Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.560
Filter
1.
Front Immunol ; 15: 1354074, 2024.
Article in English | MEDLINE | ID: mdl-39148732

ABSTRACT

Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2 KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1ß, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.


Subject(s)
Cell Differentiation , Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Mice, Knockout , Receptors, Formyl Peptide , Th17 Cells , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Inbred C57BL , Cytokines/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Female , Spinal Cord/immunology , Spinal Cord/metabolism
2.
Sci Rep ; 14(1): 17823, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090252

ABSTRACT

So far, only a small number of medications are effective in progressive multiple sclerosis (MS). The sphingosine-1-phosphate-receptor (S1PR)-1,5 modulator siponimod, licensed for progressive MS, is acting both on peripheral immune cells and in the central nervous system (CNS). So far it remains elusive, whether those effects are related to the neurotrophin brain derived neurotrophic factor (BDNF). We hypothesized that BDNF in immune cells might be a prerequisite to reduce disease activity in experimental autoimmune encephalomyelitis (EAE) and prevent neurotoxicity. MOG35-55 immunized wild type (WT) and BDNF knock-out (BDNFko) mice were treated with siponimod or vehicle and scored daily in a blinded manner. Immune cell phenotyping was performed via flow cytometry. Immune cell infiltration and demyelination of spinal cord were assessed using immunohistochemistry. In vitro, effects on neurotoxicity and mRNA regulation were investigated using dorsal root ganglion cells incubated with EAE splenocyte supernatant. Siponimod led to a dose-dependent reduction of EAE scores in chronic WT EAE. Using a suboptimal dosage of 0.45 µg/day, siponimod reduced clinical signs of EAE independent of BDNF-expression in immune cells in accordance with reduced infiltration and demyelination. Th and Tc cells in secondary lymphoid organs were dose-dependently reduced, paralleled with an increase of regulatory T cells. In vitro, neuronal viability trended towards a deterioration after incubation with EAE supernatant; siponimod showed a slight rescue effect following treatment of WT splenocytes. Neuronal gene expression for CCL2 and CX3CL1 was elevated after incubation with EAE supernatant, which was reversed after siponimod treatment for WT, but not for BNDFko. Apoptosis markers and alternative death pathways were not affected. Siponimod exerts both anti-inflammatory and neuroprotective effects, partially related to BDNF-expression. This might in part explain effectiveness during progression in MS and could be a target for therapy.


Subject(s)
Azetidines , Benzyl Compounds , Brain-Derived Neurotrophic Factor , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Female , Mice , Azetidines/pharmacology , Azetidines/therapeutic use , Benzyl Compounds/pharmacology , Benzyl Compounds/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Spinal Cord/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology
3.
Proc Natl Acad Sci U S A ; 121(32): e2400153121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088391

ABSTRACT

Although many cytokine pathways are important for dendritic cell (DC) development, it is less clear what cytokine signals promote the function of mature dendritic cells. The signal transducer and activator of transcription 4 (STAT4) promotes protective immunity and autoimmunity downstream of proinflammatory cytokines including IL-12 and IL-23. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), Stat4-/- mice are resistant to the development of inflammation and paralysis. To define whether STAT4 is required for intrinsic signaling in mature DC function, we used conditional mutant mice in the EAE model. Deficiency of STAT4 in CD11c-expressing cells resulted in decreased T cell priming and inflammation in the central nervous system. EAE susceptibility was recovered following adoptive transfer of wild-type bone marrow-derived DCs to mice with STAT4-deficient DCs, but not adoptive transfer of STAT4- or IL-23R-deficient DCs. Single-cell RNA-sequencing (RNA-seq) identified STAT4-dependent genes in DC subsets that paralleled a signature in MS patient DCs. Together, these data define an IL-23-STAT4 pathway in DCs that is key to DC function during inflammatory disease.


Subject(s)
Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Interleukin-23 , STAT4 Transcription Factor , Signal Transduction , Animals , STAT4 Transcription Factor/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-23/metabolism , Interleukin-23/immunology , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Knockout , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Central Nervous System/metabolism , Central Nervous System/immunology , Inflammation/metabolism , Inflammation/immunology , Adoptive Transfer , Mice, Inbred C57BL , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Commun Biol ; 7(1): 811, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965360

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.


Subject(s)
Brain , Cellular Senescence , Herpes Simplex , Herpesvirus 1, Human , Multiple Sclerosis , Animals , Mice , Brain/virology , Brain/pathology , Brain/metabolism , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/pathogenicity , Herpes Simplex/virology , Herpes Simplex/pathology , Female , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/virology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phenotype , Central Nervous System/virology , Central Nervous System/metabolism , Central Nervous System/pathology , Spinal Cord/virology , Spinal Cord/metabolism , Spinal Cord/pathology , Biomarkers/metabolism , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/pathology , Encephalitis, Herpes Simplex/metabolism
5.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39029934

ABSTRACT

HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.


Subject(s)
Chromobox Protein Homolog 5 , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Transcriptome , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Animals , Mice , Transcriptome/genetics , Female , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Male , Adult , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Middle Aged , RNA Splicing/genetics , Gene Expression Regulation , Monocytes/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Mice, Inbred C57BL , Gene Expression Profiling/methods
6.
Nat Commun ; 15(1): 6282, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060233

ABSTRACT

Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.


Subject(s)
Apelin , Encephalomyelitis, Autoimmune, Experimental , Endothelial Cells , Leukocytes , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Animals , Apelin/metabolism , Mice , Endothelial Cells/metabolism , Endothelial Cells/immunology , Leukocytes/immunology , Leukocytes/metabolism , Female , Lung/immunology , Lung/pathology , Inflammation/metabolism , Inflammation/immunology , Apelin Receptors/metabolism , Apelin Receptors/genetics , Humans , Brain/metabolism , Brain/pathology , Brain/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Transendothelial and Transepithelial Migration/drug effects , Mice, Knockout , Disease Models, Animal
7.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062794

ABSTRACT

Multiple sclerosis (MS) is a chronic disease characterized by inflammation and neurodegeneration of the central nervous system. Despite the significant role of oxidative stress in the pathogenesis of MS, its precise molecular mechanisms remain unclear. This study utilized microarray datasets from the GEO database to analyze differentially expressed oxidative-stress-related genes (DE-OSRGs), identifying 101 DE-OSRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that these genes are primarily involved in oxidative stress and immune responses. Through protein-protein interaction (PPI) network, LASSO regression, and logistic regression analyses, four genes (MMP9, NFKBIA, NFKB1, and SRC) were identified as being closely related to MS. A diagnostic prediction model based on logistic regression demonstrated good predictive power, as shown by the nomogram curve index and DAC results. An immune-cell infiltration analysis using CIBERSORT revealed significant correlations between these genes and immune cell subpopulations. Abnormal oxidative stress and upregulated expression of key genes were observed in the blood and brain tissues of EAE mice. A molecular docking analysis suggested strong binding potentials between the proteins of these genes and several drug molecules, including isoquercitrin, decitabine, benztropine, and curcumin. In conclusion, this study identifies and validates potential diagnostic biomarkers for MS, establishes an effective prediction model, and provides new insights for the early diagnosis and personalized treatment of MS.


Subject(s)
Biomarkers , Multiple Sclerosis , Oxidative Stress , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnosis , Animals , Mice , Humans , Protein Interaction Maps , Molecular Docking Simulation , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Gene Expression Profiling , Gene Ontology , Disease Models, Animal
8.
Cell Rep ; 43(7): 114458, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996070

ABSTRACT

Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.


Subject(s)
Cell Movement , Inflammation , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Mice , Inflammation/pathology , Inflammation/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Humans , Transcription Factors/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Colitis/metabolism , Colitis/pathology , Colitis/immunology , Colitis/genetics
9.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976012

ABSTRACT

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Subject(s)
Aquaporin 4 , Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Fatty Acids, Volatile , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Mice , Tryptophan/metabolism , Tryptophan/pharmacology , Female , Signal Transduction/drug effects , Aquaporin 4/metabolism , Aquaporin 4/genetics , Gastrointestinal Microbiome/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
10.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000569

ABSTRACT

Regulation of neuroinflammation is critical for maintaining central nervous system (CNS) homeostasis and holds therapeutic promise in autoimmune diseases such as multiple sclerosis (MS). Previous studies have highlighted the significance of selective innate signaling in triggering anti-inflammatory mechanisms, which play a protective role in an MS-like disease, experimental autoimmune encephalomyelitis (EAE). However, the individual intra-CNS administration of specific innate receptor ligands or agonists, such as for toll-like receptor 7 (TLR7) and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2), failed to elicit the desired anti-inflammatory response in EAE. In this study, we investigated the potential synergistic effect of targeting both TLR7 and NOD2 simultaneously to prevent EAE progression. Our findings demonstrate that simultaneous intrathecal administration of NOD2- and TLR7-agonists led to synergistic induction of Type I IFN (IFN I) and effectively suppressed EAE in an IFN I-dependent manner. Suppression of EAE was correlated with a significant decrease in the infiltration of monocytes, granulocytes, and natural killer cells, reduced demyelination, and downregulation of IL-1ß, CCL2, and IFNγ gene expression in the spinal cord. These results underscore the therapeutic promise of concurrently targeting the TLR7 and NOD2 pathways in alleviating neuroinflammation associated with MS, paving the way for novel and more efficacious treatment strategies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nod2 Signaling Adaptor Protein , Toll-Like Receptor 7 , Animals , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/agonists , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Mice , Mice, Inbred C57BL , Immunity, Innate/drug effects , Female , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/drug effects , Membrane Glycoproteins/metabolism , Interferon Type I/metabolism , Signal Transduction/drug effects
11.
Arterioscler Thromb Vasc Biol ; 44(8): 1833-1851, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38957986

ABSTRACT

BACKGROUND: Tight control of cytoplasmic Ca2+ concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavß3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS: We investigated the function of Cavß3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavß3-/- (Cavß3-deficient) mice as controls. RESULTS: We identified Cavß3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavß3. After induction of experimental autoimmune encephalomyelitis, Cavß3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavß3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavß3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavß3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavß3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS: Independent of its function as a subunit of Cav channels, Cavß3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ concentration and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavß3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.


Subject(s)
Blood-Brain Barrier , Calcium Signaling , Encephalomyelitis, Autoimmune, Experimental , Endothelial Cells , Animals , Female , Male , Mice , Blood-Brain Barrier/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Capillary Permeability , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Endothelial Cells/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice, Inbred C57BL , Mice, Knockout , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Kinase/genetics , Phosphorylation
12.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200278, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954781

ABSTRACT

BACKGROUND AND OBJECTIVES: Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS: Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS: Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION: Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Neutrophils , Single-Cell Analysis , Triggering Receptor Expressed on Myeloid Cells-1 , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Neutrophils/metabolism , Neutrophils/immunology , Animals , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Mice , Female , Sequence Analysis, RNA , Lymph Nodes/metabolism
13.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013878

ABSTRACT

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Subject(s)
Cell Differentiation , Forkhead Box Protein O1 , Interferon-beta , T-Lymphocytes, Regulatory , Ubiquitin-Protein Ligases , Ubiquitination , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mice , Humans , Interferon-beta/metabolism , Mice, Inbred C57BL , Cell Nucleus/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Active Transport, Cell Nucleus , Female , Mice, Knockout , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , HEK293 Cells
14.
Proc Natl Acad Sci U S A ; 121(32): e2407974121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39083422

ABSTRACT

Multiple sclerosis (MS) is a chronic and debilitating neurological disease that results in inflammatory demyelination. While endogenous remyelination helps to recover function, this restorative process tends to become less efficient over time. Currently, intense efforts aimed at the mechanisms that promote remyelination are being considered promising therapeutic approaches. The M1 muscarinic acetylcholine receptor (M1R) was previously identified as a negative regulator of oligodendrocyte differentiation and myelination. Here, we validate M1R as a target for remyelination by characterizing expression in human and rodent oligodendroglial cells (including those in human MS tissue) using a highly selective M1R probe. As a breakthrough to conventional methodology, we conjugated a fluorophore to a highly M1R selective peptide (MT7) which targets the M1R in the subnanomolar range. This allows for exceptional detection of M1R protein expression in the human CNS. More importantly, we introduce PIPE-307, a brain-penetrant, small-molecule antagonist with favorable drug-like properties that selectively targets M1R. We evaluate PIPE-307 in a series of in vitro and in vivo studies to characterize potency and selectivity for M1R over M2-5R and confirm the sufficiency of blocking this receptor to promote differentiation and remyelination. Further, PIPE-307 displays significant efficacy in the mouse experimental autoimmune encephalomyelitis model of MS as evaluated by quantifying disability, histology, electron microscopy, and visual evoked potentials. Together, these findings support targeting M1R for remyelination and support further development of PIPE-307 for clinical studies.


Subject(s)
Multiple Sclerosis , Oligodendroglia , Receptor, Muscarinic M1 , Remyelination , Animals , Humans , Mice , Rats , Brain/metabolism , Brain/drug effects , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Muscarinic Antagonists/pharmacology , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M1/antagonists & inhibitors , Remyelination/drug effects
15.
Neurobiol Dis ; 198: 106552, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844244

ABSTRACT

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease leading to demyelination and axonal loss. Current treatments are immunomodulatory or immunosuppressive drugs acting on the inflammatory component. However, these treatments do not adequately address the crucial aspect of neuroprotection. Recently, an association between an altered balance of adipokines and MS has been proposed as both a risk factor for developing MS and a chronic disease aggravating factor. Specifically, a decrease of apelin plasma levels in MS patients compared to controls correlates with the number of relapses and disease severity. Here we report a dramatic downregulation of apelin levels in the CNS of EAE mice which is also detected in MS patients brain samples compared to controls. Exploiting innovative design and synthesis techniques, we engineered a novel fluorinated apelin-13 peptide characterized by enhanced plasmatic stability compared to its native counterpart. With this peptide, we assessed the potential therapeutic benefits of apelin preventive supplementation in the EAE mouse model. We show that the fluorinated Apelin-13 peptide ameliorates EAE clinical score and preserves myelin content in the EAE MOG model recapitulating the progressive form of disease. These results combined with ex-vivo experiments in brain organotypic slices and in vitro studies in neurons and primary microglia and macrophages suggest that apelin has neuroprotective effects and influences the microglia/macrophages function.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Multiple Sclerosis , Neuroprotective Agents , Animals , Neuroprotective Agents/pharmacology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Multiple Sclerosis/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Female , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology , Disease Models, Animal , Microglia/drug effects , Microglia/metabolism , Apelin/metabolism , Apelin/pharmacology
16.
Sci Rep ; 14(1): 13146, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849434

ABSTRACT

Multiple sclerosis (MS) is an autoimmune demyelinating disease affecting the central nervous system (CNS). T helper (Th) 17 cells are involved in the pathogenesis of MS and its animal model of experimental autoimmune encephalomyelitis (EAE) by infiltrating the CNS and producing effector molecules that engage resident glial cells. Among these glial cells, astrocytes have a central role in coordinating inflammatory processes by responding to cytokines and chemokines released by Th17 cells. In this study, we examined the impact of pathogenic Th17 cells on astrocytes in vitro and in vivo. We identified that Th17 cells reprogram astrocytes by driving transcriptomic changes partly through a Janus Kinase (JAK)1-dependent mechanism, which included increased chemokines, interferon-inducible genes, and cytokine receptors. In vivo, we observed a region-specific heterogeneity in the expression of cell surface cytokine receptors on astrocytes, including those for IFN-γ, IL-1, TNF-α, IL-17, TGFß, and IL-10. Additionally, these receptors were dynamically regulated during EAE induced by adoptive transfer of myelin-reactive Th17 cells. This study overall provides evidence of Th17 cell reprogramming of astrocytes, which may drive changes in the astrocytic responsiveness to cytokines during autoimmune neuroinflammation.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Janus Kinase 1 , Myelin-Oligodendrocyte Glycoprotein , Receptors, Cytokine , Th17 Cells , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Animals , Astrocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Receptors, Cytokine/metabolism , Receptors, Cytokine/genetics , Janus Kinase 1/metabolism , Mice, Inbred C57BL , Cytokines/metabolism , Cellular Reprogramming , Female , Cells, Cultured
17.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844736

ABSTRACT

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Subject(s)
Amniotic Fluid , Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Multiple Sclerosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Amniotic Fluid/cytology , Amniotic Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Multiple Sclerosis/therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Female , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL
18.
Biochemistry (Mosc) ; 89(5): 904-911, 2024 May.
Article in English | MEDLINE | ID: mdl-38880650

ABSTRACT

Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators. This study investigates contribution of IL-6 produced by microglia and dendritic cells to the development of experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS. Mice with conditional inactivation of IL-6 in the CX3CR1+ cells, including microglia, or CD11c+ dendritic cells, displayed less severe symptoms as compared to their wild-type counterparts. Mice with microglial IL-6 deletion exhibited an elevated proportion of regulatory T cells and reduced percentage of pathogenic IFNγ-producing CD4+ T cells, accompanied by the decrease in pro-inflammatory monocytes in the CNS at the peak of EAE. At the same time, deletion of IL-6 from microglia resulted in the increase of CCR6+ T cells and GM-CSF-producing T cells. Conversely, mice with IL-6 deficiency in the dendritic cells showed not only the previously described increase in the proportion of regulatory T cells and decrease in the proportion of TH17 cells, but also reduction in the production of GM-CSF and IFNγ in the secondary lymphoid organs. In summary, IL-6 functions during EAE depend on both the source and localization of immune response: the microglial IL-6 exerts both pathogenic and protective functions specifically in the CNS, whereas the dendritic cell-derived IL-6, in addition to being critically involved in the balance of regulatory T cells and TH17 cells, may stimulate production of cytokines associated with pathogenic functions of T cells.


Subject(s)
Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Interleukin-6 , Microglia , Multiple Sclerosis , Animals , Dendritic Cells/metabolism , Dendritic Cells/immunology , Mice , Interleukin-6/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Microglia/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Female
19.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927996

ABSTRACT

The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.


Subject(s)
Biomarkers , Multiple Sclerosis , Oxidative Stress , Humans , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Antioxidants/metabolism
20.
Neuroscience ; 552: 65-75, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38885894

ABSTRACT

Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.


Subject(s)
Autophagy , Encephalomyelitis, Autoimmune, Experimental , Janus Kinase 2 , Mice, Inbred C57BL , STAT3 Transcription Factor , Signal Transduction , Th17 Cells , Tyrphostins , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , STAT3 Transcription Factor/metabolism , Tyrphostins/pharmacology , Autophagy/drug effects , Autophagy/physiology , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Th17 Cells/drug effects , Th17 Cells/metabolism , Female , Signal Transduction/drug effects , Signal Transduction/physiology , Cell Differentiation/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL