyelinating Autoimmune Diseases, CNS/immunology
15.
J Neuroinflammation ; 21(1): 181, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068463

ABSTRACT

Treating Multiple sclerosis (MS), a well-known immune-mediated disease characterized by axonal demyelination, is challenging due to its complex causes. Naphthalenedione, present in numerous plants, is being explored as a potential medicine for MS due to its immunomodulatory properties. However, its effects on lymphocytes can vary depending on factors such as the specific compound, concentration, and experimental conditions. In this study, we aim to explore the therapeutic potential of 2-bromo-1,4-naphthalenedione (BrQ), a derivative of naphthalenedione, in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and to elucidate its underlying mechanisms. We observed that mice treated with BrQ exhibited reduced severity of EAE symptoms, including lower clinical scores, decreased leukocyte infiltration, and less extensive demyelination in central nervous system. Furthermore, it was noted that BrQ does not directly affect the remyelination process. Through cell-chat analysis based on bulk RNA-seq data, coupled with validation of flow analysis, we discovered that BrQ significantly promotes the expansion of CD8+ T cells and their interactions with other immune cells in peripheral immune system in EAE mice. Subsequent CD8+ T cell depletion experiments confirmed that BrQ alleviates EAE in a CD8+ T cell-dependent manner. Mechanistically, expanded CD8+ cells were found to selectively reduce antigen-specific CD4+ cells and subsequently inhibit Th1 and Th17 cell development in vivo, ultimately leading to relief from EAE. In summary, our findings highlight the crucial role of BrQ in modulating the pathogenesis of MS, suggesting its potential as a novel drug candidate for treating MS and other autoimmune diseases.


Subject(s)
CD8-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Th1 Cells , Th17 Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Female , Naphthalenes/pharmacology , Naphthalenes/therapeutic use , Cell Proliferation/drug effects
16.
J Neuroinflammation ; 21(1): 146, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824594

ABSTRACT

T cells play an important role in the acquired immune response, with regulatory T cells (Tregs) serving as key players in immune tolerance. Tregs are found in nonlymphoid and damaged tissues and are referred to as "tissue Tregs". They have tissue-specific characteristics and contribute to immunomodulation, homeostasis, and tissue repair through interactions with tissue cells. However, important determinants of Treg tissue specificity, such as antigen specificity, tissue environment, and pathology, remain unclear. In this study, we analyzed Tregs in the central nervous system of mice with ischemic stroke and experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. The gene expression pattern of brain Tregs in the EAE model was more similar to that of ischemic stroke Tregs in the brain than to that of spinal cord Tregs. In addition, most T-cell receptors (TCRs) with high clonality were present in both the brain and spinal cord. Furthermore, Gata3+ and Rorc+ Tregs expressed TCRs recognizing MOG in the spinal cord, suggesting a tissue environment conducive to Rorc expression. Tissue-specific chemokine/chemokine receptor interactions in the spinal cord and brain influenced Treg localization. Finally, spinal cord- or brain-derived Tregs had greater anti-inflammatory capacities in EAE mice, respectively. Taken together, these findings suggest that the tissue environment, rather than pathogenesis or antigen specificity, is the primary determinant of the tissue-specific properties of Tregs. These findings may contribute to the development of novel therapies to suppress inflammation through tissue-specific Treg regulation.


Subject(s)
Brain , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Spinal Cord , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord/metabolism , Brain/immunology , Brain/metabolism , Brain/pathology , Female , Disease Models, Animal
17.
Front Immunol ; 15: 1400641, 2024.
Article in English | MEDLINE | ID: mdl-38933267

