Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
1.
BMC Microbiol ; 24(1): 382, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354380

ABSTRACT

Lignin, the second most abundant renewable carbon source on earth, holds significant potential for producing biobased specialty chemicals. However, its complex, highly branched structure, consisting of phenylpropanoic units and strong carbon-carbon and ether bonds, makes it highly resistant to depolymerisation. This recalcitrancy highlights the need to search for robust lignin-degrading microorganisms with potential for use as industrial strains. Bioprospecting for microorganisms from lignin-rich niches is an attractive approach among others. Here, we explored the ligninolytic potential of bacteria isolated from a lignin-rich underground coalmine, the Morupule Coal Mine, in Botswana. Using a culture-dependent approach, we screened for the presence of bacteria that could grow on 2.5% kraft lignin-supplemented media and identified them using 16 S rRNA sequencing. The potential ligninolytic isolates were evaluated for their ability to tolerate industry-associated stressors. We report the isolation of twelve isolates with ligninolytic abilities. Of these, 25% (3) isolates exhibited varying robust ligninolytic ability and tolerance to various industrial stressors. The molecular identification revealed that the isolates belonged to the Enterobacter genus. Two of three isolates had a 16 S rRNA sequence lower than the identity threshold indicating potentially novel species pending further taxonomic review. ATR-FTIR analysis revealed the ligninolytic properties of the isolates by demonstrating structural alterations in lignin, indicating potential KL degradation, while Py-GC/MS identified the resulting biochemicals. These isolates produced chemicals of diverse functional groups and monomers as revealed by both methods. The use of coalmine-associated ligninolytic bacteria in biorefineries has potential.


Subject(s)
Enterobacter , Lignin , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Lignin/metabolism , Enterobacter/isolation & purification , Enterobacter/genetics , Enterobacter/metabolism , Enterobacter/classification , DNA, Bacterial/genetics , Sequence Analysis, DNA , Soil Microbiology , Coal Mining , Coal/microbiology , DNA, Ribosomal/genetics
2.
PLoS One ; 19(8): e0306597, 2024.
Article in English | MEDLINE | ID: mdl-39106246

ABSTRACT

Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.


Subject(s)
Enterobacter , Gossypol , Metabolomics , Gossypol/pharmacology , Gossypol/metabolism , Enterobacter/metabolism , Enterobacter/genetics , Enterobacter/drug effects , Animals , Transcriptome/drug effects , Gene Expression Regulation, Bacterial/drug effects , Metabolome/drug effects , Gene Expression Profiling , Rumen/microbiology , Rumen/metabolism , Rumen/drug effects
3.
J Hazard Mater ; 478: 135476, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39137549

ABSTRACT

Nicosulfuron and Cd are common pollutants that pose significant threats to the environment and human health, particularly under combined stress. This study is the first to remediate environmental nicosulfuron and Cd under combined stress using microbiological techniques. Enterobacter ludwigii ES2 was isolated, characterized, and demonstrated to degrade 93.80 % of nicosulfuron and remove 59.64 % of Cd within 4 d. Potential functional genes, including nicosulfuron degradation genes gstA, gstB, glnQ, glnP, mreB, and sixA, and Cd tolerance/removal-related genes mntA, mntB, mntH, dnaK, znuA, and zupt, were predicted by sequencing the whole genome of strain ES2, and their expression was verified by qRT-PCR. Strain ES2 managed oxidative stress induced by Cd through superoxide dismutase, glutathione, catalase, peroxidase, and malondialdehyde. Furthermore, to repair compound stress, up to 90.48 % of nicosulfuron and 67.74 % of Cd were removed. The community structure analysis indicated that Enterobacteriaceae, Sphingomonadaceae, and Gemmatimonadaceae were dominant populations, with ES2 stably colonizing and becoming the dominant bacterium. In summary, ES2 demonstrated significant potential in remediating nicosulfuron and Cd pollution from various perspectives, providing a solid theoretical foundation.


Subject(s)
Biodegradation, Environmental , Cadmium , Enterobacter , Enterobacter/genetics , Enterobacter/metabolism , Cadmium/metabolism , Cadmium/toxicity , Sulfonylurea Compounds/metabolism , Soil Pollutants/metabolism , Genome, Bacterial , Microbiota , Pyridines
4.
Int J Biol Macromol ; 275(Pt 2): 133755, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986995

ABSTRACT

Bacterial cellulose (BC) is an extracellular polysaccharide with myriad unique properties, such as high purity, water-holding capacity and biocompatibility, making it attractive in materials science. However, genetic engineering techniques for BC-producing microorganisms are rare. Herein, the electroporation-based gene transformation and the λ Red-mediated gene knockout method with a nearly 100 % recombination efficiency were established in the fast-growing and BC hyperproducer Enterobacter sp. FY-07. This genetic manipulation toolkit was validated by inactivating the protein subunit BcsA in the cellulose synthase complex. Subsequently, the inducible BC-producing strains from glycerol were constructed through inducible expression of the key gene fbp in the gluconeogenesis pathway, which recovered >80 % of the BC production. Finally, the BC properties analysis results indicated that the induced-synthesized BC pellicles were looser, more porous and reduced crystallinity, which could further broaden the application prospects of BC. To our best knowledge, this is the first attempt to construct the completely inducible BC-producing strains. Our work paves the way for increasing BC productivity by metabolic engineering and broadens the available fabrication methods for BC-based advanced functional materials.


Subject(s)
Cellulose , Enterobacter , Enterobacter/metabolism , Enterobacter/genetics , Cellulose/biosynthesis , Cellulose/metabolism , Metabolic Engineering/methods , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycerol/metabolism
5.
Environ Res ; 260: 119593, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39002634

ABSTRACT

Both autotrophic and heterotrophic denitrification are known as important bioprocesses of microbe-mediated nitrogen cycle in natural ecosystems. Actually, mixotrophic denitrification co-driven by organic matter and reduced sulfur substances are also common, especially in hypoxic environments such as estuarine sediments. However, carbon, nitrogen and sulfur co-metabolism during mixotrophic denitrification in natural water ecosystems has rarely been reported in detail. Therefore, this study investigated the co-metabolism of carbon, nitrogen and sulfur using samples collected from four distinct natural water ecosystems. Results demonstrated that samples from various sources all exhibited the ability for co-metabolism of carbon, nitrogen and sulfur. Microbial community analysis showed that Pseudomonas and Paracoccus were dominant bacteria ranging from 65.6% to 75.5% in mixotrophic environment. Enterobacter sp. HIT-SHJ4, a mixotrophic denitrifying strain which owned the capacity for co-metabolism of carbon, nitrogen and sulfur, was isolated and reported here for the first time. The strain preferred methanol as its carbon source and demonstrated remarkable efficiency for removing sulfide and nitrate with below 100 mg/L sulfide. Under weak acid conditions (pH 6.5-7.0), it exhibited enhanced capability in converting sulfide to elemental sulfur. Its bioactivity was evident within a temperature from 25 °C to 40 °C and C/N ratios from 0.75 to 3. This study confirmed the widespread presence of microbial-mediated synergistic carbon, nitrogen and sulfur metabolism in natural aquatic ecosystems. HIT-SHJ4 emerges as a novel strain, shedding light on carbon, nitrogen and sulfur co-metabolism in natural water bodies. Furthermore, it also serves as a promising candidate microorganism for in-situ ecological remediation, particularly in dealing with contamination posed by nitrate, sulfide, and organic matter.


Subject(s)
Biodegradation, Environmental , Carbon , Enterobacter , Nitrogen , Sulfur , Wetlands , Sulfur/metabolism , Nitrogen/metabolism , Carbon/metabolism , Enterobacter/metabolism , Enterobacter/isolation & purification , Denitrification , Water Pollutants, Chemical/metabolism
6.
Microbiol Res ; 286: 127806, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38924817

ABSTRACT

Metabolic cross-feeding is a pervasive interaction between bacteria to acquire novel phenotypes. However, our current understanding of the survival mechanism for cross-feeding in cocultured bacterial biofilms under heavy-metal conditions remains limited. Herein, we found that Comamonas sp. A23 produces L-phenylalanine to activate the L-phenylalanine degradation pathway in Enterobacter sp. A11, enhancing biofilm formation and cadmium [Cd(II)] immobilization in A11. The genes responsible for L-phenylalanine-degradation (paaK) and cell attachment and aggregation (csgAD) are essential for biofilm formation and Cd(II) immobilization in A11 induced by L-phenylalanine. The augmentation of A11 biofilms, in turn, protects A23 under Cd(II) and H2O2 stresses. The plant-based experiments demonstrate that the induction of two rice Cd(II) transporters, OsCOPT4 and OsBCP1, by A11 and A23 enhances rice resistance against Cd(II) and H2O2 stresses. Overall, our findings unveil the mutual dependence between bacteria and rice on L-phenylalanine cross-feeding for survival under abiotic stress.


Subject(s)
Biofilms , Cadmium , Comamonas , Enterobacter , Hydrogen Peroxide , Oryza , Phenylalanine , Cadmium/metabolism , Oryza/microbiology , Enterobacter/metabolism , Enterobacter/genetics , Biofilms/growth & development , Hydrogen Peroxide/metabolism , Phenylalanine/metabolism , Comamonas/metabolism , Comamonas/genetics , Stress, Physiological , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Interactions
7.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38877666

ABSTRACT

AIMS: Study of rhizospheric microbiome-mediated plant growth promotional attributes currently highlighted as a key tool for the development of suitable bio-inoculants for sustainable agriculture purposes. In this context, we have conducted a detailed study regarding the characterization of phosphate solubilizing potential by plant growth-promoting bacteria that have been isolated from the rhizosphere of a pteridophyte Dicranopteris sp., growing on the lateritic belt of West Bengal. METHODS AND RESULTS: We have isolated three potent bacterial strains, namely DRP1, DRP2, and DRP3 from the rhizoids-region of Dicranopteris sp. Among the isolated strains, DRP3 is found to have the highest phosphate solubilizing potentiality and is able to produce 655.89 and 627.58 µg ml-1 soluble phosphate by solubilizing tricalcium phosphate (TCP) and Jordan rock phosphate, respectively. This strain is also able to solubilize Purulia rock phosphate moderately (133.51 µg ml-1). Whole-genome sequencing and further analysis of the studied strain revealed the presence of pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase gdh gene along with several others that were well known for their role in phosphate solubilization. Further downstream, quantitative reverse transcriptase PCR-based expression study revealed 1.59-fold upregulation of PQQ-dependent gdh gene during the solubilization of TCP. Root colonization potential of the studied strain on two taxonomically distinct winter crops viz. Cicer arietinum and Triticum aestivum has been checked by using scanning electron microscopy. Other biochemical analyses for plant growth promotion traits including indole acetic acid production (132.02 µg ml-1), potassium solubilization (3 mg l-1), biofilm formation, and exopolymeric substances productions (1.88-2.03 µg ml-1) also has been performed. CONCLUSION: This study highlighted the active involvement of PQQ-dependent gdh gene during phosphate solubilization from any Enterobacter group. Moreover, our study explored different roadmaps for sustainable farming methods and the preservation of food security without endangering soil health in the future.


Subject(s)
Crops, Agricultural , Enterobacter , Phosphates , Rhizosphere , Soil Microbiology , Phosphates/metabolism , Enterobacter/genetics , Enterobacter/metabolism , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Solubility , Plant Development , Plant Roots/microbiology , Phylogeny , Calcium Phosphates/metabolism , Indoleacetic Acids/metabolism
8.
J Hazard Mater ; 473: 134662, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788574

ABSTRACT

Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.


