Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.441
Filter
1.
BMC Med Genomics ; 17(1): 174, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951840

ABSTRACT

BACKGROUND: This study investigates the distribution and characteristics of linezolid and vancomycin susceptibilities among Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and explores the underlying resistance mechanisms. METHODS: A total of 2842 Enterococcus clinical isolates from patients were retrospectively collected, and their clinical data were further analyzed. The minimum inhibitory concentrations (MICs) of vancomycin and linezolid were validated by broth dilution method. The resistance genes optrA, cfr, vanA, vanB and vanM were investigated using polymerase chain reaction (PCR). Housekeeping genes and resistance genes were obtianed through whole-genome sequencing (WGS). RESULTS: Of the 2842 Enterococcus isolates, 88.5% (2516) originated from urine, with E. faecium accounted for 60.1% of these. The vanA gene was identified in 27/28 vancomycin resistant Enterococcus (VRE) isolates, 4 of which carried both vanA and vanM genes. The remaining strain was vanM positive. The optrA gene was identified in all E. faecalis isolates among linezolid resistant Enterococcus (LRE). E. faecium showed a higher multiple antibiotic resistance index (MAR index) compared to E. faecalis. The multi-locus sequence typing (MLST) showed the sequence type of E. faecium mainly belongs to clonal complex (CC) 17, nearly E. faecalis isolates analyzed were differentiated into 7 characteristics of sequence types (STs), among which ST16 of CC16 were the major lineage. CONCLUSION: Urine was the primary source of VRE and LRE isolates in this study. E. faecium showed higher levels of resistance compared to E. faecalis. OptrA gene was detected in 91.6% of LRE, which could explain linezolid resistance, and van genes were detected in all vancomycin resistant Enterococcus strains, while vanA was a key resistance mechanism in VRE identified in this study.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Linezolid/pharmacology , Humans , China/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Male , Middle Aged , Enterococcus faecalis/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Female , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Molecular Epidemiology , Adult , Vancomycin Resistance/genetics , Aged , Retrospective Studies , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Young Adult , Enterococcus/genetics , Enterococcus/drug effects , Enterococcus/isolation & purification
2.
BMC Infect Dis ; 24(1): 669, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965458

ABSTRACT

BACKGROUND: Abdominal aorta-duodenal fistulas are rare abnormal communications between the abdominal aorta and duodenum. Secondary abdominal aorta-duodenal fistulas often result from endovascular surgery for aneurysms and can present as severe late complications. CASE PRESENTATION: A 50-year-old male patient underwent endovascular reconstruction for an infrarenal abdominal aortic pseudoaneurysm. Prior to the operation, he was diagnosed with Acquired Immune Deficiency Syndrome and Syphilis. Two years later, he was readmitted with lower extremity pain and fever. Blood cultures grew Enterococcus faecium, Salmonella, and Streptococcus anginosus. Sepsis was successfully treated with comprehensive anti-infective therapy. He was readmitted 6 months later, with blood cultures growing Enterococcus faecium and Escherichia coli. Although computed tomography did not show contrast agent leakage, we suspected an abdominal aorta-duodenal fistula. Esophagogastroduodenoscopy confirmed this suspicion. The patient underwent in situ abdominal aortic repair and received long-term antibiotic therapy. He remained symptom-free during a year and a half of follow-up. CONCLUSIONS: This case suggests that recurrent infections with non-typhoidal Salmonella and gut bacteria may be an initial clue to secondary abdominal aorta-duodenal fistula.


Subject(s)
Sepsis , Humans , Male , Middle Aged , Sepsis/microbiology , Sepsis/complications , Aorta, Abdominal/surgery , Aorta, Abdominal/microbiology , Enterococcus faecium/isolation & purification , Anti-Bacterial Agents/therapeutic use , Streptococcus anginosus/isolation & purification , Intestinal Fistula/microbiology , Intestinal Fistula/surgery , Intestinal Fistula/complications , Salmonella/isolation & purification , Escherichia coli/isolation & purification , Recurrence , Duodenal Diseases/microbiology , Duodenal Diseases/surgery , Duodenal Diseases/complications , Salmonella Infections/microbiology , Salmonella Infections/complications , Salmonella Infections/diagnosis , Salmonella Infections/drug therapy
3.
BMC Infect Dis ; 24(1): 671, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965470

ABSTRACT

BACKGROUND: Vancomycin-resistant enterococci (VRE) are important pathogens categorized as high-priority bacteria in the Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics published by the World Health Organization. The aim of this study was to determine the risk factors, resistance, virulence, mobilomes associated with multidrug-resistant and clonal lineages of Enterococcus faecium and faecalis circulating among hospitalized patients following the health system in South Africa, using whole genome sequencing (WGS). METHODS: A cross-sectional study was conducted during a two-month periods among hospitalized patients in 2017. Rectal swabs were collected from patients admitted to medical and surgical wards in an urban tertiary hospital, and a rural district hospital in uMgungundlovu district, South Africa. Enterococci were screened for vancomycin resistance on bile esculin azide agar supplemented with 6 mg/L of vancomycin and confirmation of VRE was done using ROSCO kits. Conventional and real-time PCR methods were used to ascertain the presence of VanA, VanB, VanC-2/3 and VanC-1 genes. All six multidrug-resistant Enterococcus faecalis and faecium selected were identified using multiplexed paired-end libraries (2 × 300 bp) with the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA, USA) and genome sequencing was done using Illumina MiSeq instrument with 100× coverage at the National Institute of Communicable Diseases Sequencing Core Facility, South Africa. Antibiotic resistance genes, virulence factors, plasmids, integrons and CRISPR were characterized using RAST, ResFinder, VirulenceFinder, PlasmidFinder, PHAST and ISFinder respectively. RESULTS: Sequencing analysis revealed that these strains harbouring numerous resistance genes to glycopeptides (vanC[100%], vex3[100%], vex2[83,33%] and vanG[16,66%]), macrolides, lincosamides, sterptogramine B (ermB[33,32%], Isa[16,66%], emeA[16,66%]) and tetracyclines (tetM[33,32%]) in both district and tertiary hospitals. Multidrug efflux pumps including MATE, MFS and pmrA conferring resistance to several classes of antibiotics were also identified. The main transposable elements observed were in the Tn3 family, specifically Tn1546. Four single sequence types (STs) were identified among E. faecium in the district hospital, namely ST822, ST636, ST97 along with a novel ST assigned ST1386, while one lineage, ST29 was detected in the tertiary hospital. CONCLUSION: The study reveals the genetic diversity and high pathogenicity of multidrug-resistant Enterococcus faecalis and faecium circulating among hospitalized patients. It underlines the necessity to implement routine screening of admitted patients coupled with infection control procedures, antimicrobial stewardship and awareness should be strengthened to prevent and/or contain the carriage and spread of multidrug resistant E. faecium and E. faecalis in hospitals and communities in South Africa.


Subject(s)
Drug Resistance, Multiple, Bacterial , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections , Whole Genome Sequencing , Humans , South Africa/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Cross-Sectional Studies , Enterococcus faecalis/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Male , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Female , Adult , Middle Aged , Anti-Bacterial Agents/pharmacology , Young Adult , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Aged , Microbial Sensitivity Tests , Adolescent , Genome, Bacterial , Virulence Factors/genetics , Hospitalization , Virulence/genetics
4.
Euro Surveill ; 29(23)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847117

ABSTRACT

BackgroundVancomycin-resistant enterococci (VRE) are increasing in Denmark and Europe. Linezolid and vancomycin-resistant enterococci (LVRE) are of concern, as treatment options are limited. Vancomycin-variable enterococci (VVE) harbour the vanA gene complex but are phenotypically vancomycin-susceptible.AimThe aim was to describe clonal shifts for VRE and VVE in Denmark between 2015 and 2022 and to investigate genotypic linezolid resistance among the VRE and VVE.MethodsFrom 2015 to 2022, 4,090 Danish clinical VRE and VVE isolates were whole genome sequenced. We extracted vancomycin resistance genes and sequence types (STs) from the sequencing data and performed core genome multilocus sequence typing (cgMLST) analysis for Enterococcus faecium. All isolates were tested for the presence of mutations or genes encoding linezolid resistance.ResultsIn total 99% of the VRE and VVE isolates were E. faecium. From 2015 through 2019, 91.1% of the VRE and VVE were vanA E. faecium. During 2020, to the number of vanB E. faecium increased to 254 of 509 VRE and VVE isolates. Between 2015 and 2022, seven E. faecium clusters dominated: ST80-CT14 vanA, ST117-CT24 vanA, ST203-CT859 vanA, ST1421-CT1134 vanA (VVE cluster), ST80-CT1064 vanA/vanB, ST117-CT36 vanB and ST80-CT2406 vanB. We detected 35 linezolid vancomycin-resistant E. faecium and eight linezolid-resistant VVEfm.ConclusionFrom 2015 to 2022, the numbers of VRE and VVE increased. The spread of the VVE cluster ST1421-CT1134 vanA E. faecium in Denmark is a concern, especially since VVE diagnostics are challenging. The finding of LVRE, although in small numbers, ia also a concern, as treatment options are limited.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbon-Oxygen Ligases , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Multilocus Sequence Typing , Vancomycin Resistance , Vancomycin-Resistant Enterococci , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Humans , Denmark/epidemiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Linezolid/pharmacology , Vancomycin Resistance/genetics , Whole Genome Sequencing , Vancomycin/pharmacology , Vancomycin/therapeutic use , Genotype
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38925659

ABSTRACT

AIMS: This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS: Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS: It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.


Subject(s)
Bacteriocins , Cheese , Enterococcus faecium , Food Microbiology , Lactococcus , Listeria monocytogenes , Cheese/microbiology , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Enterococcus faecium/metabolism , Lactococcus/genetics , Lactococcus/isolation & purification , Bacteriocins/pharmacology , Brazil , Listeria monocytogenes/genetics , Listeria monocytogenes/drug effects , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology
6.
Vet Microbiol ; 293: 110103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718528

ABSTRACT

Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecium , Milk , Oxazolidinones , Animals , Cattle , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Milk/microbiology , China/epidemiology , Oxazolidinones/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Linezolid/pharmacology , Whole Genome Sequencing , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/epidemiology , Genes, Bacterial/genetics
7.
Microbiol Res ; 285: 127771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788351

ABSTRACT

Effluents from the leather tanning industry contain diverse pollutants, including hazardous heavy metals, posing threats to public health and the surrounding environment. Indigenous bacterial isolates can represent an eco-friendly approach for tannery wastewater treatment; however, phenotypic characterization is necessary to determine whether these strains are suitable for bioremediation. In the present study, we analyzed seven new Enterococcus faecium strains and two new Bacillus subtillis strains isolated from effluents from the Southern Tunisian Tannery (ESTT). We evaluated phenotypic features beneficial for bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities. Additionally, we examined characteristics naturally occurring in environmental bacteria but less desirable in strains selected for bioremediation, such as antibiotic resistances and pathogenicity indicators. The observed phenotypes were then compared with whole-genome analysis. We observed biofilm production in two slime-producing bacteria, B. licheniformis RLT6, and E. faecium RLT8. Hydrophobicity of E. faecium strains RLT1, RLT5, RLT8, and RLT9, as well as B. licheniformis RLT6 correlated positively with increasing ESTT concentration. Exoenzyme activities were detected in E. faecium strains RLT2, RLT4, and RLT7, as well as B. licheniformis RLT6. As anticipated, all strains exhibited common resistances to antibiotics and hemolysis, which are widespread in nature and do not hinder their application for bioremediation. Importantly, none of the strains exhibited the pathogenic hypermucoviscosity phenotype. To the best of our knowledge, this is the first report consolidating all these phenotypic characteristics concurrently, providing a complete overview of strains suitability for bioremediation. IMPORTANCE: The study evaluates the bioremediation potential of seven Enterococcus faecium strains and two Bacillus subtillis strains isolated from the effluents from the Southern Tunisian tannery (ESTT), which pose threats to public health and environmental integrity. The analysis primarily examines the phenotypic traits crucial to bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities, as well as characteristics naturally occurring in environmental bacteria related to heavy metal resistance, such as antibiotic resistances. Several strains were found to have high bioremediation potential and exhibit only antibiotic resistances commonly found in nature, ensuring their application for bioremediation remains uncompromised. The results of the exhaustive phenotypic analysis are contrasted with the whole genome sequences of the nine strains, underscoring the appropriateness of these bacterial strains for eco-friendly interventions in tannery wastewater treatment.


Subject(s)
Biodegradation, Environmental , Biofilms , Enterococcus faecium , Phenotype , Tanning , Wastewater , Wastewater/microbiology , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Enterococcus faecium/isolation & purification , Tunisia , Biofilms/growth & development , Metals, Heavy/metabolism , Anti-Bacterial Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Phylogeny , Bacillus/isolation & purification , Bacillus/genetics , Bacillus/metabolism , Bacillus/classification , Industrial Waste , Water Pollutants, Chemical/metabolism
8.
Emerg Microbes Infect ; 13(1): 2361030, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38801248

ABSTRACT

BACKGROUND: Surveillance systems revealed that the prevalence of vancomycin-resistant Enterococcus faecium (VREfm) has increased. We aim to investigate the epidemiological and genomic characteristics of VREfm in China. METHODS: We collected 20,747 non-redundant E. faecium isolates from inpatients across 19 hospitals in six provinces between January 2018 and June 2023. VREfm was confirmed by antimicrobial susceptibility testing. The prevalence was analyzed using changepoint package in R. Genomic characteristics were explored by whole-genome sequencing. RESULTS: 5.59% (1159/20,747) of E. faecium isolates were resistant to vancomycin. The prevalence of VREfm increased in Guangdong province from 5% before 2021 to 20-50% in 2023 (p < 0.0001), but not in the other five provinces. Two predominant clones before 2021, ST17 and ST78, were substituted by an emerging clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from Guangdong formed a single lineage (SC11) and were genetically distant from the ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm in SC11 carried a new type of plasmid harbouring a vanA cassette, which was embedded in a Tn1546-like structure flanked by IS1678 and ISL3. However, no conjugation-related gene was detected and no transconjugant was obtained in conjugation experiment, indicating that the outbreak of ST80 VREfm could be attributed to clonal transmission. CONCLUSIONS: We revealed an ongoing outbreak of ST80 VREfm with a new vanA-harbouring plasmid in Guangdong, China. This clone has also been identified in other provinces and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is needed to inform public health interventions.


Subject(s)
Disease Outbreaks , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Whole Genome Sequencing , China/epidemiology , Humans , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Enterococcus faecium/classification , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Male , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Female , Middle Aged , Adult , Aged , Genome, Bacterial , Prevalence , Child , Young Adult , Phylogeny , Vancomycin/pharmacology , Adolescent
9.
J Korean Med Sci ; 39(17): e157, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711319

ABSTRACT

This study assessed the performance of the BioFire Blood Culture Identification 2 (BCID2) panel in identifying microorganisms and antimicrobial resistance (AMR) profiles in positive blood cultures (BCs) and its influence on turnaround time (TAT) compared with conventional culture methods. We obtained 117 positive BCs, of these, 102 (87.2%) were correctly identified using BCID2. The discordance was due to off-panel pathogens detected by culture (n = 13), and additional pathogens identified by BCID2 (n = 2). On-panel pathogen concordance between the conventional culture and BCID2 methods was 98.1% (102/104). The conventional method detected 19 carbapenemase-producing organisms, 14 extended-spectrum beta-lactamase-producing Enterobacterales, 18 methicillin-resistant Staphylococcus spp., and four vancomycin-resistant Enterococcus faecium. BCID2 correctly predicted 53 (96.4%) of 55 phenotypic resistance patterns by detecting AMR genes. The TAT for BCID2 was significantly lower than that for the conventional method. BCID2 rapidly identifies pathogens and AMR genes in positive BCs.


Subject(s)
Blood Culture , Multiplex Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction/methods , Humans , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Bacteremia/microbiology , Bacteremia/diagnosis
10.
J Glob Antimicrob Resist ; 37: 102-107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565419

ABSTRACT

OBJECTIVES: We analysed 4 y of laboratory data to characterise the species and determine the antimicrobial susceptibility profiles of enterococci as human pathogens in Fiji. The study also investigated the molecular epidemiology amongst the subset of vancomycin-resistant enterococci (VRE). METHODS: This retrospective study reviewed bacteriological data from Colonial War Memorial Hospital (CWMH) and other healthcare facilities in the Central and Eastern divisions of Fiji. Phenotypic, antimicrobial susceptibility and vanA and vanB PCR testing were performed using locally approved protocols. The first clinical isolates per patient with antimicrobial susceptibility testing results in a single year were included in the analysis. Data was analysed using WHONET software and Microsoft Excel. RESULTS: A total of 1817 enterococcal isolates were reported, 1415 from CWMH and 402 from other healthcare facilities. The majority of isolates, 75% (n = 1362) were reported as undifferentiated Enterococcus spp., 17.8% (n = 324) were specifically identified as Enterococcus faecalis and 6.7% (n = 122) as E. faecium. Overall, 10% of the enterococci isolates were from blood cultures. Among isolates from CWMH, <15% of E. faecium were susceptible to ampicillin, and 17.2% were vancomycin resistant. Overall, 874 enterococcal isolates (including the undifferentiated species) were tested against vancomycin, of which 4.8% (n = 42) were resistance. All of the VRE isolates tested (n = 15) expressed vanA genes. CONCLUSIONS: This study demonstrates the clinical importance of VRE, particularly van A E. faecium in the national referral hospital in Fiji. Enhanced phenotypic and molecular surveillance data are needed to better understand enterococci epidemiology and help guide specific infection prevention and control measures and antibiotic prescribing guidelines.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterococcus , Gram-Positive Bacterial Infections , Microbial Sensitivity Tests , Tertiary Care Centers , Humans , Fiji/epidemiology , Tertiary Care Centers/statistics & numerical data , Retrospective Studies , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Enterococcus/drug effects , Enterococcus/genetics , Enterococcus/isolation & purification , Enterococcus/classification , Primary Health Care , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Carbon-Oxygen Ligases/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Molecular Epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification
11.
Ann Lab Med ; 44(5): 450-454, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38475872

ABSTRACT

Vancomycin variable Enterococcus (VVE) bacteria are phenotypically susceptible to vancomycin, but they harbor the vanA gene. We aimed to ascertain the prevalence of VVE among clinically isolated vancomycin-susceptible Enterococcus faecium (VSE) isolates, as well as elucidate the molecular characteristics of the vanA gene cluster within these isolates. Notably, we investigated the prevalence and structure of the vanA gene cluster of VVE. Between June 2021 and May 2022, we collected consecutive, non-duplicated vancomycin-susceptible Enterococcus faecium (VSE) samples. Real-time PCR was performed to detect the presence of vanA, vanB, and vanC. Overlapping PCR with sequencing and whole-genome sequencing were performed for structural analysis. Sequence types (STs) were determined by multilocus sequence typing. Exposure testing was performed to assess the ability of the isolates to acquire vancomycin resistance. Among 282 VSE isolates tested, 20 isolates (7.1%) were VVE. Among them, 17 isolates had partial deletions in the IS1216 or IS1542 sequences in vanS (N=10), vanR (N=5), or vanH (N=2). All VVE isolates belonged to the CC17 complex and comprised five STs, namely ST17 (40.0%), ST1421 (25.0%), ST80 (25.0%), ST787 (5.0%), and ST981 (5.0%). Most isolates were related to three hospital-associated clones (ST17, ST1421, and ST80). After vancomycin exposure, 18 of the 20 VVEs acquired vancomycin resistance. Considering the high reversion rate, detecting VVE by screening VSE for vanA is critical for appropriate treatment and infection control.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterococcus faecium , Gram-Positive Bacterial Infections , Microbial Sensitivity Tests , Multilocus Sequence Typing , Vancomycin Resistance , Vancomycin , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Humans , Vancomycin/pharmacology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/diagnosis , Vancomycin Resistance/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Whole Genome Sequencing , Real-Time Polymerase Chain Reaction , Prevalence , Multigene Family
12.
J Glob Antimicrob Resist ; 37: 129-134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552874

ABSTRACT

OBJECTIVES: This study aims to investigate the association between oral vancomycin consumption and intestinal vancomycin-resistant Enterococcus carriage in the pre- and COVID era in the clinical centre of the University of Szeged, Hungary. METHODS: This retrospective microbiological examination was carried out using electronically collected data, corresponding to the period between 1 January 2018 and 31 December 2022, at the Department of Medical Microbiology. Data included isolated species and the according antimicrobial susceptibility patterns. Annual consumption data for oral vancomycin consumption were exported from the database of the central pharmacy of the clinical centre. As a strain typing procedure, Fourier transform infrared spectroscopy analysis was used. RESULTS: There was a significant increase in the number of faecal vancomycin-resistant Enterococcus isolates throughout the study. The prevalence increased significantly during the years of the pandemic. The use of orally administered vancomycin in the clinical centre increased significantly. A strong positive correlation existed between the two phenomena. Several strains with different resistance patterns spread in the clinical centre. Two of these occurred in greater numbers, differing in their high-level aminoglycoside resistance. However, the overall resistance of these strains was stagnating. FTIR analysis revealed that 59 of the 62 strains were also divided into 2 large clusters differing partially in their high-level aminoglycoside resistance. CONCLUSIONS: During the pandemic, intestinal VRE carriage among clinical centre patients increased significantly, linked to increased oral vancomycin use. Different strains spread, with aminoglycoside resistance being the primary distinction. This highlights the negative impact of the pandemic on VRE carriage.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Vancomycin , Humans , Hungary/epidemiology , Vancomycin/pharmacology , Vancomycin/administration & dosage , Retrospective Studies , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , COVID-19/epidemiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Prevalence , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Administration, Oral , Carrier State/epidemiology , Carrier State/microbiology , Microbial Sensitivity Tests , SARS-CoV-2 , Tertiary Care Centers/statistics & numerical data , Tertiary Healthcare/statistics & numerical data
13.
J Hepatol ; 80(6): 904-912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428641

ABSTRACT

BACKGROUND & AIMS: Infections by multidrug-resistant bacteria (MDRB) are an increasing healthcare problem worldwide. This study analyzes the incidence, burden, and risk factors associated with MDRB infections after liver transplant(ation) (LT). METHODS: This retrospective, multicenter cohort study included adult patients who underwent LT between January 2017 and January 2020. Risk factors related to pre-LT disease, surgical procedure, and postoperative stay were analyzed. Multivariate logistic regression analysis was performed to identify independent predictors of MDRB infections within the first 90 days after LT. RESULTS: We included 1,045 LT procedures (960 patients) performed at nine centers across Spain. The mean age of our cohort was 56.8 ± 9.3 years; 75.4% (n = 782) were male. Alcohol-related liver disease was the most prevalent underlying etiology (43.2.%, n = 451). Bacterial infections occurred in 432 patients (41.3%) who presented with a total of 679 episodes of infection (respiratory infections, 19.3%; urinary tract infections, 18.5%; bacteremia, 13.2% and cholangitis 11%, among others). MDRB were isolated in 227 LT cases (21.7%) (348 episodes). Enterococcus faecium (22.1%), Escherichia coli (18.4%), and Pseudomonas aeruginosa (15.2%) were the most frequently isolated microorganisms. In multivariate analysis, previous intensive care unit admission (0-3 months before LT), previous MDRB infections (0-3 months before LT), and an increasing number of packed red blood cell units transfused during surgery were identified as independent predictors of MDRB infections. Mortality at 30, 90, 180, and 365 days was significantly higher in patients with MDRB isolates. CONCLUSION: MDRB infections are highly prevalent after LT and have a significant impact on prognosis. Enterococcus faecium is the most frequently isolated multi-resistant microorganism. New pharmacological and surveillance strategies aimed at preventing MDRB infections after LT should be considered for patients with risk factors. IMPACT AND IMPLICATIONS: Multidrug-resistant bacterial infections have a deep impact on morbidity and mortality after liver transplantation. Strategies aimed at improving prophylaxis, early identification, and empirical treatment are paramount. Our study unveiled the prevalence and main risk factors associated with these infections, and demonstrated that gram-positive bacteria, particularly Enterococcus faecium, are frequent in this clinical scenario. These findings provide valuable insights for the development of prophylactic and empirical antibiotic treatment protocols after liver transplantation.


Subject(s)
Bacterial Infections , Drug Resistance, Multiple, Bacterial , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Male , Middle Aged , Female , Risk Factors , Retrospective Studies , Prevalence , Bacterial Infections/epidemiology , Bacterial Infections/etiology , Spain/epidemiology , Postoperative Complications/epidemiology , Postoperative Complications/microbiology , Enterococcus faecium/isolation & purification , Aged , Incidence , Anti-Bacterial Agents/therapeutic use , Urinary Tract Infections/epidemiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/etiology
14.
Antimicrob Agents Chemother ; 68(5): e0171623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38506550

ABSTRACT

Outbreaks caused by vancomycin-resistant enterococci that transcend jurisdictional boundaries are occurring worldwide. This study focused on a vancomycin-resistant enterococcus outbreak that occurred between 2018 and 2021 across two cities in Hiroshima, Japan. The study involved genetic and phylogenetic analyses using whole-genome sequencing of 103 isolates of vancomycin-resistant enterococci to identify the source and transmission routes of the outbreak. Phylogenetic analysis was performed using core genome multilocus sequence typing and core single-nucleotide polymorphisms; infection routes between hospitals were inferred using BadTrIP. The outbreak was caused by Enterococcus faecium sequence type (ST) 80 carrying the vanA plasmid, which was derived from strain A10290 isolated in India. Of the 103 isolates, 93 were E. faecium ST80 transmitted across hospitals. The circular vanA plasmid of the Hiroshima isolates was similar to the vanA plasmid of strain A10290 and transferred from E. faecium ST80 to other STs of E. faecium and other Enterococcus species by conjugation. The inferred transmission routes across hospitals suggest the existence of a central hospital serving as a hub, propagating vancomycin-resistant enterococci to multiple hospitals. Our study highlights the importance of early intervention at the key central hospital to prevent the spread of the infection to small medical facilities, such as nursing homes, with limited medical resources and a high number of vulnerable individuals.


Subject(s)
Disease Outbreaks , Enterococcus faecium , Gram-Positive Bacterial Infections , Multilocus Sequence Typing , Phylogeny , Plasmids , Vancomycin-Resistant Enterococci , Whole Genome Sequencing , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Japan/epidemiology , Humans , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Plasmids/genetics , Gram-Positive Bacterial Infections/transmission , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Cross Infection/microbiology , Cross Infection/transmission , Cross Infection/epidemiology , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Carbon-Oxygen Ligases/genetics , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide , Hospitals , Vancomycin/pharmacology , Genome, Bacterial/genetics
15.
Int J Antimicrob Agents ; 63(5): 107125, 2024 May.
Article in English | MEDLINE | ID: mdl-38431109

ABSTRACT

RATIONALE AND OBJECTIVES: ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) constitute a threat to humans worldwide. India is now the most populous country. The goal was to investigate the evolution of the rates of antimicrobial resistance in ESKAPE pathogens across India over the 2010-20 decade. METHODS: The data (89 studies) were retrieved from the Medline PubMed repository using specific keywords. RESULTS: The study of 20 177 ESKAPE isolates showed that A. baumannii isolates were the most represented (35.9%, n = 7238), followed by P. aeruginosa (25.3%, n = 5113), K. pneumoniae (19.5%, n = 3934), S. aureus (16.3%, n = 3286), E. faecium (2.6%, n = 517) and Enterobacter spp. (0.4%, n = 89). A notable increase in the resistance rates to antimicrobial agents occurred over the 2010-20 decade. The most important levels of resistance were observed in 2016-20 for A. baumannii (90% of resistance to the amoxicillin-clavulanate combination) and K. pneumoniae (81.6% of resistance to gentamycin). The rise in ß-lactamase activities was correlated with an increase in the positivity of Gram-negative isolates for ß-lactamase genes. CONCLUSIONS: This review highlighted that, in contrast to developed countries that kept resistance levels under control, a considerable increase in resistance to various classes of antibiotics occurred in ESKAPE pathogens in India over the 2010-2020 decade.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Klebsiella pneumoniae , India/epidemiology , Humans , Anti-Bacterial Agents/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Drug Resistance, Bacterial , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter/drug effects , Enterobacter/genetics , Enterobacter/isolation & purification
16.
Microbiol Spectr ; 10(6): e0326822, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36453910

ABSTRACT

It was recently proposed that Enterococcus faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis. Our goals were to develop a PCR assay to rapidly differentiate these species and to discuss the main phenotypic and genotypic differences from a clinical perspective. The pan-genome of 512 genomes of E. faecium and E. lactis strains was analyzed to assess diversity in genes between the two species. Sequences were aligned to find the best candidate gene for designing species-specific primers, and their accuracy was tested with a collection of 382 enterococci. E. lactis isolates from clinical origins were further characterized by whole-genome sequencing (Illumina). Pan-genome analysis resulted in 12 gene variants, with gene gluP (rhomboid protease) being selected as the candidate for species differentiation. The nucleotide sequence of gluP diverged by 90 to 92% between sets, which allowed species identification through PCR with 100% specificity and no cross-reactivity. E. lactis strains were greatly pan-susceptible and not host specific. Hospital E. lactis isolates were susceptible to clinically relevant antibiotics, lacked infection-associated virulence markers, and were associated with patients presenting risk factors for enhanced bacterial translocation. Here, we propose a PCR-based assay using gluP for easy routine differentiation between E. faecium and E. lactis that could be implemented in different public health contexts. We further suggest that E. lactis, a dominant human gut species, can cross the gut barrier in severely ill, immunodeficient, and surgical patients. Knowing that bacterial translocation may be a sepsis promoter, the relevance of infections caused by E. lactis strains, even if they are pan-susceptible, should be explored. IMPORTANCE Enterococcus faecium is a WHO priority pathogen that causes severe and hard-to-treat human infections. It was recently proposed that E. faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis; therefore, some of the human infections occurring globally are being misidentified. In this work, we developed a PCR-based rapid identification method for the differentiation of E. faecium and E. lactis and discussed the main phenotypic and genotypic differences of these species from a clinical perspective. We identified the gluP gene as the best candidate, based on the phylogenomic analysis of 512 published pan-genomes, and validated the PCR assay with a comprehensive collection of 382 enterococci obtained from different sources. Further detailed analysis of clinical E. lactis strains showed that they are highly susceptible to antibiotics and lack the typical virulence markers of E. faecium but are able to cause severe human infections in immunosuppressed patients, possibly in part due to gut barrier translocation.


Subject(s)
Enterococcus faecium , Enterococcus , Gram-Positive Bacterial Infections , Polymerase Chain Reaction , Humans , Anti-Bacterial Agents , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Genome, Bacterial , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Enterococcus/genetics , Enterococcus/isolation & purification
17.
Nat Commun ; 13(1): 586, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102136

ABSTRACT

Bacterial bloodstream infections are a major cause of morbidity and mortality among patients undergoing hematopoietic cell transplantation (HCT). Although previous research has demonstrated that pathogens may translocate from the gut microbiome into the bloodstream to cause infections, the mechanisms by which HCT patients acquire pathogens in their microbiome have not yet been described. Here, we use linked-read and short-read metagenomic sequencing to analyze 401 stool samples collected from 149 adults undergoing HCT and hospitalized in the same unit over three years, many of whom were roommates. We use metagenomic assembly and strain-specific comparison methods to search for high-identity bacterial strains, which may indicate transmission between the gut microbiomes of patients. Overall, the microbiomes of patients who share time and space in the hospital do not converge in taxonomic composition. However, we do observe six pairs of patients who harbor identical or nearly identical strains of the pathogen Enterococcus faecium, or the gut commensals Akkermansia muciniphila and Hungatella hathewayi. These shared strains may result from direct transmission between patients who shared a room and bathroom, acquisition from a common hospital source, or transmission from an unsampled intermediate. We also identify multiple patients with identical strains of species commonly found in commercial probiotics, including Lactobacillus rhamnosus and Streptococcus thermophilus. In summary, our findings indicate that sharing of identical pathogens between the gut microbiomes of multiple patients is a rare phenomenon. Furthermore, the observed potential transmission of commensal, immunomodulatory microbes suggests that exposure to other humans may contribute to microbiome reassembly post-HCT.


Subject(s)
Bacteria/metabolism , Bacterial Infections/transmission , Gastrointestinal Microbiome , Hospitalization , Adult , Aged , Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Cross Infection/transmission , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Female , Gastrointestinal Microbiome/drug effects , Hematopoietic Stem Cell Transplantation , Hospitals , Humans , Length of Stay , Male , Metagenome/genetics , Metagenomics , Middle Aged , Phylogeny , Probiotics , Sequence Analysis, DNA , Time Factors
18.
Nat Commun ; 13(1): 509, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082278

ABSTRACT

Vancomycin-resistant Enterococcus faecium (VREfm) is a major nosocomial pathogen. Identifying VREfm transmission dynamics permits targeted interventions, and while genomics is increasingly being utilised, methods are not yet standardised or optimised for accuracy. We aimed to develop a standardized genomic method for identifying putative VREfm transmission links. Using comprehensive genomic and epidemiological data from a cohort of 308 VREfm infection or colonization cases, we compared multiple approaches for quantifying genetic relatedness. We showed that clustering by core genome multilocus sequence type (cgMLST) was more informative of population structure than traditional MLST. Pairwise genome comparisons using split k-mer analysis (SKA) provided the high-level resolution needed to infer patient-to-patient transmission. The more common mapping to a reference genome was not sufficiently discriminatory, defining more than three times more genomic transmission events than SKA (3729 compared to 1079 events). Here, we show a standardized genomic framework for inferring VREfm transmission that can be the basis for global deployment of VREfm genomics into routine outbreak detection and investigation.


Subject(s)
Cross Infection/transmission , Delivery of Health Care , Enterococcus faecium/genetics , Genome, Bacterial , Gram-Positive Bacterial Infections/transmission , Vancomycin-Resistant Enterococci/genetics , Anti-Bacterial Agents , Bacterial Proteins/genetics , Bacterial Typing Techniques , Carbon-Oxygen Ligases/genetics , Cross Infection/epidemiology , Disease Outbreaks , Enterococcus faecium/classification , Enterococcus faecium/isolation & purification , Genomics , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Humans , Multilocus Sequence Typing , Phylogeny , Vancomycin , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/isolation & purification , Whole Genome Sequencing
19.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768762

ABSTRACT

The use of phenicol antibiotics in animals has increased. In recent years, it has been reported that the transferable gene mediates phenicol-oxazolidinone resistance. This study analyzed the prevalence and characteristics of phenicol-oxazolidinone resistance genes in Enterococcus faecalis and Enterococcus faecium isolated from food-producing animals and meat in Korea in 2018. Furthermore, for the first time, we reported the genome sequence of E. faecalis strain, which possesses the phenicol-oxazolidinone resistance gene on both the chromosome and plasmid. Among the 327 isolates, optrA, poxtA, and fexA genes were found in 15 (4.6%), 8 (2.5%), and 17 isolates (5.2%), respectively. Twenty E. faecalis strains carrying resistance genes belonged to eight sequence types (STs), and transferability was found in 17 isolates. The genome sequences revealed that resistant genes were present in the chromosome or plasmid, or both. In strains EFS17 and EFS108, optrA was located downstream of the ermA and ant(9)-1 genes. The strains EFS36 and EFS108 harboring poxtA-encoding plasmid cocarried fexA and cfr(D). These islands also contained IS1216E or the transposon Tn554, enabling the horizontal transfer of the phenicol-oxazolidinone resistance with other antimicrobial-resistant genes. Our results suggest that it is necessary to promote the prudent use of antibiotics through continuous monitoring and reevaluation.


Subject(s)
Anti-Infective Agents/pharmacology , Chloramphenicol/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis/genetics , Enterococcus faecium/genetics , Meat/microbiology , Oxazolidinones/pharmacology , Animals , Cattle/microbiology , Computational Biology , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Food Analysis , Gene Transfer, Horizontal , Genes, Bacterial/drug effects , Genome, Bacterial , Multilocus Sequence Typing , Plasmids , Republic of Korea , Swine/microbiology , Whole Genome Sequencing
20.
Benef Microbes ; 12(5): 467-477, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34397310

ABSTRACT

This paper reports the success of intestinal colonisation of chickens and foetuses by probiotics after different methods of pre-hatch application. Hatcheries not using in ovo injection of probiotics or wish to avoid the reduced hatchability associated with in ovo injections prefer using alternatives to in ovo technologies. Therefore, we used noninvasive pre-hatch application methods. This included the vertical transmission of probiotics from the mother hen to offspring, application of probiotic late in incubation and transmission of probiotics during hatch. Enterococcus faecium (NCIMB11181) and Lactobacillus animalis (DSM33570) were used as probiotics. Probiotics were applied either through drinking water for the mother hens, by dipping the eggs in a probiotic solution on days 16-18 of incubation or through drops/spray on the eggshell of the fertilised eggs. Similarly, intestinal colonisation of the probiotic in chickens was investigated either before hatch (pre-hatch) or immediately after hatch (post-hatch). Based on the performed experiments, it is concluded that E. faecium was vertically transmitted from the mother hen to the offspring, as E. faecium was recovered in 20 and 33% of the offspring pre- and post-hatch, respectively. When applied on the eggshell, the recovery of E. faecium before hatch depended on the application method and ranged from 0 to 9%. In contrast, L. animalis was not recovered before hatch. Moreover, when sampling post-hatch 100% of the chickens were colonised when E. faecium was used and 54% were colonised when L. animalis was used. Furthermore, spray application with E. faecium was the most successful application method as 9% of the foetuses were colonised pre-hatch and 100% became colonised post-hatch. Therefore, pre-hatch application by, for example, spray of probiotics on the eggshell can be used as an easy-to-use, noninvasive method for early life colonisation of chicken gut.


Subject(s)
Chickens/microbiology , Enterococcus faecium , Intestines/microbiology , Lactobacillus , Probiotics , Animals , Egg Shell , Enterococcus faecium/isolation & purification , Female , Lactobacillus/isolation & purification , Probiotics/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL