Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.856
Filter
1.
J Environ Sci (China) ; 146: 251-263, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969453

ABSTRACT

The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern. As emerging contaminants (ECs) in surface waters, pharmaceutical and personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have attracted considerable attention due to their wide occurrence and potential threat to human health. Therefore, a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required. This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals, 15 personal care products (PCPs), and 20 EDCs frequently detected in Chinese surface waters. The ECs were primarily detected in China's densely populated and highly industrialized regions. Most detected PPCPs and EDCs had concentrations between ng/L to µg/L, whereas norfloxacin, caffeine, and erythromycin had relatively high contamination levels, even exceeding 2000 ng/L. Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk, whereas 4-nonylphenol, 4-tert-octylphenol, 17α-ethinyl estradiol, 17ß-estradiol, and triclocarban did. This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade, and will aid in the regulation and control of these ECs in Chinese surface waters.


Subject(s)
Cosmetics , Endocrine Disruptors , Environmental Monitoring , Water Pollutants, Chemical , China , Cosmetics/analysis , Endocrine Disruptors/analysis , Pharmaceutical Preparations/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
2.
Environ Int ; 189: 108791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838488

ABSTRACT

Plastics constitute a vast array of substances, with over 16000 known plastic chemicals, including intentionally and non-intentionally added substances. Thousands of chemicals, including toxic ones, are extractable from plastics, however, the extent to which these compounds migrate from everyday products into food or water remains poorly understood. This study aims to characterize the endocrine and metabolism disrupting activity, as well as the chemical composition of migrates from plastic food contact articles (FCAs) from four countries as significant sources of human exposure. Fourteen plastic FCAs covering seven polymer types with high global market shares were migrated into water and a water-ethanol mixture as food simulants according to European regulations. The migrates were analyzed using reporter gene assays for nuclear receptors relevant to human health and non-target chemical analysis to characterize the chemical composition. Chemicals migrating from each FCA interfered with at least two nuclear receptors, predominantly targeting pregnane X receptor (24/28 migrates). Moreover, peroxisome proliferator receptor gamma was activated by 19 out of 28 migrates, though mostly with lower potencies. Estrogenic and antiandrogenic activity was detected in eight and seven migrates, respectively. Fewer chemicals and less toxicity migrated into water compared to the water-ethanol mixture. However, 73 % of the 15 430 extractable chemical features also transferred into food simulants, and the water-ethanol migrates exhibited a similar toxicity prevalence compared to methanol extracts. The chemical complexity differed largely between FCAs, with 8 to 10631 chemical features migrating into food simulants. Using stepwise partial least squares regressions, we successfully narrowed down the list of potential active chemicals, identified known endocrine disrupting chemicals, such as triphenyl phosphate, and prioritized chemical features for further identification. This study demonstrates the migration of endocrine and metabolism disrupting chemicals from plastic FCAs into food simulants, rendering a migration of these compounds into food and beverages probable.


Subject(s)
Endocrine Disruptors , Food Packaging , Plastics , Endocrine Disruptors/analysis , Humans , Food Contamination
3.
Food Chem ; 455: 139875, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823145

ABSTRACT

Bisphenol A (BPA), an endocrine disruptor, is widely used in food packaging materials, including drink containers. Sensitive detection of BPA is crucial to food safety. Herein, we have developed a novel optical-driven hydrogel film sensor for sensitive BPA detection based on the displacement of spiropyran (SP) from ß-cyclodextrin (ß-CD) cavity by BPA followed by the photochromism of the released SP. The released SP converts to the ring-opened merocyanine form which shows an enhanced red fluorescence in the dark. The sensor demonstrates a linear detection range from 0.1 to 20 µg mL-1 with a limit of detection at 0.027 µg mL-1 and a limit of quantification at 0.089 µg mL-1. Notably, the proposed ß-CD/SP hydrogel can be reused due to the reversible isomerization of SP and the reversible host-guest interaction. This sensor also shows good performance for BPA determination in real samples, indicating its great potential for food safety monitoring.


Subject(s)
Benzhydryl Compounds , Benzopyrans , Food Contamination , Food Packaging , Hydrogels , Indoles , Nitro Compounds , Phenols , beta-Cyclodextrins , Phenols/chemistry , Phenols/analysis , beta-Cyclodextrins/chemistry , Hydrogels/chemistry , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Food Packaging/instrumentation , Benzopyrans/chemistry , Indoles/chemistry , Nitro Compounds/chemistry , Food Contamination/analysis , Limit of Detection , Endocrine Disruptors/analysis , Endocrine Disruptors/chemistry
4.
Sci Total Environ ; 930: 172859, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38692316

ABSTRACT

Nitrate, as a crucial nutrient, is consistently targeted for controlling water eutrophication globally. However, there is considerable evidence suggesting that nitrate has endocrine-disrupting potential on aquatic organisms. In this study, the sensitivity of various adverse effects to nitrate nitrogen (nitrate-N) was compared, and a toxicity threshold based on endocrine-disrupting effects was derived. The spatiotemporal variations of nitrate-N concentrations in the Luan River basin were investigated, and the associated aquatic ecological risks were evaluated using a comprehensive approach. The results showed that reproduction and development were the most sensitive endpoints to nitrate, and their distribution exhibited significant differences compared to behavior. The derived threshold based on endocrine-disrupting effects was 0.65 mgL-1, providing adequate protection for the aquatic ecosystem. In the Luan River basin, the mean nitrate-N concentrations during winter (4.4 mgL-1) were significantly higher than those observed in spring (0.7 mgL-1) and summer (1.2 mgL-1). Tributary inputs had an important influence on the spatial characteristics of nitrate-N in the mainstream, primarily due to agricultural and population-related contamination. The risk quotients (RQ) during winter, summer, and spring were evaluated as 6.7, 1.8, and 1.1, respectively, and the frequency of exposure concentrations exceeding the threshold was 100 %, 64.3 %, and 42.5 %, respectively. At the ecosystem level, nitrate posed intermediate risks to aquatic organisms during winter and summer in the Luan River basin and at the national scale in China. We suggest that nitrate pollution control should not solely focus on water eutrophication but also consider the endocrine disruptive effect on aquatic animals.


Subject(s)
Endocrine Disruptors , Environmental Monitoring , Nitrates , Rivers , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , China , Endocrine Disruptors/analysis , Nitrates/analysis , Animals , Risk Assessment , Aquatic Organisms/drug effects , Ecosystem
5.
Chemosphere ; 361: 142467, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810798

ABSTRACT

The secondary sex ratio (SSR), defined as the ratio of male to female offspring at birth, has garnered significant scientific interest due to its potential impact on population dynamics and evolution. In recent years, there has been a growing concern regarding the potential consequences of environmental chemicals on the SSR, given their widespread exposure and potential enduring ramifications on the reproductive system. While SSR serves as an indicator of health, ongoing research and scientific inquiry are being conducted to explore the potential relationship between chemicals and offspring ratio. Although some studies have suggested a possible correlation, others have yielded inconclusive results, indicating that the topic is intricate and still needs to be elucidated. The precise mechanism by which chemical agents exert their influence on the SSR remains ambiguous, with disruption of the endocrine system being a prominent justification. In light of the complex interplay between chemical exposure and SSR, the present review aims to comprehensively examine and synthesize existing scientific literature to gain a deeper understanding of how specific chemical exposures may impact SSR. Insights into chemical hazards that shift SSR patterns or trends could guide prevention strategies, including legislative bans of certain chemicals, to minimize environmental and public health risks.


Subject(s)
Hazardous Substances , Sex Ratio , Hazardous Substances/toxicity , Hazardous Substances/analysis , Female , Animals , Male , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Environmental Exposure/statistics & numerical data , Humans
6.
Sci Total Environ ; 943: 173635, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38821289

ABSTRACT

Children are exposed to endocrine disrupting chemicals (EDCs) through inhalation and ingestion, as well as through dermal contact in their everyday indoor environments. The dermal loadings of EDCs may contribute significantly to children's total EDC exposure due to dermal absorption as well as hand-to-mouth behaviors. The aim of this study was to measure potential EDCs, specifically halogenated flame retardants (HFRs) and organophosphate esters (OPEs), on children's hands during preschool attendance and to assess possible determinants of exposure in preschool indoor environments in Sweden. For this, 115 handwipe samples were collected in winter and spring from 60 participating children (arithmetic mean age 4.5 years, standard deviation 1.0) and analyzed for 50 compounds. Out of these, 31 compounds were identified in the majority of samples. Levels were generally several orders of magnitude higher for OPEs than HFRs, and 2-ethylhexyl diphenyl phosphate (EHDPP) and tris(2-butoxyethyl) phosphate (TBOEP) were detected in the highest median masses, 61 and 56 ng/wipe, respectively. Of the HFRs, bis(2-ethyl-1-hexyl)-2,3,4,5-tetrabromobenzoate (BEH-TEBP) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) were detected in the highest median masses, 2.8 and 1.8 ng/wipe, respectively. HFR and/or OPE levels were found to be affected by the number of plastic toys, and electrical and electronic devices, season, municipality, as well as building and/or renovation before/after 2004. Yet, the calculated health risks for single compounds were below available reference dose values for exposure through dermal uptake as well as for ingestion using mean hand-to-mouth contact rate. However, assuming a high hand-to-mouth contact rate, at the 95th percentile, the calculated hazard quotient was above 1 for the maximum handwipe mass of TBOEP found in this study, suggesting a risk of negative health effects. Furthermore, considering additive effects from similar compounds, the results of this study indicate potential concern if additional exposure from other routes is as high.


Subject(s)
Environmental Exposure , Flame Retardants , Organophosphates , Skin Absorption , Flame Retardants/analysis , Humans , Sweden , Child, Preschool , Organophosphates/analysis , Environmental Exposure/statistics & numerical data , Endocrine Disruptors/analysis , Esters/analysis , Male , Female , Environmental Pollutants/analysis , Environmental Monitoring
7.
Chemosphere ; 361: 142442, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810806

ABSTRACT

BACKGROUND: Studies have shown an association between hair product use and adverse health outcomes. Scientists have hypothesized that exposure to endocrine-disrupting chemicals (EDCs) drives these associations, but few studies have directly evaluated associations between hair product use and biomarkers of EDCs. Even more limited are studies of Black women, who frequently use EDC-containing products (e.g., hair relaxers). OBJECTIVE: We estimated associations between hair product use and EDC biomarker concentrations. METHODS: We leveraged cross-sectional data from the Study of Environment, Lifestyle, and Fibroids, a cohort of females aged 23-34 years who self-identified as Black/African American from the Detroit-metropolitan area (USA; n = 425). On structured questionnaires, participants reported their past 24-h and past 12-month use of hair products, including relaxers/straighteners/perms, styling products, moisturizers, oils, and hair food. We quantified urinary concentrations of 19 phthalate/phthalate alternative metabolites, 7 phenols, and 4 parabens using high performance liquid chromatography isotope dilution tandem mass spectrometry. EDC biomarker concentrations were creatinine-adjusted and natural log-transformed. We used multivariable linear regression to estimate mean percent differences in EDC biomarker concentrations and 95% confidence intervals (CIs) associated with hair product use, adjusting for sociodemographic confounders. RESULTS: Hair product use was associated with greater concentrations of multiple EDC biomarkers. Notably, use of hair products in the previous 24 h (compared with non-use) was associated with 16.2% (95% CI = 0.7%, 35.9%), 35.0% (95% CI = 2.6%, 77.6%), and 32.3% (95% CI = 8.8%, 92.0%) higher concentrations of mono-isobutyl phthalate, methyl paraben, and ethyl paraben, respectively. Use of hair relaxers/straighteners/perms, styling products, moisturizers, oils, and hair food in the past 12 months was also associated with higher concentrations of multiple phthalate, phenol, and paraben biomarkers. CONCLUSION: Hair product use was associated with higher biomarker concentrations of multiple phthalates, phenols, and parabens. These findings suggest that hair products are potentially important exposure sources for hormonally-active chemicals among Black women.


Subject(s)
Biomarkers , Black or African American , Endocrine Disruptors , Humans , Female , Adult , Biomarkers/urine , Endocrine Disruptors/urine , Endocrine Disruptors/analysis , Black or African American/statistics & numerical data , Young Adult , Cross-Sectional Studies , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Hair Preparations , Phenols/urine , Phenols/analysis , Phthalic Acids/urine , Environmental Pollutants/urine , Environmental Pollutants/analysis , Hair/chemistry , Parabens/analysis , Surveys and Questionnaires
8.
Environ Res ; 252(Pt 4): 119075, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719065

ABSTRACT

BACKGROUND: Exposure to phenols, endocrine-disrupting chemicals used in personal care and consumer products, is widespread. Data on infant exposures are limited despite heightened sensitivity to endocrine disruption during this developmental period. We aimed to describe distributions and predictors of urinary phenol concentrations among U.S. infants ages 6-12 weeks. METHODS: The Infant Feeding and Early Development (IFED) study is a prospective cohort study of healthy term infants enrolled during 2010-2013 in the Philadelphia region. We measured concentrations of seven phenols in 352 urine samples collected during the 6- or 8- and/or 12-week study visits from 199 infants. We used linear mixed models to estimate associations of maternal, sociodemographic, infant, and sample characteristics with natural-log transformed, creatinine-standardized phenol concentrations and present results as mean percent change from the reference level. RESULTS: Median concentrations (µg/L) were 311 for methylparaben, 10.3 for propylparaben, 3.6 for benzophenone-3, 2.1 for triclosan, 1.0 for 2,5-dichlorophenol, 0.7 for BPA, and 0.3 for 2,4-dichlorophenol. Geometric mean methylparaben concentrations were approximately 10 times higher than published estimates for U.S. children ages 3-5 and 6-11 years, while propylparaben concentrations were 3-4 times higher. Infants of Black mothers had higher concentrations of BPA (83%), methylparaben (121%), propylparaben (218%), and 2,5-dichorophenol (287%) and lower concentrations of benzophenone-3 (-77%) and triclosan (-53%) than infants of White mothers. Triclosan concentrations were higher in breastfed infants (176%) and lower in infants whose mothers had a high school education or less (-62%). Phenol concentrations were generally higher in summer samples. CONCLUSIONS: Widespread exposure to select environmental phenols among this cohort of healthy U.S. infants, including much higher paraben concentrations compared to those reported for U.S. children, supports the importance of expanding population-based biomonitoring programs to infants and toddlers. Future investigation of exposure sources is warranted to identify opportunities to minimize exposures during these sensitive periods of development.


Subject(s)
Environmental Exposure , Phenols , Humans , Infant , Female , Phenols/urine , Male , Environmental Exposure/analysis , Prospective Studies , Environmental Pollutants/urine , Endocrine Disruptors/urine , Endocrine Disruptors/analysis , Adult
9.
Ecotoxicol Environ Saf ; 278: 116420, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701654

ABSTRACT

Emerging contaminants (ECs) are a diverse group of unregulated pollutants increasingly present in the environment. These contaminants, including pharmaceuticals, personal care products, endocrine disruptors, and industrial chemicals, can enter the environment through various pathways and persist, accumulating in the food chain and posing risks to ecosystems and human health. This comprehensive review examines the chemical characteristics, sources, and varieties of ECs. It critically evaluates the current understanding of their environmental and health impacts, highlighting recent advancements and challenges in detection and analysis. The review also assesses existing regulations and policies, identifying shortcomings and proposing potential enhancements. ECs pose significant risks to wildlife and ecosystems by disrupting animal hormones, causing genetic alterations that diminish diversity and resilience, and altering soil nutrient dynamics and the physical environment. Furthermore, ECs present increasing risks to human health, including hormonal disruptions, antibiotic resistance, endocrine disruption, neurological effects, carcinogenic effects, and other long-term impacts. To address these critical issues, the review offers recommendations for future research, emphasizing areas requiring further investigation to comprehend the full implications of these contaminants. It also suggests increased funding and support for research, development of advanced detection technologies, establishment of standardized methods, adoption of precautionary regulations, enhanced public awareness and education, cross-sectoral collaboration, and integration of scientific research into policy-making. By implementing these solutions, we can improve our ability to detect, monitor, and manage ECs, reducing environmental and public health risks.


Subject(s)
Endocrine Disruptors , Environmental Monitoring , Environmental Pollutants , Environmental Monitoring/methods , Humans , Environmental Pollutants/analysis , Animals , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Ecosystem , Risk Assessment
10.
Environ Sci Pollut Res Int ; 31(26): 37907-37922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772997

ABSTRACT

Within recent years, hormones have become emergent contaminants in the water environment. They easily accumulate in living organisms which in effect leads to numerous health problems (endocrine-disrupting mechanism is one of the most known toxic effects). Microbial resistance to antibiotics also became one of the emergent issues related to hormone presence. It was shown that the most common in the environment occur estrogens (E1, E2, E3, and EE2). It has been proven that large amounts of hormones are released from aquaculture as well as from wastewater treatment plants (due to the relatively low separation efficiency of conventional wastewater treatment processes). Within the article's scope, the literature review was performed. The analysis was regarding the characterization of the hormone substances present in the environment, their influence on living organisms and the environment, as well as its potential sources classification.


Subject(s)
Hormones , Water Pollutants, Chemical , Water Resources , Water Pollutants, Chemical/analysis , Environmental Monitoring , Wastewater/chemistry , Endocrine Disruptors/analysis , Estrogens
11.
J Hazard Mater ; 474: 134754, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820750

ABSTRACT

The ubiquitous and adverse effects of estrogens have aroused global concerns. Natural and synthetic estrogens in 255 water samples from the southern Bohai Sea were analyzed over three years. Total estrogen concentrations were 11.0-268 ng/L in river water and 1.98-99.7 ng/L in seawater, with bisphenol A (BPA) and 17α-ethynylestradiol (EE2) being the predominant estrogens, respectively. Estrogen showed the highest concentrations in summer 2018, followed by spring 2021 and spring 2019, which was consistent with the higher estrogen flux from rivers during summer. Higher estrogen concentrations in 2021 than in 2019 were driven by the higher level of BPA, an additive used in personal protective equipment. Estrogen exhibited higher concentrations in the southern coast of the Yellow River Delta and the northeastern coast of Laizhou bay due to the riverine input and aquaculture. Estrogens could disturb the normal endocrine activities of organisms and edict high ecological risks (90th simulated RQT > 1.0) to aquatic organisms, especially to fish. EE2 was the main contributor of estrogenic potency and ecological risk, which requires special concern. This is the first comprehensive study of estrogen spatiotemporal variations and risks in the Bohai Sea, providing insights into the environmental behavior of estrogens in coastal regions.


Subject(s)
Environmental Monitoring , Estrogens , Seawater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Risk Assessment , Estrogens/analysis , Seawater/chemistry , Seawater/analysis , China , Animals , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Rivers/chemistry , Phenols/analysis , Phenols/toxicity , Benzhydryl Compounds/analysis , Ethinyl Estradiol/analysis , Oceans and Seas , Seasons
12.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805830

ABSTRACT

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Subject(s)
Environmental Monitoring , Fresh Water , Phthalic Acids , Plasticizers , Water Pollutants, Chemical , Water Quality , Phthalic Acids/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality/standards , Fresh Water/chemistry , Environmental Monitoring/methods , Plasticizers/analysis , Plasticizers/toxicity , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Aquatic Organisms/drug effects , Esters , China , Animals , Dibutyl Phthalate/toxicity
13.
Chemosphere ; 360: 142463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821126

ABSTRACT

Estrogenic compounds are the endocrine disruptors that receive major attention because of their ability to imitate the natural female hormone, 17ß-estradiol and cause adverse effects on the reproductive system of animals. The presence of estrogenic compounds in drinking water is a warning to assess the risks to which human beings are exposed. The present work has the objectives of carrying out a systematic review of studies that investigated estrogenic compounds in drinking water around the world and estimate the human health and estrogenic activity risks, based on the concentrations of each compound reported. The systematic review returned 505 scientific papers from the Web of Science®, SCOPUS® and PubMED® databases and after careful analysis, 45 papers were accepted. Sixteen estrogenic compounds were identified in drinking water, from the classes of hormones, pharmaceutical drugs and personal care products, plasticizers, corrosion inhibitors, pesticides and surfactants. Di-(2-ethylhexyl) phthalate (DEHP) was the compound found at the highest concentration, reaching a value of 1.43 mg/L. Non-carcinogenic human health risk was classified as high for 17α-ethynilestradiol and DEHP, medium for dibutyl phthalate, and low for bisphenol A. The estrogenic activity risks were negligible for all the compounds, except DEHP, with a low risk. None of the estrogenic compounds presented an unacceptable carcinogenic risk, due to estrogenic activity. However, the risk assessment did not evaluate the interactions between compounds, that occurs in drinking water and can increase the risks and adverse effects to human health. Nonetheless, this study demonstrates the need for improvement of drinking water treatment plants, with more efficient technologies for micropollutant removal.


Subject(s)
Drinking Water , Endocrine Disruptors , Estrogens , Water Pollutants, Chemical , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Estrogens/analysis , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Humans , Risk Assessment , Animals
14.
Environ Res ; 252(Pt 3): 119045, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704014

ABSTRACT

Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.


Subject(s)
Adverse Outcome Pathways , Endocrine Disruptors , Water Pollutants, Chemical , Zooplankton , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Zooplankton/drug effects , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
15.
Environ Pollut ; 352: 124064, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701965

ABSTRACT

This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17ß-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.


Subject(s)
Benzhydryl Compounds , Environmental Monitoring , Phenols , Soil Pollutants , Soil , Phenols/analysis , Soil Pollutants/analysis , China , Benzhydryl Compounds/analysis , Soil/chemistry , Sulfones/analysis , Sulfones/toxicity , Agriculture , Risk Assessment , Endocrine Disruptors/analysis
16.
Chemosphere ; 359: 142366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768782

ABSTRACT

A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.


Subject(s)
Aptamers, Nucleotide , Endocrine Disruptors , Esters , Phthalic Acids , Water Pollutants, Chemical , Phthalic Acids/analysis , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis , Esters/analysis , Aptamers, Nucleotide/chemistry , Plastics/analysis , Plastics/chemistry , Reproducibility of Results
17.
J Environ Manage ; 359: 121041, 2024 May.
Article in English | MEDLINE | ID: mdl-38703651

ABSTRACT

Bisphenol analogues (BPs) have gained increasing attention in recent years due to their ubiquitousness and potential endocrine disrupting properties in environments. However, little information is available on their spatiotemporal distribution, source apportionment and ecological risk in river sediments, especially the case in river basins with a high population density and those typical regions with agricultural-urban gradient, where land use patterns and intensity of human activity are varying. In this study, field investigations of BPs in the sediment of the entire Qinhuai River Basin, a typical agricultural-suburban agricultural-urban gradient area, were conducted before and after the flood period. Thirty-two sites were sampled for six types of BPs, resulted in no significant difference in the concentration of ΣBPs between the two periods, with ΣBPs ranging from 3.92 to 151 ng/g and 2.16-59.0 ng/g, respectively. Bisphenol A (BPA) was the main contributor. Whereas a multivariate analysis of variance (MANOVA) suggested that the composition structure of BPs had been influenced by water periods. The land use patterns had an impact on the distribution of ΣBPs in river sediments, which was more significant in after the flood period, with ΣBPs in urban rivers was 1.85 times, 3.44 times, and 3.08 times higher than the suburban rivers, agricultural rivers, and reservoirs, respectively. Yet land use types did not significantly alter the composition structure of BPs. The correlation analysis between BPs and the physicochemical properties of sediments showed a significant positive correlation between BPA and total organic carbon (TOC). The positive matrix factorization model (PMF) suggested that BPs in sediments of the basin might be influenced by industrial coatings, textiles, electronics and biopharmaceuticals, as well as urban wastewater or solid waste generated from daily life. The ecological risk assessment posed by BPA, based on the risk quotient, indicated that the ecological risk of BPA in sediments was low for three indicator benthic organisms: crustaceans, worms, and mollusks. However, the risk of BPA in river sediments varied among different land use patterns, with the risk ranking as follows: reservoirs < agricultural rivers < suburban rivers < urban rivers.


Subject(s)
Benzhydryl Compounds , Environmental Monitoring , Geologic Sediments , Phenols , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Phenols/analysis , Benzhydryl Compounds/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Endocrine Disruptors/analysis
18.
Chemosphere ; 358: 142239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705414

ABSTRACT

So far, about 130 disinfection by-products (DBPs) and several DBPs-groups have had their potential endocrine-disrupting effects tested on some endocrine endpoints. However, it is still not clear which specific DBPs, DBPs-groups/subgroups may be the most toxic substances or groups/subgroups for any given endocrine endpoint. In this study, we attempt to address this issue. First, a list of relevant DBPs was updated, and 1187 DBPs belonging to 4 main-groups (aliphatic, aromatic, alicyclic, heterocyclic) and 84 subgroups were described. Then, the high-priority endocrine endpoints, DBPs-groups/subgroups, and specific DBPs were determined from 18 endpoints, 4 main-groups, 84 subgroups, and 1187 specific DBPs by a virtual-screening method. The results demonstrate that most of DBPs could not disturb the endocrine endpoints in question because the proportion of active compounds associated with the endocrine endpoints ranged from 0 (human thyroid receptor beta) to 32% (human transthyretin (hTTR)). All the endpoints with a proportion of active compounds greater than 10% belonged to the thyroid system, highlighting that the potential disrupting effects of DBPs on the thyroid system should be given more attention. The aromatic and alicyclic DBPs may have higher priority than that of aliphatic and heterocyclic DBPs by considering the activity rate and potential for disrupting effects. There were 2 (halophenols and estrogen DBPs), 12, and 24 subgroups that belonged to high, moderate, and low priority classes, respectively. For individual DBPs, there were 23 (2%), 193 (16%), and 971 (82%) DBPs belonging to the high, moderate, and low priority groups, respectively. Lastly, the hTTR binding affinity of 4 DBPs was determined by an in vitro assay and all the tested DBPs exhibited dose-dependent binding potency with hTTR, which was consistent with the predicted result. Thus, more efforts should be performed to reveal the potential endocrine disruption of those high research-priority main-groups, subgroups, and individual DBPs.


Subject(s)
Disinfectants , Disinfection , Endocrine Disruptors , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Humans , Disinfectants/analysis , Disinfectants/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Talanta ; 275: 126174, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705021

ABSTRACT

To analyze a complex sample for endocrine activity, different tests must be performed to clarify androgen/estrogen agonism, antagonism, cytotoxicity, anti-cytotoxicity, and corresponding false-positive reactions. This means a large amount of work. Therefore, a six-fold planar multiplex bioassay concept was developed to evaluate up to the mentioned six endpoints or mechanisms simultaneously in the same sample analysis. Separation of active constituents from interfering matrix via high-performance thin-layer chromatography and effect differentiation via four vertical stripes (of agonists and end-products of the respective enzyme-substrate reaction) applied along each separated sample track were key to success. First, duplex endocrine bioassay versions were established. For the androgen/anti-androgen bioassay applied via piezoelectric spraying, the mean limit of biological detection of bisphenol A was 14 ng/band and its mean half maximal inhibitory concentration IC50 was 116 ng/band. Applied to trace analysis of six migrate samples from food packaging materials, 19 compound zones with agonistic or antagonistic estrogen/androgen activities were detected, with up to seven active compound zones within one migrate. For the first time, the S9 metabolism of endocrine effective compounds was studied on the same surface and revealed partial deactivation. Coupled to high-resolution mass spectrometry, molecular formulas were tentatively assigned to compounds, known to be present in packaging materials or endocrine active or previously unknown. Finally, the detection of cytotoxicity/anti-cytotoxicity and false-positives was integrated into the duplex androgen/anti-androgen bioassay. The resulting six-fold multiplex planar bioassay was evaluated with positive control standards and successfully applied to one migrate sample. The streamlined stripe concept for multiplex planar bioassays made it possible to assign different mechanisms to individual active compounds in a complex sample. The concept is generic and can be transferred to other assays.


Subject(s)
Biological Assay , Biological Assay/methods , Humans , Endocrine Disruptors/analysis , Endocrine Disruptors/pharmacology , False Positive Reactions , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Benzhydryl Compounds/analysis , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/chemistry , Androgens/analysis , Androgens/metabolism , Androgen Antagonists/analysis , Androgen Antagonists/pharmacology
20.
J Hazard Mater ; 470: 134288, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626685

ABSTRACT

Steroid hormones are highly potent compounds that can disrupt the endocrine systems of aquatic organisms. This study explored the spatiotemporal distribution of 49 steroid hormones in agricultural soils, ditch water, and sediment from suburban areas of Guangzhou City, China. The average concentrations of Σsteroid hormones in the water, soils, and sediment were 97.7 ng/L, 4460 ng/kg, and 9140 ng/kg, respectively. Elevated hormone concentrations were notable in water during the flood season compared to the dry season, whereas an inverse trend was observed in soils and sediment. These observations were attributed to illegal wastewater discharge during the flood season, and sediment partitioning of hormones and manure fertilization during the dry season. Correlation analysis further showed that population, precipitation, and number of slaughtered animals significantly influenced the spatial distribution of steroid hormones across various districts. Moreover, there was substantial mass transfer among the three media, with steroid hormones predominantly distributed in the sediment (60.8 %) and soils (34.4 %). Risk quotients, calculated as the measured concentration and predicted no-effect concentration, exceeded 1 at certain sites for some hormones, indicating high risks. This study reveals that the risk assessment of steroid hormones requires consideration of their spatiotemporal variability and inter-media mass transfer dynamics in agroecosystems.


Subject(s)
Agriculture , Environmental Monitoring , Geologic Sediments , Soil Pollutants , Water Pollutants, Chemical , China , Geologic Sediments/chemistry , Geologic Sediments/analysis , Water Pollutants, Chemical/analysis , Soil Pollutants/analysis , Steroids/analysis , Soil/chemistry , Hormones/analysis , Endocrine Disruptors/analysis , Cities , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...