ABSTRACT

Background and objectives: B cell depleting anti-CD20 monoclonal antibodies (aCD20 mAbs) are highly effective in treatment of multiple sclerosis (MS) but fail to halt the formation of meningeal ectopic lymphoid tissue (mELT) in the murine model experimental autoimmune encephalomyelitis (EAE). While mELT can be examined in EAE, it is not accessible in vivo in MS patients. Our key objectives were to compare the immune cells in cerebrospinal fluid (CSF), which is accessible in patients, with those in mELT, and to study the effects of aCD20 mAbs on CSF and mELT in EAE. Methods: Applying single cell RNA sequencing, we compared gene expression profiles in immune cells from (1) CSF with mELT and (2) aCD20 mAbs treated with control treated mice in a spontaneous 2D2xTh EAE model. Results: The immune cell composition in CSF and mELT was very similar. Gene expression profiles and pathway enrichment analysis revealed no striking differences between the two compartments. aCD20 mAbs led not only to a virtually complete depletion of B cells in the CSF but also to a reduction of naïve CD4+ T cells and marked increase of macrophages. No remarkable differences in regulated genes or pathways were observed. Discussion: Our results suggest that immune cells in the CSF may serve as a surrogate for mELT in EAE. Future studies are required to confirm this in MS patients. The observed increase of macrophages in B cell depleted CSF is a novel finding and requires verification in CSF of aCD20 mAbs treated MS patients. Due to unresolved technical challenges, we were unable to study the effects of aCD20 mAbs on mELT. This should be addressed in future studies.


Subject(s)
B-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Meninges , Single-Cell Analysis , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/cerebrospinal fluid , Mice , Meninges/immunology , Meninges/pathology , B-Lymphocytes/immunology , Female , Tertiary Lymphoid Structures/immunology , Mice, Inbred C57BL , Antibodies, Monoclonal/immunology , Transcriptome , Gene Expression Profiling , Antigens, CD20/immunology , Cerebrospinal Fluid/immunology , Disease Models, Animal , Multiple Sclerosis/immunology , Multiple Sclerosis/cerebrospinal fluid
18.
Toxicol Appl Pharmacol ; 488: 116980, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823456

ABSTRACT

Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.


Subject(s)
Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Quercetin , STAT4 Transcription Factor , Th17 Cells , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Quercetin/pharmacology , STAT4 Transcription Factor/metabolism , Female , Mice , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Cell Differentiation/drug effects , Coculture Techniques , Anti-Inflammatory Agents/pharmacology
19.
Elife ; 122024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900149

ABSTRACT

Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein-Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.


Subject(s)
Brain , CD8-Positive T-Lymphocytes , Disease Models, Animal , HLA-DRB1 Chains , Multiple Sclerosis , Spinal Cord , Animals , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Mice , HLA-DRB1 Chains/genetics , CD8-Positive T-Lymphocytes/immunology , Spinal Cord/immunology , Spinal Cord/pathology , Brain/pathology , Brain/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , CD4-Positive T-Lymphocytes/immunology , Female
20.
Cells ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38920670

ABSTRACT

Proinflammatory T-lymphocytes recruited into the brain and spinal cord mediate multiple sclerosis (MS) and currently there is no cure for MS. IFN-γ-producing Th1 cells induce ascending paralysis in the spinal cord while IL-17-producing Th17 cells mediate cerebellar ataxia. STAT1 and STAT3 are required for Th1 and Th17 development, respectively, and the simultaneous targeting of STAT1 and STAT3 pathways is therefore a potential therapeutic strategy for suppressing disease in the spinal cord and brain. However, the pharmacological targeting of STAT1 and STAT3 presents significant challenges because of their intracellular localization. We have developed a STAT-specific single-domain nanobody (SBT-100) derived from camelids that targets conserved residues in Src homolog 2 (SH2) domains of STAT1 and STAT3. This study investigated whether SBT-100 could suppress experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We show that SBT-100 ameliorates encephalomyelitis through suppressing the expansion of Th17 and Th1 cells in the brain and spinal cord. Adoptive transfer experiments revealed that lymphocytes from SBT-100-treated EAE mice have reduced capacity to induce EAE, indicating that the immunosuppressive effects derived from the direct suppression of encephalitogenic T-cells. The small size of SBT-100 makes this STAT-specific nanobody a promising immunotherapy for CNS autoimmune diseases, including multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Single-Domain Antibodies , Th17 Cells , Animals , Female , Mice , Camelids, New World , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice, Inbred C57BL , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/therapeutic use , Spinal Cord/pathology , Spinal Cord/drug effects , Spinal Cord/immunology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL