Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.981
Filter
1.
BMC Infect Dis ; 24(1): 812, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134953

ABSTRACT

BACKGROUND: Infections resulting from multidrug-resistant Enterobacterales (MDR-E) pose a growing global threat, presenting challenges in treatment and contributing significantly to morbidity and mortality rates. The main objective of this study was to characterize phenotypically and genetically extended-spectrum ß-lactamase- and carbapenemase- producing Enterobacterales (ESBLE and CPE respectively) isolated from clinical samples in the West Bank, Palestine. METHODS: A cross sectional study was conducted in October 2023 on clinical bacterial isolates collected from five governmental hospitals in the West Bank, Palestine. The isolates obtained from the microbiology laboratories of the participating hospitals, underwent identification and antibiotic susceptibility testing (AST) using the VITEK® 2 Compact system. ESBL production was determined by the Vitek2 Compact system. A modified carbapenem inactivation method (mCIM) was employed to identify carbapenemase-producing Enterobacterales (CPE). Resistance genes were detected by real-time PCR. RESULTS: Out of the total 1380 collected isolates, we randomly selected 600 isolates for analysis. Our analysis indicated that 287 (47.83%) were extended-spectrum beta-lactamase producers (ESBLE), and 102 (17%) as carbapenem-resistant Enterobacterales (CRE) isolates. A total of 424 isolates (70.67%) were identified as multidrug-resistant Enterobacterales (MDRE). The most prevalent ESBL species were K. pneumoniae (n = 124; 43.2%), E. coli (n = 119; 41.5%) and E. cloacae (n = 31; 10.8%). Among the CRE isolates, 85 (83.33%) were carbapenemase-producing Enterobacterales (CPE). The most frequent CRE species were K. pneumoniae (n = 63; 61.7%), E. coli (n = 25; 24.5%) and E. cloacae (n = 13; 12.8%). Additionally, 47 (7.83%) isolates exhibited resistance to colistin (CT), with 38 (37.62%) being CT-resistant CRE and 9 (3.14%) being CT-resistant ESBLE while sensitive to carbapenems. We noticed that 11 isolates (6 Klebsiella pneumoniae and 5 Enterobacter cloacae complex) demonstrated sensitivity to carbapenems by phenotype but carried silent CPE genes (1 blaOXA48, and 6 blaNDM, 4 blaOXA48, blaNDM). ESBL-producing Enterobacterales strains exhibited varied resistance patterns across different antibiotic classes. E. coli isolates showed notable 48% resistance to trimethoprim/sulfamethoxazole. K. pneumoniae isolates displayed a significant resistance to trimethoprim/sulfamethoxazole, nitrofurantoin, and fosfomycin (54%, 90%, and 70% respectively). E. cloacae isolates showed complete resistance to nitrofurantoin and fosfomycin. P. mirabilis isolates exhibited high resistance against fluoroquinolones (83%), and complete resistance to trimethoprim/sulfamethoxazole, nitrofurantoin and fosfomycin. CONCLUSION: This study showed the high burden of the ESBLE and CRE among the samples collected from the participating hospitals. The most common species were K. pneumoniae and E. coli. There was a high prevalence of blaCTXm. Adopting both conventional and molecular techniques is essential for better surveillance of the emergence and spread of antimicrobial-resistant Enterobacterales infections in Palestine.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Humans , beta-Lactamases/genetics , Cross-Sectional Studies , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Middle East/epidemiology , Female , Adult , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Male , Middle Aged , Phenotype , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Young Adult , Adolescent , Aged , Child , Carbapenems/pharmacology , Child, Preschool
2.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125939

ABSTRACT

The extended-spectrum ß-lactamases (ESßLs) are bacterial enzymes capable of hydrolyzing penicillins, cephalosporins, and aztreonam. The prevalence of ESßL is increasing among clinically significant microorganisms worldwide, drastically reducing the therapeutic management of infectious diseases. The study aimed to determine the drug susceptibility of ESßL-positive clinical isolates acquired from patients hospitalized in Lodz, central Poland, and analyze the prevalence of specific genes, determining acquired resistance in these bacteria. The samples of ESßL-positive clinical isolates were gathered in 2022 from medical microbiological laboratories in the city of Lodz, central Poland. The strains were subjected to biochemical identification and antimicrobial susceptibility testing following EUCAST guidelines. The presence of studied genes (blaCTX-M, blaSHV, blaTEM, blaPER, blaVEB) was confirmed by PCR. Over 50% of studied isolates were resistant to gentamicin, cefepime, ceftazidime and ciprofloxacin. The most common ESßL gene was blaCTX-M. In most isolates, the resistance genes occurred simultaneously. The blaPER was not detected in any of the tested strains. ESßL-producing strains are largely susceptible to the currently available antibiotics. The observation of the coexistence of different genes in most clinical isolates is alarming.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Poland/epidemiology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Molecular Epidemiology , Male , Female , Adult , Middle Aged , Ciprofloxacin/pharmacology
3.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39096160

ABSTRACT

AIMS: Adequately and accurately identifying carbapenemase-producing Enterobacterales (CPE) is vital for selecting appropriate antimicrobial therapy and implementing effective infection control measures. This study aims to optimize the phenotypic detection method of carbapenemase for routine diagnostics in clinical microbiology laboratories. METHODS AND RESULTS: Carbapenemase genes in 2665 non-duplicate CRE clinical strains collected from various regions of China were confirmed through whole-genome sequencing (WGS). The carbapenemase inhibition test (CIT) was conducted and interpreted using different methods and breakpoints, then compared with the NG-Test CARBA 5 for carbapenemase detection. The diagnostic performance of the CIT method was optimal when the carbapenemase types were determined by comparing the inhibition zone diameters of the imipenem disc with 3-aminophenylboronic acid (APB) plus ethylenediaminetetraacetic acid (EDTA) to those of the imipenem disc with either APB or EDTA alone, with a breakpoint of 4 mm. The overall sensitivities of the current CIT, the modified CIT, and NG-Test CARBA 5 were 91.4%, 94.9%, and 99.9%, respectively. For detecting isolates co-producing Klebsiella pneumoniae carbapenemase (KPC) and metallo-ß-lactamases (MBLs), the modified CIT method had higher sensitivity than the current method (70.0% vs. 53.3%), though this difference was not statistically significant (P = 0.063). The NG-Test CARBA 5 showed excellent performance for multi-carbapenemases diagnosis, with sensitivity and specificity of 97.1% and 100%, respectively. CONCLUSIONS: Optimizing and standardizing the CIT method for clinical use is necessary. It has certain advantages in diagnosing multi-carbapenemase and rare carbapenemase production. However, for identifying common carbapenemase types, the NG-Test CARBA 5 demonstrated superior performance.


Subject(s)
Bacterial Proteins , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/analysis , Bacterial Proteins/metabolism , Humans , China , Imipenem/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/enzymology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Sensitivity and Specificity , Whole Genome Sequencing , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/microbiology
4.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063130

ABSTRACT

Carbapenemase-producing Enterobacterales are increasingly being recognized in nosocomial infections. The performance of a flow cytometry-based rapid assay for their detection and differentiation was evaluated. This is a disruptive phenotypic technology, phenotypic and growth-independent, that searches for the lesions produced by drugs acting on cells after a short incubation time. Overall, 180 Gram-negative bacteria were studied, and results were compared with those obtained molecularly by PCR and phenotypically by 'KPC, MBL and OXA-48 Confirm Kit'. This phenotypic method was used as reference for comparison purposes. Susceptibility to carbapenems (imipenem, meropenem, and ertapenem) was determined by standard broth microdilution. Overall, 112 isolates (62.2%) were carbapenemase producers, 41 KPCs, 36 MßLs, and 31 OXA-48, and 4 strains were KPC + MßL co-producers. Sixty-eight isolates were carbapenemase-negative. The percentage of agreement, sensitivity, and specificity were calculated according to ISO 20776-2:2021. The FASTinov assay showed 97.7% agreement with the reference method for carbapenemase detection. Discrepant flow cytometry results were obtained in four isolates compared with both reference and PCR results. The sensitivity and specificity of this new technology were 95.3% and 98.5%, respectively, for KPCs, 97.6% and 99.3% for MßLs, and 96.9% and 98% for OXA-48 detection. In conclusion, we describe a rapid flow cytometry assay with high accuracy for carbapenemase detection and the differentiation of various carbapenemases, which should impact clinical microbiology laboratories and patient management.


Subject(s)
Bacterial Proteins , Flow Cytometry , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/metabolism , Flow Cytometry/methods , Bacterial Proteins/metabolism , Humans , Microbial Sensitivity Tests/methods , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Anti-Bacterial Agents/pharmacology , Sensitivity and Specificity , Carbapenems/pharmacology
5.
Front Cell Infect Microbiol ; 14: 1357289, 2024.
Article in English | MEDLINE | ID: mdl-39027138

ABSTRACT

Background/purposes: The continuously increasing carbapenem resistance within Enterobacterales and Pseudomonas poses a threat to public health, nevertheless, the molecular characteristics of which in southern China still remain limited. And carbapenemase identification is a key factor in effective early therapy of carbapenem-resistant bacteria infections. We aimed to determine the molecular characteristics of these pathogens and compare commercial combined disc tests (CDTs) with the modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) in detecting and distinguishing carbapenemases using whole genome sequencing (WGS). Methods: A total of 78 Enterobacterales, 30 Pseudomonas were obtained from two tertiary hospitals in southern China. Susceptibility tests were conducted using an automated VITEK2 compact system with confirmation via the Kirby-Bauer method. The WGS was conducted on all clinical isolates and the molecular characteristics were analyzed by screening the whole genome sequences. CDTs with or without cloxacillin, mCIM, and eCIM, were performed and compared by taking WGS results as the benchmark. Results: A total of 103 carbapenem non-susceptible and 5 carbapenem susceptible bacteria were determined, with Klebsiella pneumoniae (42.7%), Pseudomonas aeruginosa (23.3%) and Escherichia coli (18.4%) being most prevalent. Carbapenemase genes were detected in 58 (56.3%) of the 103 carbapenem-non-susceptible clinical isolates, including 46 NDM, 6 KPC, 3 IMP, 1 IPM+VIM,1NDM+KPC, and 1 OXA-181. Carbapenemase-producing isolates were detected more frequently in Enterobacterales (76.3%). Among K. pneumoniae, the major sequence types were st307 and st11, while among E. coli and P. aeruginosa, the most prevalent ones were st410 and st242 respectively. For carbapenemase detection in Enterobacterales, the mCIM method achieved 100.00% (95% CI, 92.13-100.00%) sensitivity and 94.44% (70.63-99.71%) specificity (kappa, 0.96); for Pseudomonas, detection sensitivity was 100% (5.46-100.00%), and 100% (84.50-100.00%) specificity (kappa, 0.65). Commercial CDT carbapenemase detection sensitivity for Enterobacterales was 96.49% (86.84-99.39%), and 95.24% (74.13-99.75%) specificity (kappa, 0.90); for Pseudomonas, carbapenemase detection sensitivity was 100.00% (5.46-100.00%) and 37.93% (21.30-57.64%) specificity (kappa, 0.04). When cloxacillin testing was added, CDT specificity reached 84.61% (64.27-94.95%). Conclusion: The molecular epidemiology of carbapenem-non-susceptible isolates from pediatric patients in Southern China exhibited distinctive characteristics. Both the mCIM-eCIM combination and CDT methods effectively detected and differentiated carbapenemases among Enterobacterales isolates, and the former performed better than CDT among Pseudomonas.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Microbial Sensitivity Tests , Pseudomonas , Whole Genome Sequencing , beta-Lactamases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Whole Genome Sequencing/methods , beta-Lactamases/genetics , Humans , Pseudomonas/genetics , Pseudomonas/drug effects , Pseudomonas/enzymology , Pseudomonas/isolation & purification , China , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Carbapenems/pharmacology , Genome, Bacterial , Enterobacteriaceae Infections/microbiology , Pseudomonas Infections/microbiology , Phenotype , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification
6.
Microbiol Spectr ; 12(7): e0038624, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38832776

ABSTRACT

Rapid detection of carbapenemase-producing Enterobacteriaceae (CPE) is urgently needed to prevent their spread in healthcare settings. Here, we have evaluated the performance of the phenotypic methods for detection of carbapenemase production directly from bacterial cultures. A total of 99 clinical and rectal Enterobacteriaceae isolates were included (81 carrying known carbapenemase-encoding genes and 18 without carbapenemase production). All isolates were subjected to the five phenotypic tests including in-house Carba NP (iCarba NP), modified-Carba NP, E-Test MBL, modified Hodge test (MHT), and commercial combination disk test. Test results were read at different time points for iCarba NP and modified-Carba (1 min, 5 min, 15 min, 1 h and 2 h). The sensitivity and specificity of the iCarba NP were 78.87% and 100%, respectively, whereas those of the modified-Carba NP test were 95.06% and 94.44%, respectively. False-negative results were detected in four OXA-48 isolates with the use of modified-Carba NP, whereas one non-carbapenemase isolate had false-positive results. The sensitivity/specificity was 91.30%/100% and 80.25%/83.33% for the E-Test MBL and MHT, respectively. The sensitivity and specificity of the aminophenylboronic acid synergy test were 100% and 97.94%, respectively, whereas those of the dipicolinic acid synergy test were 82.61% and 96.23%, respectively. Rapid, simple, and reliable methods are needed for laboratory detection of CPE isolates to improve the detection and surveillance of these clinically relevant pathogens in an epidemiological context. We conclude that the modified-Carba NP test can be one of the reliable tests for the prediction of carbapenemase-producing bacteria.IMPORTANCEThe emergence of carbapenem resistance among Gram-negative bacteria is a serious global health threat. Here, we investigate the performance of the five phenotypic assays against carbapenemase-producing and carbapenemase-non-producing Enterobacteriaceae. Accurate and rapid detection of CPE isolates is critically required for clinical management and treatment of infections caused by these organisms. Among the five evaluated phenotypic tests, the mCNP test presented the highest sensitivity (95.06%) and, therefore, can be considered the best test to be used as a screening phenotypic methodology.


Subject(s)
Bacterial Proteins , Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Sensitivity and Specificity , beta-Lactamases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/diagnosis , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/enzymology , Carbapenem-Resistant Enterobacteriaceae/genetics , Microbial Sensitivity Tests , Phenotype , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics
7.
Microbiol Spectr ; 12(8): e0354823, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916360

ABSTRACT

The aim of this study was to evaluate the proportion of resistance to a temocillin, tigecycline, ciprofloxacin, and chloramphenicol phenotype called t2c2 that resulted from mutations within the ramAR locus among extended-spectrum ß-lactamases-Enterobacterales (ESBL-E) isolated in three intensive care units for 3 years in a French university hospital. Two parallel approaches were performed on all 443 ESBL-E included: (i) the minimal inhibitory concentrations of temocillin, tigecycline, ciprofloxacin, and chloramphenicol were determined and (ii) the genomes obtained from the Illumina sequencing platform were analyzed to determine multilocus sequence types, resistomes, and diversity of several tetR-associated genes including ramAR operon. Among the 443 ESBL-E strains included, isolates of Escherichia coli (n = 194), Klebsiella pneumoniae (n = 122), and Enterobacter cloacae complex (Ecc) (n = 127) were found. Thirty-one ESBL-E strains (7%), 16 K. pneumoniae (13.1%), and 15 Ecc (11.8%) presented the t2c2 phenotype in addition to their ESBL profile, whereas no E. coli presented these resistances. The t2c2 phenotype was invariably reversible by the addition of Phe-Arg-ß-naphthylamide, indicating a role of resistance-nodulation-division pumps in these observations. Mutations associated with the t2c2 phenotype were restricted to RamR, the ramAR intergenic region (IR), and AcrR. Mutations in RamR consisted of C- or N-terminal deletions and amino acid substitutions inside its DNA-binding domain or within key sites of protein-substrate interactions. The ramAR IR showed nucleotide substitutions involved in the RamR DNA-binding domain. This diversity of sequences suggested that RamR and the ramAR IR represent major genetic events for bacterial antimicrobial resistance.IMPORTANCEMorbimortality caused by infectious diseases is very high among patients hospitalized in intensive care units (ICUs). A part of these outcomes can be explained by antibiotic resistance, which delays the appropriate therapy. The transferable antibiotic resistance gene is a well-known mechanism to explain the high rate of multidrug resistance (MDR) bacteria in ICUs. This study describes the prevalence of chromosomal mutations, which led to additional antibiotic resistance among MDR bacteria. More than 12% of Klebsiella pneumoniae and Enterobacter cloacae complex strains presented mutations within the ramAR locus associated with a dysregulation of an efflux pump called AcrAB-TolC and a porin: OmpF. These dysregulations led to an increase in antibiotic output notably tigecycline, ciprofloxacin, and chloramphenicol associated with a decrease of input for beta-lactam, especially temocillin. Mutations within transcriptional regulators such as ramAR locus played a major role in antibiotic resistance dissemination and need to be further explored.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Chloramphenicol/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae Infections/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Multilocus Sequence Typing , Mutation , Tigecycline/pharmacology
8.
J Microbiol Methods ; 223: 106962, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795732

ABSTRACT

The main mechanism that causes resistance to carbapenem, one of the most potent antibiotic available, in Enterobacterales bacterial isolates, is due to Klebsiella pneumoniae carbapenemase (KPC) production by the bacterium. KPC is spread worldwide, requiring laboratories to be capable of identifying this enzyme, however some methods can be expensive for small laboratories, especially in developing countries. Therefore, the development of methods with low cost of reagents for the detection of KPC enzyme is necessary. The objective of this study was to evaluate the detection of KPC enzyme by MALDI-TOF MS from inactivated bacteria impregnated in filter paper. A total of 129 Enterobacterales isolates were impregnated in filter paper, and after 7 days at room temperature, they were subjected to a protein extraction protocol and spectra acquisition, in triplicates, by MALDI-TOF MS. The spectra were evaluated and KPC was identified according to the presence of a peak of 28,712.62 ± 27.80 m/z. Considering the presence of the KPC peak in at least one spectrum of the triplicates, this method presented 60.8% sensitivity and 96.4% specificity. However, considering the presence of KPC peak in at least two spectra of the triplicate, a specificity of 100% was achieved. The detection of KPC enzyme from inactivated bacteria impregnated in filter paper can be used as a method to confirm the presence of KPC, which could be very significant for small laboratories with limited resources.


Subject(s)
Bacterial Proteins , Klebsiella pneumoniae , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , beta-Lactamases , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , beta-Lactamases/analysis , beta-Lactamases/metabolism , Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Paper , Sensitivity and Specificity , Carbapenems/pharmacology , Humans , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Anti-Bacterial Agents/pharmacology
9.
J Antimicrob Chemother ; 79(7): 1564-1568, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38717472

ABSTRACT

OBJECTIVES: To evaluate carbapenem prescribing rates for initial definitive treatment of urinary tract infections and clinical outcomes before and after removing ESBL status labels on antibiotic susceptibility reports. METHODS: This was a retrospective cohort study of adult patients treated for at least 48 h for an ESBL-producing/ceftriaxone-resistant Enterobacterales urinary tract infection. ESBL status reporting ceased in September 2022 for a network of seven community hospitals within the USA. The primary endpoint was the rate of carbapenem prescribing for initial definitive treatment of urinary tract infections. Secondary endpoints included total days of therapy for initial definitive treatment with carbapenems, clinical cure rates, time to transition to oral antibiotic therapy for initial definitive treatment, rate of guideline-compliant therapy, rate of relapsed infection within 30 days, 30 day readmission rate, and 30 day all-cause in-hospital mortality. RESULTS: Of 3055 patients screened, 199 were included in the pre group and 153 were included in the post group. The rate of carbapenem prescribing for initial definitive treatment was 156 patients (78%) in the pre group, compared with 93 patients (61%) in the post group (P = <0.01). Days of therapy for initial definitive therapy with carbapenem was 620 in the pre group compared with 372 in the post group (P < 0.01). There was no difference between other secondary outcomes. CONCLUSIONS: Removing ESBL status labels from laboratory reports reduced carbapenem use for initial definitive treatment of urinary tract infections from 78% to 61% (P < 0.01) without impacting clinical outcomes.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Enterobacteriaceae Infections , Urinary Tract Infections , beta-Lactamases , Humans , Carbapenems/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Retrospective Studies , Female , Male , Middle Aged , Anti-Bacterial Agents/therapeutic use , Aged , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Microbial Sensitivity Tests , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Adult , Aged, 80 and over , Antimicrobial Stewardship
10.
J Antimicrob Chemother ; 79(7): 1581-1589, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38758189

ABSTRACT

OBJECTIVES: The recent emergence of carbapenem-resistant Enterobacterales poses a major and escalating threat to global public health. This study aimed to analyse the global distribution and antimicrobial resistance of Enterobacterales harbouring variant OXA-48-like carbapenemase-related genes. METHODS: Enterobacterales isolates were collected from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme during 2018-2021. Comprehensive antimicrobial susceptibility testing and ß-lactamase gene detection were also conducted, along with statistical analysis of the collected data. RESULTS: Among the 72 244 isolates, 1934 Enterobacterales isolates were identified to harbour blaOXA-48-like genes, predominantly Klebsiella spp. (86.9%). High rates of multidrug resistance were observed, with only ceftazidime/avibactam and tigecycline showing favourable susceptibility. A discrepancy between the genotype and phenotype of carbapenem resistance was evident: 16.8% (233 out of 1384) of the Enterobacterales isolates with blaOXA-48-like genes exhibited susceptibility to meropenem. Specifically, 37.4% (64/95) of Escherichia coli strains with blaOXA-48-like genes displayed meropenem susceptibility, while the corresponding percentages for Klebsiella pneumoniae and Enterobacter cloacae complex were 25.2% (160/1184) and 0% (0/36), respectively (P < 0.05). Geographical analysis revealed that the highest prevalence of blaOXA-48-like genes occurred in Asia, the Middle East and Eastern Europe. The proportion of K. pneumoniae isolates harbouring blaOXA-232 increased from 23.9% in 2018 to 56.0% in 2021. By contrast, the proportion of blaOXA-48 decreased among K. pneumoniae isolates during 2018-2021. CONCLUSIONS: This study underscores the widespread and increasing prevalence of blaOXA-48-like genes in Enterobacterales and emphasizes the need for enhanced surveillance, improved diagnostic methods and tailored antibiotic stewardship to combat the spread of these resistant pathogens.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , Humans , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Global Health , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Epidemiological Monitoring , Drug Resistance, Multiple, Bacterial/genetics
11.
Adv Microb Physiol ; 84: 51-82, 2024.
Article in English | MEDLINE | ID: mdl-38821634

ABSTRACT

Formic acid (HCOOH) and dihydrogen (H2) are characteristic products of enterobacterial mixed-acid fermentation, with H2 generation increasing in conjunction with a decrease in extracellular pH. Formate and acetyl-CoA are generated by radical-based and coenzyme A-dependent cleavage of pyruvate catalysed by pyruvate formate-lyase (PflB). Formate is also the source of H2, which is generated along with carbon dioxide through the action of the membrane-associated, cytoplasmically-oriented formate hydrogenlyase (FHL-1) complex. Synthesis of the FHL-1 complex is completely dependent on the cytoplasmic accumulation of formate. Consequently, formate determines its own disproportionation into H2 and CO2 by the FHL-1 complex. Cytoplasmic formate levels are controlled by FocA, a pentameric channel that translocates formic acid/formate bidirectionally between the cytoplasm and periplasm. Each protomer of FocA has a narrow hydrophobic pore through which neutral formic acid can pass. Two conserved amino acid residues, a histidine and a threonine, at the center of the pore control directionality of translocation. The histidine residue is essential for pH-dependent influx of formic acid. Studies with the formate analogue hypophosphite and amino acid variants of FocA suggest that the mechanisms of formic acid efflux and influx differ. Indeed, current data suggest, depending on extracellular formate levels, two separate uptake mechanisms exist, both likely contributing to maintain pH homeostasis. Bidirectional formate/formic acid translocation is dependent on PflB and influx requires an active FHL-1 complex. This review describes the coupling of formate and H2 production in enterobacteria.


Subject(s)
Enterobacteriaceae , Fermentation , Formates , Hydrogen , Formates/metabolism , Hydrogen/metabolism , Enterobacteriaceae/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Formate Dehydrogenases , Hydrogenase , Multienzyme Complexes
12.
Zoonoses Public Health ; 71(5): 538-548, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750653

ABSTRACT

AIMS: To estimate the prevalence of carbapenemase-producing Enterobacterales (CPE) carriage among pets using faecal specimens submitted to veterinary diagnostic laboratories throughout the US. A secondary aim was to employ whole-genome sequencing (WGS) to characterize isolates of CPE from companion animals and compare them to publicly available CPE genomes. METHODS AND RESULTS: To estimate the prevalence of CPE in companion animals in the USA, a multicenter surveillance study including 8 different veterinary diagnostic laboratories from across the USA was conducted. Briefly, remnant faecal specimens from dogs and cats were screened using two selective agar plates (CHROMID Carba and MacConkey with 1 mg/L cefotaxime and 0.125 mg/L meropenem) and presumptive CPE isolates screened by the modified carbapenemase inactivation method for carbapenemase production. A total of 2393 specimens were screened and yielded 196 isolates for carbapenemase screening. A total of 5 isolates from 4 dogs and 1 cat at 3 different veterinary diagnostic laboratories were confirmed to produce a carbapenemase (0.21%). Whole-genome sequencing (WGS) revealed two E. coli (ST167) isolates that both produced an NDM-5 carbapenemase, two Enterobacter hormaechei (ST171) isolates that produced an NDM-5 carbapenemase and a KPC-4 carbapenemase respectively and one Klebsiella oxytoca (ST199) that produced an Oxa-48-type carbapenemase. Both E. coli isolates were found to be within at least 22 SNPs of previously characterized canine and human CPE isolates. CONCLUSIONS: This study demonstrates that the prevalence of CPE among companion animals is relatively low (0.21%) but that given the genetic relatedness of animal isolates to human isolates, additional surveillance is needed.


Subject(s)
Bacterial Proteins , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , Feces , beta-Lactamases , Animals , Dogs , Cats , Feces/microbiology , United States/epidemiology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Prevalence , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Molecular Epidemiology , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing
15.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702700

ABSTRACT

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , beta-Lactamases , Animals , Cats , Dogs , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , Argentina/epidemiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Microbial Sensitivity Tests , Pets , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology
16.
PLoS One ; 19(5): e0303753, 2024.
Article in English | MEDLINE | ID: mdl-38758757

ABSTRACT

NDM-producing carbapenem-resistant bacterial infections became a challenge for clinicians. Combination therapy of aztreonam and ceftazidime-avibactam is a prudent choice for these infections. However, there is still no recommendation of a practically feasible method for testing aztreonam and ceftazidime-avibactam synergy. We proposed a simple method for testing aztreonam and ceftazidime-avibactam synergy and compared it with reference broth micro-dilution and other methods. Carbapenem-resistant Enterobacterales clinical isolates were screened for the presence of the NDM gene by the Carba R test. NDM harbouring isolates were tested for aztreonam and ceftazidime-avibactam synergy by broth microdilution (reference method), E strip-disc diffusion, double disc diffusion, and disc replacement methods. In the newly proposed method, the MHA medium was supplemented with ceftazidime-avibactam (corresponding to an aztreonam concentration of 4µg/ml). The MHA medium was then inoculated with the standard inoculum (0.5 McFarland) of the test organism. An AZT disc (30 µg) was placed on the supplemented MHA medium, and the medium was incubated overnight at 37°C. Aztreonam zone diameter on the supplemented MHA medium (in the presence of ceftazidime-avibactam) was compared with that from a standard disc diffusion plate (without ceftazidime-avibactam), performed in parallel. Interpretation of synergy was based on the restoration of aztreonam zone diameter (in the presence of ceftazidime-avibactam) crossing the CLSI susceptibility breakpoint, i.e., ≥ 21 mm. Of 37 carbapenem-resistant NDM-producing isolates, 35 (94.6%) were resistant to aztreonam and tested synergy positive by the proposed method. Its sensitivity and specificity were 97.14% and 100%, respectively. Cohen's kappa value showed substantial agreement of the reference method with the proposed method (κ = 0.78) but no other methods. The proposed method is simple, easily interpretable, and showed excellent sensitivity, specificity, and agreement with the reference method. Therefore, the new method is feasible and reliable for testing aztreonam synergy with avibactam in NDM-producing Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Humans , Drug Synergism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy
17.
PLoS One ; 19(5): e0303872, 2024.
Article in English | MEDLINE | ID: mdl-38771780

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is among the top public health concerns in the globe. Estimating the prevalence of multidrug resistance (MDR), MDR index (MDR-I) and extended-spectrum beta-lactamase (ESBL)-producing lactose fermenting Enterobacteriaceae (LFE) is important in designing strategies to combat AMR. Thus, this study was designed to determine the status of MDR, MDR-I and ESBL-producing LFE isolated from the human-dairy interface in the northwestern part of Ethiopia, where such information is lacking. METHODOLOGY: A cross-sectional study was conducted from June 2022 to August 2023 by analyzing 362 samples consisting of raw pooled milk (58), milk container swabs (58), milker's hand swabs (58), farm sewage (57), milker's stool (47), and cow's feces (84). The samples were analyzed using standard bacteriological methods. The antimicrobial susceptibility patterns and ESBL production ability of the LFE isolates were screened using the Kirby-Bauer disk diffusion method, and candidate isolates passing the screening criteria were phenotypically confirmed by using cefotaxime (30 µg) and cefotaxime /clavulanic acid (30 µg/10 µg) combined-disk diffusion test. The isolates were further characterized genotypically using multiplex polymerase chain reaction targeting the three ESBL-encoding- genes namely blaTEM, blaSHV, and blaCTX-M. RESULTS: A total of 375 bacterial isolates were identified and the proportion of MDR and ESBL-producing bacterial isolates were 70.7 and 21.3%, respectively. The MDR-I varied from 0.0 to 0.81 with an average of 0.30. The ESBL production was detected in all sample types. Genotypically, the majority of the isolates (97.5%), which were positive on the phenotypic test, were carrying one or more of the three genes. CONCLUSION: A high proportion of the bacterial isolates were MDR; had high MDR-I and were positive for ESBL production. The findings provide evidence that the human-dairy interface is one of the important reservoirs of AMR traits. Therefore, the implementation of AMR mitigation strategies is highly needed in the area.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae , Lactose , beta-Lactamases , Humans , Ethiopia , beta-Lactamases/genetics , beta-Lactamases/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Lactose/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Animals , Microbial Sensitivity Tests , Cattle , Enterobacteriaceae Infections/microbiology , Cefotaxime/pharmacology , Milk/microbiology , Fermentation , Feces/microbiology
18.
Microbiol Spectr ; 12(6): e0034424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687076

ABSTRACT

With the introduction of ceftazidime-avibactam worldwide, the antimicrobial activity of new ß-lactam/ß-lactamase inhibitors (BL/BLIs) needs to be investigated. From January 2020 to June 2023, Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales were collected. With a broth microdilution test of new BL/BLIs, cross-activity test with nine combinations of BLs and new BLIs and dose-escalation titration test for non-susceptible isolates were conducted to investigate inhibitory activities of new BLIs. A total of 188 isolates was collected and most isolates (186/188, 98.9%) carried the KPC-2 gene exclusively, while two isolates (1.1%) co-harbored NDM-1. Among the 186 KPC-2-producing isolates, 184 (98.9%) were susceptible to ceftazidime-avibactam, 173 (93.0%) to imipenem-relebactam, and 184 (98.9%) to meropenem-vaborbactam. All isolates non-susceptible to imipenem-relebactam or meropenem-vaborbactam became susceptible when avibactam replaced relebactam or vaborbactam, with 7 of 11 (63.6%) imipenem-relebactam non-susceptible isolates and both (100.0%) of the meropenem-vaborbactam non-susceptible isolates. When the minimum inhibitory concentrations (MICs) of BLs were compared using log2 scales, combinations with avibactam showed statistically significant efficacy in lowering MICs compared to relebactam and vaborbactam (all P < 0.05). In the dose-escalation test of new BLIs, increasing dose of all new BLIs corresponded to increased susceptibility to BLs. Ceftazidime-avibactam exhibited excellent susceptibility against KPC-2-producing Enterobacterales unless co-harboring metallo-ß-lactamase. The cross-combination test against non-susceptible isolates suggests that the inhibitory activity of avibactam was superior to those of relebactam or vaborbactam. Increasing the dose of new BLIs produced increased susceptibility to BLs, suggesting that high-concentration regimen need to be developed. IMPORTANCE: This study investigated 188 Klebsiella pneumoniae carbapenemase (KPC)-2-producing Enterobacterales collected from January 2020 to June 2023 in a tertiary care hospital of Korea. Most isolates were susceptible to ceftazidime-avibactam (98.9%) and meropenem-vaborbactam (98.9%), while susceptibility to imipenem-relebactam was lower (93.0%). The cross-combination test using nine combinations of the individual ß-lactams (BLs) and new ß-lactamase inhibitors (BLIs) showed that the inhibitory activity of avibactam was significantly superior to relebactam or vaborbactam when the Log2 MIC of BLs were compared for each combination with BLIs (all P < 0.05). The dose-escalation test of new BLIs demonstrated that increasing doses of new BLIs corresponded to increased susceptibility to BLs. Taken together, this study illustrates the excellent activity of ceftazidime-avibactam against KPC-2-producing Enterobacterales and suggests further investigation into high-concentration regimens for potentially non-susceptible clinical isolates.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Boronic Acids , Ceftazidime , Drug Combinations , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamase Inhibitors , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , beta-Lactamases/metabolism , beta-Lactamase Inhibitors/pharmacology , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Bacterial Proteins/metabolism , Boronic Acids/pharmacology , Boronic Acids/administration & dosage , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology
20.
Eur J Clin Microbiol Infect Dis ; 43(6): 1181-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664291

ABSTRACT

PURPOSE: The MAST® D72C test is a phenotypical test which can detect ESBL and AmpC production in Enterobacterales. It can also identify the suspected presence of carbapenemase. The aim of the present study was to assess the sensitivity and specificity of this test and to discuss its usefulness in laboratories, especially those that use only an automated AST system. METHOD: The performance of the MAST® D72C test was assessed against a collection of 119 non-redundant Enterobacterales isolates characterized for their content in ß-lactamases, and compared with that of the reference double disk synergy test. ß-lactamase content was established from phenotypic and genotypic analyses to collect a broad diversity of resistance mechanisms and bacterial strains, including 30 ESBL-producing strains, 32 strains overproducing chromosomal AmpC, 10 strains producing plasmid-encoded AmpC, 12 carbapenemase-producing strains, 13 strains combining the production of several ß-lactamases, and 22 strains that produced other ß-lactamases. RESULTS: The sensitivity and specificity for ESBL-detection were comparable with those of the synergy test, 75 versus 72.5%, and 94.9 versus 93.7%, respectively. The sensitivity and specificity for AmpC-detection were 71.7% and 100%, respectively, and sensitivity reached 78.7% if we excluded carbapenem-resistant isolates. Carbapenemase-detection sensitivity was 90%. CONCLUSION: These results show that the MAST® D72C test can be a useful tool for the detection of ESBL- and AmpC-production in clinical laboratories.


Subject(s)
Bacterial Proteins , Enterobacteriaceae , Sensitivity and Specificity , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Humans , Enterobacteriaceae/enzymology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Microbial Sensitivity Tests/methods , Enterobacteriaceae Infections/microbiology , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL