ABSTRACT
Sipuncula is an ancient clade of unsegmented marine worms that develop through a conserved pattern of unequal quartet spiral cleavage. They exhibit putative character modifications, including conspicuously large first-quartet micromeres and prototroch cells, postoral metatroch with exclusive locomotory function, paired retractor muscles and terminal organ system, and a U-shaped digestive architecture with left-right asymmetric development. Four developmental life history patterns are recognized, and they have evolved a unique metazoan larval type, the pelagosphera. When compared with other quartet spiral-cleaving models, sipunculan development is understudied, challenging and typically absent from evolutionary interpretations of spiralian larval and adult body plan diversity. If spiral cleavage is appropriately viewed as a flexible character complex, then understudied clades and characters should be investigated. We are pursuing sipunculan models for modern molecular, genetic and cellular research on evolution of spiralian development. Protocols for whole mount gene expression studies are established in four species. Molecular labeling and confocal imaging techniques are operative from embryogenesis through larval development. Next-generation sequencing of developmental transcriptomes has been completed for two species with highly contrasting life history patterns, Phascolion cryptum (direct development) and Nephasoma pellucidum (indirect planktotrophy). Looking forward, we will attempt intracellular lineage tracing and fate-mapping studies in a proposed model sipunculan, Themiste lageniformis. Importantly, with the unsegmented Sipuncula now repositioned within the segmented Annelida, sipunculan worms have become timely and appropriate models for investigating the potential for flexibility in spiralian development, including segmentation. We briefly review previous studies, and discuss new observations on the spiralian character complex within Sipuncula.
Subject(s)
Body Patterning/physiology , Embryo, Nonmammalian/embryology , Larva/growth & development , Polychaeta/embryology , Transcriptome/genetics , Animals , Biological Evolution , Cell Lineage , Ectoderm/embryology , Endoderm/embryology , Larva/cytology , Mesoderm/embryology , Parthenogenesis/physiology , Polychaeta/anatomy & histology , Polychaeta/growth & developmentABSTRACT
O objetivo deste trabalho foi estudar o período de inversão do saco vitelino bem como a dinâmica resultante deste processo na gestação inicial em preás, utilizando-se microscopia de luz, microscopia eletrônica de varredura e de transmissão. No décimo segundo dia de gestação observou-se o desenvolvimento dos endodermas parietal e visceral delimitando a cavidade do saco vitelino. O endoderma parietal foi evidenciado revestindo a superfície fetal da placenta corioalantoidea bem como contornando o espaço delimitado pela decídua capsular. Estes endodermas apresentaram formato prismático e encontraram-se separados do trofoblasto por uma desenvolvida membrana de Reichert. Já o endoderma visceral continha vasos vitelínicos e possuía vilosidades apenas em determinadas áreas. No décimo quarto dia de gestação verificou-se a inversão do saco vitelino, caracterizada pela degeneração do endoderma parietal e trofoblasto mural, associado ao desaparecimento gradual da membrana de Reichert. Como consequência deste fenômeno, o endoderma visceral passou a constituir uma interface com o epitélio uterino. Após a inversão, o endoderma parietal que permaneceu íntegro foi aquele que se apoiava na superfície da placenta corioalantóidea, apresentando células em formato colunar alto e característica de epitélio pseudoestratificado. O endoderma visceral apresentou numerosas vilosidades apicais principalmente em regiões próximas a placenta corioalantóidea. Com o contínuo desenvolvimento do embrião e placenta corioalantóidea, observou-se o surgimento de importante área de aposição entre os endodermas visceral e parietal. A inversão do saco vitelino representou uma disposição anatômica favorável ao desenvolvimento embrionário, além de ser uma característica evolutiva nesta espécie de roedor.
The aim of this study was to study the time of yolk sac inversion as well as the dynamics resulting from this process in galea throughout pregnancy. For this, conventional histological techniques, scanning electron microscopy and transmission electron microscopy were used. Parietal and visceral endoderm delimiting the yolk sac cavity was observed at 12 days of pregnancy. The parietal endoderm was coating the fetal surface of the chorioallantoic placenta as well as delimiting the decidua capsularis area. This endoderm had prismatic format and were apart from the trophoblast by an enlarged Reichert's membrane. The visceral endoderm had vitelline vessels and there were villi only in certain areas. At 14 days of pregnancy the yolk sac inversion was characterized by the degeneration of parietal endoderm and mural trophoblast, and also the gradual disappearance of the Reichert's membrane. So it made the visceral endoderm establish an interface with the uterine epithelium. After the inversion, the parietal endoderm which remained intact was the one that rested on the chorioallantoic placenta surface. It presented cells with high columnar format and pseudostratified epithelium featured. The visceral endoderm presented many apical villi, especially in areas close to the chorioallantoic placenta. The continued development of the embryo and chorioallantoic placenta evidenced the emergence of an important apposition area between visceral and parietal endoderm. The yolk sac inversion represented an anatomical arrangement in favor of the embryo development as well as an evolutionary trait in this rodent species.
Subject(s)
Animals , Endoderm/embryology , Yolk Sac/anatomy & histology , Guinea Pigs/classification , Embryo, Mammalian/embryologyABSTRACT
O objetivo deste trabalho foi estudar o período de inversão do saco vitelino bem como a dinâmica resultante deste processo na gestação inicial em preás, utilizando-se microscopia de luz, microscopia eletrônica de varredura e de transmissão. No décimo segundo dia de gestação observou-se o desenvolvimento dos endodermas parietal e visceral delimitando a cavidade do saco vitelino. O endoderma parietal foi evidenciado revestindo a superfície fetal da placenta corioalantoidea bem como contornando o espaço delimitado pela decídua capsular. Estes endodermas apresentaram formato prismático e encontraram-se separados do trofoblasto por uma desenvolvida membrana de Reichert. Já o endoderma visceral continha vasos vitelínicos e possuía vilosidades apenas em determinadas áreas. No décimo quarto dia de gestação verificou-se a inversão do saco vitelino, caracterizada pela degeneração do endoderma parietal e trofoblasto mural, associado ao desaparecimento gradual da membrana de Reichert. Como consequência deste fenômeno, o endoderma visceral passou a constituir uma interface com o epitélio uterino. Após a inversão, o endoderma parietal que permaneceu íntegro foi aquele que se apoiava na superfície da placenta corioalantóidea, apresentando células em formato colunar alto e característica de epitélio pseudoestratificado. O endoderma visceral apresentou numerosas vilosidades apicais principalmente em regiões próximas a placenta corioalantóidea. Com o contínuo desenvolvimento do embrião e placenta corioalantóidea, observou-se o surgimento de importante área de aposição entre os endodermas visceral e parietal. A inversão do saco vitelino representou uma disposição anatômica favorável ao desenvolvimento embrionário, além de ser uma característica evolutiva nesta espécie de roedor.(AU)
The aim of this study was to study the time of yolk sac inversion as well as the dynamics resulting from this process in galea throughout pregnancy. For this, conventional histological techniques, scanning electron microscopy and transmission electron microscopy were used. Parietal and visceral endoderm delimiting the yolk sac cavity was observed at 12 days of pregnancy. The parietal endoderm was coating the fetal surface of the chorioallantoic placenta as well as delimiting the decidua capsularis area. This endoderm had prismatic format and were apart from the trophoblast by an enlarged Reichert's membrane. The visceral endoderm had vitelline vessels and there were villi only in certain areas. At 14 days of pregnancy the yolk sac inversion was characterized by the degeneration of parietal endoderm and mural trophoblast, and also the gradual disappearance of the Reichert's membrane. So it made the visceral endoderm establish an interface with the uterine epithelium. After the inversion, the parietal endoderm which remained intact was the one that rested on the chorioallantoic placenta surface. It presented cells with high columnar format and pseudostratified epithelium featured. The visceral endoderm presented many apical villi, especially in areas close to the chorioallantoic placenta. The continued development of the embryo and chorioallantoic placenta evidenced the emergence of an important apposition area between visceral and parietal endoderm. The yolk sac inversion represented an anatomical arrangement in favor of the embryo development as well as an evolutionary trait in this rodent species.(AU)
Subject(s)
Animals , Yolk Sac/anatomy & histology , Endoderm/embryology , Guinea Pigs/classification , Embryo, Mammalian/embryologyABSTRACT
The poultry industry is a sector of agribusiness which represents an important role in the country's agricultural exports. Therefore, the study about embryogenesis of the domestic chicken (Gallus gallus domesticus) has a great economic importance. The aim of this study was to evaluate embryonic development of the endoderm in chicken (Gallus gallus domesticus). Forty fertilized eggs of domestic chickens, starting from the 1st day of gestation and so on until the 19 days of the incubation were collected from the Granja São José (Amparo, SP, Brazil). Embryos and fetus were fixed in 10% formaldehyde solution, identified, weighed, measured, and subjected to light and scanning electron microscopy. The endoderm originates the internal lining epithelium of the digestive, immune, respiratory systems, and the organs can be visualized from the second day (48 h) when the liver is formed. The formation of the digestive system was complete in the 12th day. Respiratory system organs begin at the fourth day as a disorganized tissue and undifferentiated. Their complete differentiation was observed at the 10 days of incubation, however, until the 19 days the syrinx was not observed. The formation of immune system at 10th day was observed with observation of the spleen, thymus, and cloacal bursa. The study of the organogenesis of the chicken based on germ layers is very complex and underexplored, and the study of chicken embryology is very important due the economic importance and growth of the use of this animal model studies such as genetic studies.
Subject(s)
Chick Embryo/embryology , Embryonic Development , Endoderm/embryology , Animals , Chick Embryo/anatomy & histology , Chick Embryo/ultrastructure , Chickens/anatomy & histology , Chickens/growth & development , Endoderm/anatomy & histology , Endoderm/ultrastructure , Liver/anatomy & histology , Liver/embryology , Liver/ultrastructure , Microscopy, Electron, Scanning , Spleen/anatomy & histology , Spleen/embryology , Spleen/ultrastructureABSTRACT
El aparato digestivo deriva del endodermo y el mesodermo, que forman su epitelio y la musculatura lisa respectivamente. Al igual que en el resto de los sistemas, existe un interacción epitelio-mesenquimática mediada por moléculas como Hedgehog, BMP y FoxF1 que determinan el crecimiento intestinal en sus ejes principales. Los genes Hox, junto con el resto de las moléculas, participan en la regionalización del sistema digestivo. En sus inicios lo denominaremos intestino primitivo, formado por un tubo endodérmico que deriva del saco vitelino; dividiéndose en intestino anterior, medio y posterior. En esta revisión veremos cómo estos 3 segmentos darán origen a las diferentes estructuras del sistema digestivo en los vertebrados.
The digestive system is derived from the endoderm and mesoderm, which form its epithelium and smooth muscle, respectively. As in the other systems, there is an epithelial-mesenchymal interactions mediated by molecules such as Hedgehog, BMP and FoxF1, determining intestinal growth in the main axes. The Hox genes, together the rest of the molecules, involved in the regionalization of the digestive system. In the beginning we call it primitive gut, consisting of a tube derived of endodermal yolk sac, divided into foregut, midgut and hindgut. In this review we will see how these 3 segments give rise to different structures of the digestive system in vertebrates.
Subject(s)
Humans , Animals , Digestive System/embryology , Vertebrates , Genes, Homeobox , Bone Morphogenetic Proteins , Digestive System/growth & development , Endoderm/embryology , Hedgehog Proteins , Mesoderm/embryologyABSTRACT
In this study, Bmp-4, Wnt-5a and Shh gene expressions were compared during early craniofacial development in mice by comparative non-isotopic in situ hybridization. Wild-type C57BL/6J mice were studied at various stages of embryonic development (from 8.5- to 13.5-day-old embryos--E8.5-13.5). During early odontogenesis, transcripts for Bmp-4, Shh and Wnt-5a were co-localised at the tooth initiation stage. At E8.5, Shh mRNA expression was restricted to diencephalon and pharyngeal endoderm. Before maxillae and mandible ossification, Bmp-4 and Wnt-5a signals were detected in the mesenchymal cells and around Meckel's cartilage. During palatogenesis, Shh was expressed only in the epithelium and Wnt-5a only in the mesenchyme of the elevating palatal shelves. During tongue development, Shh expression was found in mesenchyme, probably contributing to tongue miogenesis, while Wnt-5a signal was in the epithelium, possibly during placode development and papillae formation. Taken together, these findings suggest that Bmp-4, Shh and Wnt-5a gene expressions may act together on the epithelial-mesenchymal interactions occurring in several aspects of the early mouse craniofacial development, such as odontogenesis, neuronal development, maxillae and mandible ossification, palatogenesis and tongue formation.