Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.109
Filter
1.
Mol Diagn Ther ; 28(4): 403-423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38890247

ABSTRACT

Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.


Subject(s)
Apoptosis , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics
2.
BMC Endocr Disord ; 24(1): 86, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862897

ABSTRACT

OBJECTIVE: Activating mutation in Ubiquitin-specific peptidase (USP8) is identified to enhance cell proliferation and adrenocorticotropic hormone (ACTH) secretion from corticotroph pituitary adenoma. We investigated the USP8 variant status in a population of Iranian people with functional corticotroph pituitary adenoma (FCPA). Moreover, a systematic review was conducted to thoroughly explore the role of USP8 variants and the related pathways in corticotroph adenomas, genotype-phenotype correlation in USP8-mutated individuals with FCPA, and the potential role of USP8 and epidermal growth factor receptor (EGFR) as targeted therapies in PFCAs. METHODS: Genetic analysis of 20 tissue samples from 19 patients with PFCAs was performed using Sanger sequencing. Moreover, a systematic literature review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Scopus, web of Sciences, and Cochrane databases were searched. The last search was performed on 20 September 2023 for all databases. RESULTS: In our series, we found two somatic mutations including a 7-bp deletion variant: c.2151_2157delCTCCTCC, p. Ser718GlnfsTer3, and a missense variant: c.2159 C > G, p. Pro720Arg (rs672601311) in exon 14. The Systematic review indicated USP8 variant in 35% of corticotroph adenomas, with the highest frequency (25%) in 720 code regions, p. Pro720Arg. Data regarding the impact of USP8 mutational status on clinical characteristics and outcomes in FCPAs are inconsistent. Moreover, Pasireotide as well as inhibitors of EGFR such as Gefitinib and Lapatinib, as well as USP8 inhibitors including -ehtyloxyimino9H-indeno (1, 2-b) pyrazine-2, 3-dicarbonitrile, DUBs-IN-2, and RA-9 indicated promising results in treatment of corticotroph adenomas. CONCLUSION: Although the USP8-EGFR system has been identified as the main trigger and target of corticotroph tumorigenesis, more precise multicenter studies are required to yield more consistent information regarding the phenotype-genotype correlation and to develop effective targeted therapies.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Pituitary ACTH Hypersecretion , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/genetics , Iran/epidemiology , Endosomal Sorting Complexes Required for Transport/genetics , Pituitary ACTH Hypersecretion/genetics , Pituitary ACTH Hypersecretion/drug therapy , Adult , Female , Male , Endopeptidases/genetics , Mutation , Middle Aged , ACTH-Secreting Pituitary Adenoma/genetics , ACTH-Secreting Pituitary Adenoma/pathology , ACTH-Secreting Pituitary Adenoma/drug therapy , Middle Eastern People
3.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38842573

ABSTRACT

Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Endosomal Sorting Complexes Required for Transport , Extracellular Vesicles , Motor Neurons , Signal Transduction , Synapses , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Extracellular Vesicles/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Synapses/metabolism , Motor Neurons/metabolism , Autophagy , Synaptotagmins/metabolism , Synaptotagmins/genetics , Neuroglia/metabolism
4.
Curr Microbiol ; 81(7): 173, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750329

ABSTRACT

The ability of fungi to effectively sense and internalize signals related to extracellular changing environments is essential for survival. This adaptability is particularly important for fungal pathogens of humans and plants that must sense and respond to drastic environmental changes when colonizing their hosts. One of the most important physicochemical factors affecting fungal growth and development is the pH. Ascomycota fungal species possess mechanisms such as the Pal/Rim pathway for external pH sensing and adaptation. However, the conservation of this mechanism in other fungi, such as Ustilaginomycetes is still little studied. To overcome this knowledge gap, we used a comparative genomic approach to explore the conservation of the Pal/Rim pathway in the 13 best sequenced and annotated Ustilaginomycetes. Our findings reveal that the Rim proteins and the Endosomal Sorting Complex Required for Transport (ESCRT) proteins are conserved in Ustilaginomycetes. They conserve the canonical domains present in Pal/Rim and ESCRT proteins of Ascomycota. This study sheds light on the molecular mechanisms used by these fungi for responding to extracellular stresses such as the pH, and open the door to further experimentations for understanding the molecular bases of the signaling in Ustilaginomycetes.


Subject(s)
Fungal Proteins , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Signal Transduction , Ascomycota/genetics , Ascomycota/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Phylogeny
5.
Clin Endocrinol (Oxf) ; 101(1): 32-41, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38691659

ABSTRACT

OBJECTIVE: Somatic variants in the ubiquitin-specific protease 8 (USP8) gene are the most common genetic cause of Cushing disease. We aimed to explore the relationship between clinical outcomes and USP8 status in a single centre. DESIGN, PATIENTS AND MEASUREMENTS: We investigated the USP8 status in 48 patients with pituitary corticotroph tumours. A median of 62 months of follow-up was conducted after surgery from November 2013 to January 2015. The clinical, biochemical and imaging features were collected and analysed. RESULTS: Seven USP8 variants (p.Ser718Pro, p.Ser719del, p.Pro720Arg, p.Pro720Gln, p.Ser718del, p.Ser718Phe, p.Lys713Arg) were identified in 24 patients (50%). USP8 variants showed a female predominance (100% vs. 75% in wild type [WT], p = .022). Patients with p.Ser719del showed an older age at surgery compared to patients with the p.Pro720Arg variant (47- vs. 24-year-olds, p = .033). Patients with p.Pro720Arg showed a higher rate of macroadenoma compared to patients harbouring the p.Ser718Pro variant (60% vs. 0%, p = .037). No significant differences were observed in serum and urinary cortisol and adrenocorticotropin hormone (ACTH) levels. Immediate surgical remission (79% vs. 75%) and long-term hormone remission (79% vs. 67%) were not significantly different between the two groups. The recurrence rate was 21% (4/19) in patients harbouring USP8 variants and 13% (2/16) in WT patients. Recurrence-free survival presented a tendency to be shorter in USP8-mutated individuals (76.7 vs. 109.2 months, p = .068). CONCLUSIONS: Somatic USP8 variants accounted for 50% of the genetic causes in this cohort with a significant female frequency. A long-term follow-up revealed a tendency toward shorter recurrence-free survival in USP8-mutant patients.


Subject(s)
ACTH-Secreting Pituitary Adenoma , Endopeptidases , Endosomal Sorting Complexes Required for Transport , Neuroendocrine Tumors , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/genetics , Female , Male , Endosomal Sorting Complexes Required for Transport/genetics , Middle Aged , Adult , Prognosis , ACTH-Secreting Pituitary Adenoma/genetics , ACTH-Secreting Pituitary Adenoma/pathology , ACTH-Secreting Pituitary Adenoma/surgery , Endopeptidases/genetics , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Mutation , Young Adult , Adrenocorticotropic Hormone/blood , Aged , Adolescent
6.
Proc Natl Acad Sci U S A ; 121(22): e2318412121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781205

ABSTRACT

Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.


Subject(s)
Calcium , Endosomal Sorting Complexes Required for Transport , Lysosomes , Osmotic Pressure , Lysosomes/metabolism , Humans , Calcium/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Intracellular Membranes/metabolism , HeLa Cells , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Calcium-Binding Proteins , Apoptosis Regulatory Proteins
7.
Biomolecules ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785998

ABSTRACT

Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing protein 1 (ARRDC1) and CD63 on the generation of sEVs, p53 loading efficiency, and therapeutic efficacy. Overexpression of either ARRDC1-p53 (ARP) or CD63-p53 (CDP) significantly elevated p53 mRNA and protein levels. The incorporation of ARRDC1 and CD63 significantly enhanced HEK293T-sEV biogenesis, evidenced by significant increases in sEV-associated proteins TSG101 and LAMP1, resulting in a boost in sEV production. Importantly, fusion with ARRDC1 or CD63 substantially increased the efficiency of loading both p53 fusion proteins and its mRNA into sEVs. sEVs equipped with ARP or CDP significantly enhanced the enrichment of p53 fusion proteins and mRNA in p53-null H1299 cells, resulting in a marked increase in apoptosis and a reduction in cell proliferation, with ARP-sEVs demonstrating greater effectiveness than CDP-sEVs. These findings underscore the enhanced functionality of ARRDC1- and CD63-modified sEVs, emphasizing the potential of genetic modifications in sEV-based therapies for targeted cancer treatment.


Subject(s)
Apoptosis , Extracellular Vesicles , Tetraspanin 30 , Tumor Suppressor Protein p53 , Humans , Tetraspanin 30/metabolism , Tetraspanin 30/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , HEK293 Cells , Cell Line, Tumor , Cell Proliferation , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lysosomal-Associated Membrane Protein 1
8.
Nat Commun ; 15(1): 4023, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740816

ABSTRACT

Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.


Subject(s)
Cytokinesis , Endosomal Sorting Complexes Required for Transport , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Humans , Methylation , HeLa Cells , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , HIV-1/metabolism , HIV-1/genetics , HIV-1/physiology , Lysine/metabolism , Protein Processing, Post-Translational
9.
PLoS Biol ; 22(4): e3002327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687820

ABSTRACT

Mutations in the human AAA-ATPase VPS4 isoform, VPS4A, cause severe neurodevelopmental defects and congenital dyserythropoietic anemia (CDA). VPS4 is a crucial component of the endosomal sorting complex required for transport (ESCRT) system, which drives membrane remodeling in numerous cellular processes, including receptor degradation, cell division, and neural pruning. Notably, while most organisms encode for a single VPS4 gene, human cells have 2 VPS4 paralogs, namely VPS4A and VPS4B, but the functional differences between these paralogs is mostly unknown. Here, we set out to investigate the role of the human VPS4 paralogs in cytokinetic abscission using a series of knockout cell lines. We found that VPS4A and VPS4B hold both overlapping and distinct roles in abscission. VPS4A depletion resulted in a more severe abscission delay than VPS4B and was found to be involved in earlier stages of abscission. Moreover, VPS4A and a monomeric-locked VPS4A mutant bound the abscission checkpoint proteins CHMP4C and ANCHR, while VPS4B did not, indicating a regulatory role for the VPS4A isoform in abscission. Depletion of VTA1, a co-factor of VPS4, disrupted VPS4A-ANCHR interactions and accelerated abscission, suggesting that VTA1 is also involved in the abscission regulation. Our findings reveal a dual role for VPS4A in abscission, one that is canonical and can be compensated by VPS4B, and another that is regulatory and may be delivered by its monomeric form. These observations provide a potential mechanistic explanation for the neurodevelopmental defects and other related disorders reported in VPS4A-mutated patients with a fully functional VPS4B paralog.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Cytokinesis , Endosomal Sorting Complexes Required for Transport , Vacuolar Proton-Translocating ATPases , Humans , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , HeLa Cells , Protein Isoforms/metabolism , Protein Isoforms/genetics
10.
Dev Cell ; 59(11): 1410-1424.e4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38593803

ABSTRACT

Endoplasmic reticulum exit sites (ERESs) are tubular outgrowths of endoplasmic reticulum that serve as the earliest station for protein sorting and export into the secretory pathway. How these structures respond to different cellular conditions remains unclear. Here, we report that ERESs undergo lysosome-dependent microautophagy when Ca2+ is released by lysosomes in response to nutrient stressors such as mTOR inhibition or amino acid starvation in mammalian cells. Targeting and uptake of ERESs into lysosomes were observed by super-resolution live-cell imaging and focus ion beam scanning electron microscopy (FIB-SEM). The mechanism was ESCRT dependent and required ubiquitinated SEC31, ALG2, and ALIX, with a knockout of ALG2 or function-blocking mutations of ALIX preventing engulfment of ERESs by lysosomes. In vitro, reconstitution of the pathway was possible using lysosomal lipid-mimicking giant unilamellar vesicles and purified recombinant components. Together, these findings demonstrate a pathway of lysosome-dependent ERES microautophagy mediated by COPII, ALG2, and ESCRTS induced by nutrient stress.


Subject(s)
COP-Coated Vesicles , Calcium-Binding Proteins , Endoplasmic Reticulum , Endosomal Sorting Complexes Required for Transport , Lysosomes , Microautophagy , Vesicular Transport Proteins , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Humans , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , COP-Coated Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Transport , HeLa Cells , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Autophagy/physiology , TOR Serine-Threonine Kinases/metabolism , Calcium/metabolism
11.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667270

ABSTRACT

The Sit4 protein phosphatase plays a key role in orchestrating various cellular processes essential for maintaining cell viability during aging. We have previously shown that SIT4 deletion promotes vacuolar acidification, mitochondrial derepression, and oxidative stress resistance, increasing yeast chronological lifespan. In this study, we performed a proteomic analysis of isolated vacuoles and yeast genetic interaction analysis to unravel how Sit4 influences vacuolar and mitochondrial function. By employing high-resolution mass spectrometry, we show that sit4Δ vacuolar membranes were enriched in Vps27 and Hse1, two proteins that are part of the endosomal sorting complex required for transport-0. In addition, SIT4 exhibited a negative genetic interaction with VPS27, as sit4∆vps27∆ double mutants had a shortened lifespan compared to sit4∆ and vps27∆ single mutants. Our results also show that Vps27 did not increase sit4∆ lifespan by improving protein trafficking or vacuolar sorting pathways. However, Vps27 was critical for iron homeostasis and mitochondrial function in sit4∆ cells, as sit4∆vps27∆ double mutants exhibited high iron levels and impaired mitochondrial respiration. These findings show, for the first time, cross-talk between Sit4 and Vps27, providing new insights into the mechanisms governing chronological lifespan.


Subject(s)
Mitochondria , Protein Phosphatase 2 , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuoles , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mitochondria/metabolism , Vacuoles/metabolism , Iron/metabolism , Protein Transport , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Mutation/genetics
12.
J Mol Cell Cardiol ; 190: 35-47, 2024 May.
Article in English | MEDLINE | ID: mdl-38593639

ABSTRACT

BACKGROUND: Exosomes released by cardiomyocytes are essential mediators of intercellular communications within the heart, and various exosomal proteins and miRNAs are associated with cardiovascular diseases. However, whether the endosomal sorting complex required for transport (ESCRT) and its key component Alix is required for exosome biogenesis within cardiomyocyte remains poorly understood. METHODS: Super-resolution imaging was performed to investigate the subcellular location of Alix and multivesicular body (MVB) in primary cardiomyocytes. Cardiomyocyte-specific Alix-knockout mice were generated using AAV9/CRISPR/Cas9-mediated in vivo gene editing. A stable Alix-knockdown H9c2 cardiomyocyte line was constructed through lentiviral-mediated delivery of short hairpin RNA. In order to determine the role of Alix in controlling exosome biogenesis, exosomes from cardiomyocyte-specific Alix-knockout mice plasma and Alix-knockdown H9c2 culture medium were isolated and examined by western blot, NTA analysis and transmission electron microscopy. Biochemical and immunofluorescence analysis were performed to determine the role of ESCRT machinery in regulating MVB formation. Lastly, transverse aortic constriction (TAC)-induced cardiac pressure overload model was established to further explore the role of Alix-mediated exosome biogenesis under stress conditions. RESULTS: A significant proportion of Alix localized to the MVB membrane within cardiomyocytes. Genetic deletion of Alix in murine heart resulted in a reduction of plasma exosome content without affecting cardiac structure or contractile function. Consistently, the downregulation of Alix in H9c2 cardiomyocyte line also suppressed the biogenesis of exosomes. We found the defective ESCRT machinery and suppressed MVB formation upon Alix depletion caused compromised exosome biogenesis. Remarkably, TAC-induced cardiac pressure overload led to increased Alix, MVB levels, and elevated plasma exosome content, which could be totally abolished by Alix deletion. CONCLUSION: These results establish Alix as an essential and stress-sensitive regulator of cardiac exosome biogenesis and the findings may yield valuable therapeutic implications.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Exosomes , Mice, Knockout , Myocytes, Cardiac , Stress, Physiological , Myocytes, Cardiac/metabolism , Animals , Exosomes/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Mice , Multivesicular Bodies/metabolism , Cell Line , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Rats
13.
Commun Biol ; 7(1): 334, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491121

ABSTRACT

VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.


Subject(s)
Autophagosomes , Autophagy , Autophagosomes/metabolism , Autophagy/physiology , Intracellular Membranes/metabolism , Endosomes/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism
14.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38546617

ABSTRACT

Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.


Subject(s)
Drosophila Proteins , Endosomal Sorting Complexes Required for Transport , Germ Cells , Stem Cells , Animals , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cyclin B , Cytokinesis/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Germ Cells/metabolism , Mammals/metabolism , Stem Cells/metabolism
15.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38423010

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Subject(s)
Epilepsy, Generalized , Optic Atrophy , Animals , Humans , Child , Zebrafish/genetics , Optic Atrophy/genetics , Phenotype , Endosomal Sorting Complexes Required for Transport/genetics
16.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 46-55, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372114

ABSTRACT

Lung adenocarcinoma (LUAD) is a common pathological type of non-small cell lung cancer; identifying preferable biomarkers has become one of the current challenges. Given that VTA1 has been reported associated with tumor progression in various human solid cancers but rarely reported in LUAD, herein, RNA sequencing data from TCGA and GTEx were obtained for analysis of VTA1 expression and differentially expressed gene (DEG). Furthermore, functional enrichment analysis of VTA1-related DEGs was performed by GO/KEGG, GSEA, immune cell infiltration analysis, and protein-protein interaction (PPI) network. In addition, the clinical significance of VTA1 in LUAD was figured out by Kaplan-Meier Cox regression and prognostic nomogram model. R package was used to analyze incorporated studies. As a result, VTA1 was highly expressed in various malignancies, including LUAD, compared with normal samples. Moreover, high expression of VTA1 was associated with poor prognosis in 533 LUAD samples, as well as T stage T2&T3&T4, N stage N1&N2&N3, M stage M1, pathologic stage II&III&IV, and residual tumor R1&R2, et al. (P < 0.05). High VTA1 was an independent prognostic factor in Cox regression analysis; Age and cytogenetics risk were included in the nomogram prognostic model. Furthermore, a total of 4232 DEGs were identified between the high- and the low-expression group, of which 736 genes were up-regulated and 3496 genes were down-regulated. Collectively, high expression of VTA1 is a potential biomarker for adverse outcomes in LUAD. The DEGs and pathways recognized in the study provide a preliminary grasp of the underlying molecular mechanisms of LUAD carcinogenesis and progression.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Endosomal Sorting Complexes Required for Transport , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Carcinogenesis , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Prognosis , Endosomal Sorting Complexes Required for Transport/genetics
17.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38319250

ABSTRACT

Endosomes are specialized organelles that function in the secretory and endocytic protein sorting pathways. Endocytosed cell surface receptors and transporters destined for lysosomal degradation are sorted into intraluminal vesicles (ILVs) at endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. The endosomes (multivesicular bodies, MVBs) then fuse with the lysosome. During endosomal maturation, the number of ILVs increases, but the size of endosomes does not decrease despite the consumption of the limiting membrane during ILV formation. Vesicle-mediated trafficking is thought to provide lipids to support MVB biogenesis. However, we have uncovered an unexpected contribution of a large bridge-like lipid transfer protein, Vps13, in this process. Here, we reveal that Vps13-mediated lipid transfer at ER-endosome contact sites is required for the ESCRT pathway. We propose that Vps13 may play a critical role in supplying lipids to the endosome, ensuring continuous ESCRT-mediated sorting during MVB biogenesis.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Endosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Endocytosis , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/genetics , Lipids , Multivesicular Bodies , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Protein Transport
18.
FEBS J ; 291(13): 2849-2875, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38401056

ABSTRACT

The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an essential enzyme of the base excision repair pathway of non-distorting DNA lesions. In response to genotoxic treatments, APE1 is highly secreted (sAPE1) in association with small-extracellular vesicles (EVs). Interestingly, its presence in the serum of patients with hepatocellular or non-small-cell-lung cancers may represent a prognostic biomarker. The mechanism driving APE1 to associate with EVs is unknown, but is of paramount importance in better understanding the biological roles of sAPE1. Because APE1 lacks an endoplasmic reticulum-targeting signal peptide, it can be secreted through an unconventional protein secretion endoplasmic reticulum-Golgi-independent pathway, which includes an endosome-based secretion of intraluminal vesicles, mediated by multivesicular bodies (MVBs). Using HeLa and A549 cell lines, we investigated the role of endosomal sorting complex required for transport protein pathways (either-dependent or -independent) in the constitutive or trichostatin A-induced secretion of sAPE1, by means of manumycin A and GW 4869 treatments. Through an in-depth biochemical analysis of late-endosomes (LEs) and early-endosomes (EEs), we observed that the distribution of APE1 on density gradient corresponded to that of LE-CD63, LE-Rab7, EE-EEA1 and EE-Rab 5. Interestingly, the secretion of sAPE1, induced by cisplatin genotoxic stress, involved an autophagy-based unconventional secretion requiring MVBs. The present study enlightens the central role played by MVBs in the secretion of sAPE1 under various stimuli, and offers new perspectives in understanding the biological relevance of sAPE1 in cancer cells.


Subject(s)
DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Protein Transport , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , HeLa Cells , Endosomes/metabolism , A549 Cells , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Multivesicular Bodies/metabolism , Excision Repair , Hydroxamic Acids
19.
Cell Commun Signal ; 22(1): 150, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38403678

ABSTRACT

BACKGROUND: Small extracellular vesicles (EVs), exemplified by exosomes, mediate intercellular communication by transporting proteins, mRNAs, and miRNAs. Post-translational modifications are involved in controlling small EV secretion process. However, whether palmitoylation regulates small EV secretion, remains largely unexplored. METHODS: Vacuole Membrane Protein 1 (VMP1) was testified to be S-palmitoylated by Palmitoylation assays. VMP1 mutant plasmids were constructed to screen out the exact palmitoylation sites. Small EVs were isolated, identified and compared between wild-type VMP1 or mutant VMP1 transfected cells. Electron microscope and immunofluorescence were used to detect multivesicular body (MVB) number and morphology change when VMP1 was mutated. Immunoprecipitation and Mass spectrum were adopted to identify the protein that interacted with palmitoylated VMP1, while knock down experiment was used to explore the function of targeted protein ALIX. Taking human Sertoli cells (SCs) and human spermatogonial stem cell like cells (SSCLCs) as a model of intercellular communication, SSCLC maintenance was detected by flow cytometry and qPCR at 12 days of differentiation. In vivo, mouse model was established by intraperitoneal injection with palmitoylation inhibitor, 2-bromopalmitate (2BP) for 3 months. RESULTS: VMP1 was identified to be palmitoylated at cysteine 263,278 by ZDHHC3. Specifically, palmitoylation of VMP1 regulated its subcellular location and enhanced the amount of small EV secretion. Mutation of VMP1 palmitoylation sites interfered with the morphology and biogenesis of MVBs through suppressing intraluminal vesicle formation. Furthermore, inhibition of VMP1 palmitoylation impeded small EV secretion by affecting the interaction of VMP1 with ALIX, an accessory protein of the ESCRT machinery. Taking SCs and SSCLCs as a model of intercellular communication, we discovered VMP1 palmitoylation in SCs was vital to the growth status of SSCLCs in a co-culture system. Inhibition of VMP1 palmitoylation caused low self-maintenance, increased apoptosis, and decreased proliferation rate of SSCLCs. In vivo, intraperitoneal injection of 2BP inhibited VMP1 palmitoylation and exosomal marker expression in mouse testes, which were closely associated with the level of spermatogenic cell apoptosis and proliferation. CONCLUSIONS: Our study revealed a novel mechanism for small EV secretion regulated by VMP1 palmitoylation in Sertoli cells, and demonstrated its pivotal role in intercellular communication and SSC niche.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Extracellular Vesicles , Lipoylation , Membrane Proteins , Animals , Humans , Mice , Cell Communication , Endosomal Sorting Complexes Required for Transport/genetics , Extracellular Vesicles/metabolism , Membrane Proteins/metabolism , Vacuoles/metabolism
20.
Proc Natl Acad Sci U S A ; 121(9): e2318046121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386713

ABSTRACT

Apoptosis linked Gene-2 (ALG-2) is a multifunctional intracellular Ca2+ sensor and the archetypal member of the penta-EF hand protein family. ALG-2 functions in the repair of damage to both the plasma and lysosome membranes and in COPII-dependent budding at endoplasmic reticulum exit sites (ERES). In the presence of Ca2+, ALG-2 binds to ESCRT-I and ALIX in membrane repair and to SEC31A at ERES. ALG-2 also binds directly to acidic membranes in the presence of Ca2+ by a combination of electrostatic and hydrophobic interactions. By combining giant unilamellar vesicle-based experiments and molecular dynamics simulations, we show that charge-reversed mutants of ALG-2 at these locations disrupt membrane recruitment. ALG-2 membrane binding mutants have reduced or abrogated ERES localization in response to Thapsigargin-induced Ca2+ release but still localize to lysosomes following lysosomal Ca2+ release. In vitro reconstitution shows that the ALG-2 membrane-binding defect can be rescued by binding to ESCRT-I. These data thus reveal the nature of direct Ca2+-dependent membrane binding and its interplay with Ca2+-dependent protein binding in the cellular functions of ALG-2.


Subject(s)
Cell Physiological Phenomena , Intracellular Membranes , Membranes , Cell Division , Endosomal Sorting Complexes Required for Transport/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...