Subject(s)
Biodegradation, Environmental , Cadmium , Enterobacter , Geologic Sediments , Water Pollutants, Chemical , Cadmium/toxicity , Cadmium/metabolism , Enterobacter/metabolism , Enterobacter/growth & development , Enterobacter/drug effects , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Rhizosphere , Hydrocharitaceae/metabolism , Hydrocharitaceae/microbiology , Hydrocharitaceae/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Biomass
9.
BMC Plant Biol ; 24(1): 474, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811913

ABSTRACT

BACKGROUND: The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Enterobacter sp. and the evaluation of their antimicrobial and copper stress (Cu+ 2)-reducing capabilities in Vicia faba (L.) plants. The green-synthesized ZnO NPs were validated using X-ray powder diffraction (XRD); Fourier transformed infrared (FTIR), Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and scanning electron microscopy (SEM) techniques. ZnO NPs could serve as an improved bactericidal agent for various biological applications. as well as these nanoparticles used in alleviating the hazardous effects of copper stress on the morphological and physiological traits of 21-day-old Vicia faba (L.) plants. RESULTS: The results revealed that different concentrations of ZnO NPs (250, 500, or 1000 mg L-1) significantly alleviated the toxic effects of copper stress (100 mM CuSO4) and increased the growth parameters, photosynthetic efficiency (Fv/Fm), and pigments (Chlorophyll a and b) contents in Cu-stressed Vicia faba (L.) seedlings. Furthermore, applying high concentration of ZnO NPs (1000 mg L-1) was the best dose in maintaining the levels of antioxidant enzymes (CAT, SOD, and POX), total soluble carbohydrates, total soluble proteins, phenolic and flavonoid in all Cu-stressed Vicia faba (L.) seedlings. Additionally, contents of Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly suppressed in response to high concentrations of ZnO NPs (1000 mg L-1) in all Cu-stressed Vicia faba (L.) seedlings. Also, it demonstrates strong antibacterial action (0.9 mg/ml) against various pathogenic microorganisms. CONCLUSIONS: The ZnO NPs produced in this study demonstrated the potential to enhance plant detoxification and tolerance mechanisms, enabling plants to better cope with environmental stress. Furthermore, these nanoparticles could serve as an improved bactericidal agent for various biological applications.


Subject(s)
Copper , Enterobacter , Metal Nanoparticles , Vicia faba , Zinc Oxide , Vicia faba/drug effects , Vicia faba/metabolism , Zinc Oxide/pharmacology , Enterobacter/drug effects , Enterobacter/metabolism , Metal Nanoparticles/chemistry , Green Chemistry Technology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Stress, Physiological/drug effects , Antioxidants/metabolism , Seedlings/drug effects
10.
Antonie Van Leeuwenhoek ; 117(1): 76, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705910

ABSTRACT

Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.


Subject(s)
Enterobacter , Genome, Bacterial , Genomics , Indoleacetic Acids , Phylogeny , Serratia , Soil Microbiology , Indoleacetic Acids/metabolism , Serratia/genetics , Serratia/isolation & purification , Serratia/metabolism , Serratia/classification , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacter/classification , Enterobacter/metabolism , Klebsiella/genetics , Klebsiella/metabolism , Klebsiella/isolation & purification , Klebsiella/classification , Plant Development , Soil/chemistry , Plant Growth Regulators/metabolism
11.
Sci Rep ; 14(1): 12189, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806526

ABSTRACT

In the present study, ten (10) selected bacteria isolated from chasmophytic wild Chenopodium were evaluated for alleviation of drought stress in chickpea. All the bacterial cultures were potential P, K and Zn solubilizer. About 50% of the bacteria could produce Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The bacteria showed wide range of tolerance towards pH, salinity, temperature and osmotic stress. Bacillus paralicheniformis L38, Pseudomonas sp. LN75, Enterobacter hormachei subsp. xiangfengensis LJ89, B. paramycoides L17 and Micrococcus luteus LA9 significantly improved growth and nutrient (N, P, K, Fe and Zn) content in chickpea under water stress during a green house experiment conducted following a completely randomized design (CRD). Application of Microbacterium imperiale LJ10, B. stercoris LN74, Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 reduced the antioxidant enzymes under water stress. During field experiments conducted following randomized block design (RBD), all the bacterial inoculations improved chickpea yield under water stress. Highest yield (1363 kg ha-1) was obtained in plants inoculated with Pseudomonas sp. LN75. Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 have potential as microbial stimulants to alleviate the water stress in chickpea. To the best of our knowledge this is the first report of using chasmophyte associated bacteria for alleviation of water stress in a crop plant.


Subject(s)
Cicer , Droughts , Stress, Physiological , Cicer/microbiology , Cicer/physiology , Cicer/growth & development , Bacteria/metabolism , Indoleacetic Acids/metabolism , Nutrients/metabolism , Carbon-Carbon Lyases/metabolism , Enterobacter/physiology , Enterobacter/metabolism , Pseudomonas/physiology , Antioxidants/metabolism
12.
Genes Genomics ; 46(6): 671-687, 2024 06.
Article in English | MEDLINE | ID: mdl-38687436

ABSTRACT

BACKGROUND: Acidic environments naturally occur worldwide and uncontrolled use of agricultural practices may also cause acidification of soils. The development of acidic conditions disturbs the establishment of efficient microbial populations in their natural niches. The survival of Enterobacter species under acidic stress remains poorly understood. OBJECTIVE: This study aimed to investigate the survival of an environmental isolate Enterobacter sp. S-33 under acidic stress and to identify the various genes involved in stress protection at the global gene transcription level. The obtained results provide new targets that will allow understanding the in-depth mechanisms involved in the adaptation of bacteria to environmental pH changes. METHODS: We used the next-generation sequencing (NGS) method to analyze the expression (up-regulation & down-regulation) of genes under varying pH conditions. RESULTS: A total of 4214 genes were differentially expressed under acidic conditions (pH 5.0), with 294 up-regulated and 167 down-regulated. At pH 6.0, 50 genes were significantly expressed, of which 34 and 16 were identified as up-regulated and down-regulated, respectively. Many of the up-regulated genes were involved in carbohydrate metabolism, amino acid transport & metabolism, and the most down-regulated genes were related to post-translational modification, lipid transport & metabolism, etc. The observed transcriptomic regulation of genes and pathways identified that Enterobacter reduced its post-translational modification, lipid transport & metabolism, and increased carbohydrate metabolism, amino acid metabolism & transport, energy production & conversion to adapt and grow in acidic stress. CONCLUSIONS: The present work provides in-depth information on the characterization of genes associated with tolerance or adaptation to acidic stress of Enterobacter bacterium.


Subject(s)
Enterobacter , Gene Expression Regulation, Bacterial , Stress, Physiological , Transcriptome , Enterobacter/genetics , Enterobacter/metabolism , Hydrogen-Ion Concentration , Stress, Physiological/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
13.
J Hazard Mater ; 470: 134227, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581879

ABSTRACT

Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.


Subject(s)
Biodegradation, Environmental , Cadmium , Enterobacter , Phosphorus , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Enterobacter/metabolism , Cadmium/metabolism , Cadmium/toxicity , Phosphorus/metabolism , Phosphorus/chemistry , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Soil/chemistry
14.
J Microbiol ; 62(5): 355-365, 2024 May.
Article in English | MEDLINE | ID: mdl-38587592

ABSTRACT

Chromium is a prevalent toxic heavy metal, and chromate [Cr(VI)] exhibits high mutagenicity and carcinogenicity. The presence of the Cr(VI) efflux protein ChrA has been identified in strains exhibiting resistance to Cr(VI). Nevertheless, certain strains of bacteria that are resistant to Cr(VI) lack the presence of ChrB, a known regulatory factor. Here, a PadR family transcriptional repressor, ChrN, has been identified as a regulator in the response of Enterobacter sp. Z1(CCTCC NO: M 2019147) to Cr(VI). The chrN gene is cotranscribed with the chrA gene, and the transcriptional expression of this operon is induced by Cr(VI). The binding capacity of the ChrN protein to Cr(VI) was demonstrated by both the tryptophan fluorescence assay and Ni-NTA purification assay. The interaction between ChrN and the chrAN operon promoter was validated by reporter gene assay and electrophoretic mobility shift assay. Mutation of the conserved histidine residues His14 and His50 resulted in loss of ChrN binding with the promoter of the chrAN operon. This observation implies that these residues are crucial for establishing a DNA-binding site. These findings demonstrate that ChrN functions as a transcriptional repressor, modulating the cellular response of strain Z1 to Cr(VI) exposure.


Subject(s)
Bacterial Proteins , Chromates , Enterobacter , Gene Expression Regulation, Bacterial , Operon , Promoter Regions, Genetic , Repressor Proteins , Chromates/metabolism , Enterobacter/genetics , Enterobacter/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription, Genetic , Chromium/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Binding Sites , Protein Binding
15.
J Glob Antimicrob Resist ; 37: 108-121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552872

ABSTRACT

OBJECTIVES: A concern with the ESKAPE pathogen, Enterobacter bugandensis, and other species of the Enterobacter cloacae complex, is the frequent appearance of multidrug resistance against last-resort antibiotics, such as polymyxins. METHODS: Here, we investigated the responses to polymyxin B (PMB) in two PMB-resistant E. bugandensis clinical isolates by global transcriptomics and deletion mutagenesis. RESULTS: In both isolates, the genes of the CrrAB-regulated operon, including crrC and kexD, displayed the highest levels of upregulation in response to PMB. ∆crrC and ∆kexD mutants became highly susceptible to PMB and lost the heteroresistant phenotype. Conversely, heterologous expression of CrrC and KexD proteins increased PMB resistance in a sensitive Enterobacter ludwigii clinical isolate and in the Escherichia coli K12 strain, W3110. The efflux pump, AcrABTolC, and the two component regulators, PhoPQ and CrrAB, also contributed to PMB resistance and heteroresistance. Additionally, the lipid A modification with 4-L-aminoarabinose (L-Ara4N), mediated by the arnBCADTEF operon, was critical to determine PMB resistance. Biochemical experiments, supported by mass spectrometry and structural modelling, indicated that CrrC is an inner membrane protein that interacts with the membrane domain of the KexD pump. Similar interactions were modeled for AcrB and AcrD efflux pumps. CONCLUSION: Our results support a model where drug efflux potentiated by CrrC interaction with membrane domains of major efflux pumps combined with resistance to PMB entry by the L-Ara4N lipid A modification, under the control of PhoPQ and CrrAB, confers the bacterium high-level resistance and heteroresistance to PMB.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacter , Lipid A , Microbial Sensitivity Tests , Polymyxin B , Polymyxin B/pharmacology , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/metabolism , Anti-Bacterial Agents/pharmacology , Lipid A/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Arabinose/metabolism , Arabinose/pharmacology , Arabinose/analogs & derivatives , Humans , Gene Expression Regulation, Bacterial , Operon , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae Infections/microbiology , Drug Resistance, Bacterial , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
16.
Biodegradation ; 35(5): 551-564, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38530488

ABSTRACT

Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.


Subject(s)
Biodegradation, Environmental , Enterobacter , Fungicides, Industrial , Gene Expression Profiling , Triazoles , Enterobacter/genetics , Enterobacter/metabolism , Enterobacter/isolation & purification , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Triazoles/pharmacology , Transcriptome
17.
ACS Chem Biol ; 19(4): 981-991, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38527226

ABSTRACT

The development of new antimicrobial agents effective against Gram-negative bacteria remains a major challenge in drug discovery. The lasso peptide cloacaenodin has potent antimicrobial activity against multiple strains in the Enterobacter genus, one of the ESKAPE pathogens. Here, we show that cloacaenodin uses a previously uncharacterized TonB-dependent transporter, which we name CloU, to cross the outer membrane (OM) of susceptible bacteria. Inner membrane transport is mediated by the protein SbmA. CloU is distinct from the known OM transporters (FhuA and PupB) utilized by other antimicrobial lasso peptides and thus offers important insight into the spectrum of activity of cloacaenodin. Using knowledge of the transport pathway to predict other cloacaenodin-susceptible strains, we demonstrate the activity of cloacaenodin against clinical isolates of Enterobacter and of a Kluyvera strain. Further, we use molecular dynamics simulations and mutagenesis of CloU to explain the variation in cloacaenodin susceptibility observed across different strains of Enterobacter. This work expands the currently limited understanding of lasso peptide uptake and advances the potential of cloacaenodin as an antibiotic.


Subject(s)
Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Membrane Transport Proteins/metabolism , Peptides , Enterobacter/drug effects , Enterobacter/metabolism , Molecular Dynamics Simulation , Bacterial Proteins
18.
Appl Environ Microbiol ; 90(3): e0224523, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38319098

ABSTRACT

Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.


Subject(s)
Enterobacter , Hyphae , Enterobacter/genetics , Enterobacter/metabolism , Hyphae/metabolism , Phenylacetates/metabolism , Rhizoctonia/genetics
19.
Folia Microbiol (Praha) ; 69(5): 1083-1093, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38401040

ABSTRACT

Alginate lyases have countless potential for application in industries and medicine particularly as an appealing biocatalyst for the production of biofuels and bioactive oligosaccharides. Solid-state fermentation (SSF) allows improved production of enzymes and consumes less energy compared to submerged fermentation. Seaweeds can serve as the most promising biomass for the production of biochemicals. Alginate present in the seaweed can be used by alginate lyase-producing bacteria to support growth and can secrete alginate lyase. In this perspective, the current study was directed on the bioprocessing of brown seaweeds for the production of alginate lyase using marine bacterial isolate. A novel alginate-degrading marine bacterium Enterobacter tabaci RAU2C which was previously isolated in the laboratory was used for the production of alginate lyase using Sargassum swartzii as a low-cost solid substrate. Process parameters such as inoculum incubation period and moisture content were optimized for alginate lyase production. SSF resulted in 33.56 U/mL of alginate lyase under the static condition maintained with 75% moisture after 4 days. Further, the effect of different buffers, pH, and temperature on alginate lyase activity was also analyzed. An increase in alginate lyase activity was observed with an increase in moisture content from 60 to 75%. Maximum enzyme activity was perceived with phosphate buffer at pH 7 and 37 °C. Further, the residual biomass after SSF could be employed as biofertilizer for plant growth promotion based on the preliminary analysis. To our knowledge, this is the first report stating the usage of seaweed biomass as a substrate for the production of alginate lyase using solid-state fermentation.


Subject(s)
Alginates , Enterobacter , Fermentation , Polysaccharide-Lyases , Sargassum , Seaweed , Polysaccharide-Lyases/metabolism , Seaweed/microbiology , Enterobacter/metabolism , Enterobacter/enzymology , Enterobacter/isolation & purification , Enterobacter/growth & development , Alginates/metabolism , Hydrogen-Ion Concentration , Sargassum/microbiology , Sargassum/metabolism , Temperature , Phaeophyceae/microbiology , Biomass , Glucuronic Acid/metabolism
20.
Environ Sci Technol ; 58(9): 4204-4213, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373240

ABSTRACT

Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.


Subject(s)
Arsenic , Arsenites , Selenium , Selenium/pharmacology , Selenium/metabolism , Selenious Acid/pharmacology , Selenious Acid/metabolism , Enterobacter/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL