Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 943
Filter
1.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034396

ABSTRACT

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Vaccinology , Humans , Epitopes, T-Lymphocyte/immunology , Vaccinology/methods , Epitopes, B-Lymphocyte/immunology , Vaccines, Combined/immunology , Genomics/methods , Enterohemorrhagic Escherichia coli/immunology , Salmonella/immunology , Animals , Computational Biology/methods , Molecular Docking Simulation , Escherichia coli Vaccines/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/immunology , Salmonella Infections/immunology , Salmonella Infections/prevention & control , Antigens, Bacterial/immunology , Vaccine Development/methods , Bacterial Vaccines/immunology
2.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999794

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.


Subject(s)
Colon , Diet, Western , Enterohemorrhagic Escherichia coli , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Diet, Western/adverse effects , Colon/microbiology , Feces/microbiology , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Fatty Acids, Volatile/metabolism , Bile Acids and Salts/metabolism , Escherichia coli O157
3.
Phytomedicine ; 132: 155845, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964154

ABSTRACT

BACKGROUND: Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE: To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS: The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS: A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS: Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.


Subject(s)
Acrolein , Anti-Bacterial Agents , Enterohemorrhagic Escherichia coli , Microbial Sensitivity Tests , Acrolein/analogs & derivatives , Acrolein/pharmacology , Anti-Bacterial Agents/pharmacology , Enterohemorrhagic Escherichia coli/drug effects , Animals , Reactive Oxygen Species/metabolism , Virulence Factors
4.
Nat Microbiol ; 9(9): 2448-2461, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38965331

ABSTRACT

Interactions between microbiota and enteric pathogens can promote colonization resistance or enhance pathogenesis. The pathobiont Enterococcus faecalis increases enterohaemorrhagic E. coli (EHEC) virulence by upregulating Type 3 Secretion System (T3SS) expression, effector translocation, and attaching and effacing (AE) lesion formation on enterocytes, but the mechanisms underlying this remain unknown. Using co-infection of organoids, metabolomics, supplementation experiments and bacterial genetics, here we show that co-culture of EHEC with E. faecalis increases the xanthine-hypoxanthine pathway activity and adenine biosynthesis. Adenine or E. faecalis promoted T3SS gene expression, while transcriptomics showed upregulation of adeP expression, which encodes an adenine importer. Mechanistically, adenine relieved High hemolysin activity (Hha)-dependent repression of T3SS gene expression in EHEC and promoted AE lesion formation in an AdeP-dependent manner. Microbiota-derived purines, such as adenine, support multiple beneficial host responses; however, our data show that this metabolite also increases EHEC virulence, highlighting the complexity of pathogen-microbiota-host interactions in the gut.


Subject(s)
Adenine , Enterococcus faecalis , Enterohemorrhagic Escherichia coli , Gene Expression Regulation, Bacterial , Type III Secretion Systems , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/metabolism , Virulence , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Enterococcus faecalis/pathogenicity , Adenine/metabolism , Adenine/pharmacology , Animals , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Mice , Escherichia coli Infections/microbiology , Humans , Hemolysin Proteins/metabolism , Hemolysin Proteins/genetics , Host-Pathogen Interactions , Coculture Techniques , Enterocytes/microbiology , Enterocytes/metabolism , Xanthine/metabolism , Hypoxanthine/metabolism , Virulence Factors/metabolism , Virulence Factors/genetics , Gastrointestinal Microbiome
5.
Food Microbiol ; 122: 104544, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839230

ABSTRACT

The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.


Subject(s)
Enterohemorrhagic Escherichia coli , Fragaria , Fruit , Hot Temperature , Fruit/microbiology , Fragaria/microbiology , Enterohemorrhagic Escherichia coli/growth & development , Food Microbiology , Colony Count, Microbial , Microbial Viability , Plant Nectar/chemistry , Escherichia coli O157/growth & development , Food Contamination/analysis , Food Contamination/prevention & control , Kinetics
6.
PLoS One ; 19(5): e0298746, 2024.
Article in English | MEDLINE | ID: mdl-38787890

ABSTRACT

Enterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Antibiotic treatment of EHEC infections is generally not recommended since it may promote the production of the Shiga toxin (Stx) and lead to worsened symptoms. This study explores how exposure to the fluoroquinolone ciprofloxacin reorganizes the transcriptome and proteome of EHEC O157:H7 strain EDL933, with special emphasis on virulence-associated factors. As expected, exposure to ciprofloxacin caused an extensive upregulation of SOS-response- and Stx-phage proteins, including Stx. A range of other virulence-associated factors were also upregulated, including many genes encoded by the LEE-pathogenicity island, the enterohemolysin gene (ehxA), as well as several genes and proteins involved in LPS production. However, a large proportion of the genes and proteins (17 and 8%, respectively) whose expression was upregulated upon ciprofloxacin exposure (17 and 8%, respectively) are not functionally assigned. This indicates a knowledge gap in our understanding of mechanisms involved in EHECs response to antibiotic-induced stress. Altogether, the results contribute to better understanding of how exposure to ciprofloxacin influences the virulome of EHEC and generates a knowledge base for further studies on how EHEC responds to antibiotic-induced stress. A deeper understanding on how EHEC responds to antibiotics will facilitate development of novel and safer treatments for EHEC infections.


Subject(s)
Ciprofloxacin , Proteomics , Transcriptome , Ciprofloxacin/pharmacology , Proteomics/methods , Virulence/drug effects , Transcriptome/drug effects , Enterohemorrhagic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Virulence Factors/metabolism , Proteome/metabolism , Gene Expression Profiling , Humans
7.
Nat Commun ; 15(1): 4462, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796512

ABSTRACT

Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide ʟ-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge ʟ-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that ʟ-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of ʟ-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that ʟ-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to ʟ-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.


Subject(s)
Arabinose , Citrobacter rodentium , Enterohemorrhagic Escherichia coli , Arabinose/metabolism , Animals , Mice , Citrobacter rodentium/pathogenicity , Citrobacter rodentium/metabolism , Citrobacter rodentium/genetics , Humans , Virulence , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Virulence Factors/metabolism , Virulence Factors/genetics , Enterobacteriaceae Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Escherichia coli Infections/microbiology , Female
8.
Georgian Med News ; (348): 78-80, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807396

ABSTRACT

Escherichia coli is a gram-negative bacillus and considered to be the normal pathogen of intestinal and extraintestinal manifestations depending upon the strain. A variety of strains exist that are responsible for causing myriads of clinical presentation. E.coli O157: H7 being the most common and severe bacterial pathogen is the leading cause of bloody diarrhea. EHEC (Enterohemorrhagic E.coli) is responsible for causing severe complications like HC (Hemorrhagic colitis). Herein, we present the case of a young girl with E.coli O157:H7 infection and review the related literature. A previously healthy 37-year-old female presented with bloody diarrhea, fever, headache, and lower abdominal pain. As per history she had eaten a hamburger, denied any recent travel and absence of inflammatory bowel disease or bloody stools in family history. Physical examination revealed normal vital signs and the physical findings were unremarkable except for severe abdominal pain. Her stool was hem-occult positive. The complete blood count was within normal limits except neutrophilia and leukocytosis. An abdominal ultrasound showed thickened bowel loops consistent with colitis. First week of her hospital course, she continued to have bloody diarrhea and severe abdominal pain. Her final stool submitted to the laboratory on day 7 was consistent with a blood clot, following her developed low urine output and hematuria, with a serum creatinine of 2.1 mg/dl on day 5. Her renal symptoms were treated with fluids. She was given supportive treatment, and her platelet count and hemoglobin were stabilized. In early stages of bloody diarrhea, parental hydration plays a major role in accelerating volume expansion. Rapid stool analysis for these bacteria can alert specialists to deal with severe complications like HUS.


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Humans , Female , Adult , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/diagnosis , Escherichia coli Infections/microbiology , Escherichia coli Infections/diagnosis , Escherichia coli Infections/complications , Diarrhea/microbiology , Escherichia coli O157/isolation & purification , Abdominal Pain/microbiology , Abdominal Pain/etiology , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/isolation & purification
9.
Microb Pathog ; 192: 106704, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761893

ABSTRACT

The indiscriminate use of antimicrobials has led to the emergence of resistant bacteria, especially pathogenic strains of Escherichia coli, which are associated with diseases in animals and humans. The aim of the present study was to characterize E. coli isolates in calves with regards to the presence of virulence genes and investigate the resistance of the isolates to different antimicrobials. Between 2021 and 2023, 456 fecal samples were collected from calves in the Pantanal and Cerrado biomes of the state of Mato Grosso do Sul, Brazil. All samples were subjected to microbiological analysis and disc diffusion antibiogram testing. The polymerase chain reaction method was used to detect virulence genes. Bacterial growth was found in 451 of the 456 samples and biochemically identified as Escherichia coli. All 451 isolates (100 %) exhibited some phenotypic resistance to antimicrobials and 67.62 % exhibited multidrug resistance. The frequency of multidrug-resistant isolates in the Cerrado biome was significantly higher than that in the Pantanal biome (p = 0.0001). In the Cerrado, the most common pathotype was Shiga toxin-producing Escherichia coli (STEC) (28 %), followed by toxigenic Escherichia coli (ETEC) (11 %), enterohemorrhagic Escherichia coli (EHEC) (8 %) and enteropathogenic Escherichia coli (EPEC) (2 %). In most cases, the concomitant occurrence of pathotypes was more common, the most frequent of which were ETEC + STEC (33 %), ETEC + EHEC (15 %) and ETEC + EPEC (3 %). The STEC pathotype (30 %) was also found more frequently in the Pantanal, followed by EHEC (12 %), ETEC (9 %) and EPEC (6 %). The STEC pathotype had a significantly higher frequency of multidrug resistance (p = 0.0486) compared to the other pathotypes identified. The frequency of resistance was lower in strains from the Pantanal biome compared to those from the Cerrado biome. Although some factors are discussed in this paper, it is necessary to clarify the reasons for this difference and the possible impacts of these findings on both animal and human health in the region.


Subject(s)
Anti-Bacterial Agents , Cattle Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Feces , Microbial Sensitivity Tests , Virulence Factors , Animals , Cattle , Brazil , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Virulence Factors/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/isolation & purification , Enterohemorrhagic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732126

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.


Subject(s)
Enterohemorrhagic Escherichia coli , Ileum , Organoids , Rectum , Animals , Cattle , Ileum/microbiology , Ileum/metabolism , Ileum/ultrastructure , Rectum/microbiology , Enterohemorrhagic Escherichia coli/pathogenicity , Organoids/metabolism , Organoids/microbiology , Mucus/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure
11.
J Food Prot ; 87(6): 100273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599382

ABSTRACT

Cattle are considered a primary reservoir of Shiga toxin (stx)-producing Escherichia coli that cause enterohemorrhagic disease (EHEC), and contaminated beef products are one vehicle of transmission to humans. However, animals entering the beef harvest process originate from differing production systems: feedlots, dairies, and beef breeding herds. The objective of this study was to determine if fed cattle, cull dairy, and or cull beef cattle carry differing proportions and serogroups of EHEC at harvest. Feces were collected via rectoanal mucosal swabs (RAMSs) from 1,039 fed cattle, 1,058 cull dairy cattle, and 1,018 cull beef cattle at harvest plants in seven U.S. states (CA, GA, NE, PA, TX, WA, and WI). The proportion of the stx gene in feces of fed cattle (99.04%) was not significantly different (P > 0.05) than in the feces of cull dairy (92.06%) and cull beef (91.85%) cattle. When two additional factors predictive of EHEC (intimin and ecf1 genes) were considered, EHEC was significantly greater (P < 0.05) in fed cattle (77.29%) than in cull dairy (47.54%) and cull beef (38.51%) cattle. The presence of E. coli O157:H7 and five common non-O157 EHEC of serogroups O26, O103, O111, O121, and O145 was determined using molecular analysis for single nucleotide polymorphisms (SNPs) followed by culture isolation. SNP analysis identified 23.48%, 17.67%, and 10.81% and culture isolation confirmed 2.98%, 3.31%, and 3.00% of fed, cull dairy, and cull beef cattle feces to contain one of these EHEC, respectively. The most common serogroups confirmed by culture isolation were O157, O103, and O26. Potential EHEC of fourteen other serogroups were isolated as well, from 4.86%, 2.46%, and 2.01% of fed, cull dairy, and cull beef cattle feces, respectively; with the most common being serogroups O177, O74, O98, and O84. The identification of particular EHEC serogroups in different types of cattle at harvest may offer opportunities to improve food safety risk management.


Subject(s)
Feces , Animals , Cattle , Feces/microbiology , Serogroup , Humans , Enterohemorrhagic Escherichia coli/isolation & purification , Escherichia coli Infections/veterinary , Shiga-Toxigenic Escherichia coli/isolation & purification , Food Contamination/analysis
12.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474124

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) produce a capsule of polysaccharides identical to those composing the O-antigen polysaccharide of its LPS (lipopolysaccharide) molecules. In light of this, the impact of O26 polysaccharides on the immune evasion mechanisms of capsulated O26 EPEC compared to non-capsulated enterohemorrhagic Escherichia coli (EHEC) was investigated. Our findings reveal that there was no significant difference between the levels in EPEC and EHEC of rhamnose (2.8:2.5), a molecule considered to be a PAMP (Pathogen Associated Molecular Patterns). However, the levels of glucose (10:1.69), heptose (3.6:0.89) and N-acetylglucosamine (4.5:2.10), were significantly higher in EPEC than EHEC, respectively. It was also observed that the presence of a capsule in EPEC inhibited the deposition of C3b on the bacterial surface and protected the pathogen against lysis by the complement system. In addition, the presence of a capsule also protected EPEC against phagocytosis by macrophages. However, the immune evasion provided by the capsule was overcome in the presence of anti-O26 polysaccharide antibodies, and additionally, these antibodies were able to inhibit O26 EPEC adhesion to human epithelial cells. Finally, the results indicate that O26 polysaccharides can generate an effective humoral immune response, making them promising antigens for the development of a vaccine against capsulated O26 E. coli.


Subject(s)
Enterohemorrhagic Escherichia coli , Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Humans , Immune Evasion , Escherichia coli Infections/microbiology , Escherichia coli Proteins/pharmacology , Lipopolysaccharides/pharmacology , Vaccine Development
13.
Antimicrob Agents Chemother ; 68(5): e0005724, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526080

ABSTRACT

Enterohemorrhagic Escherichia coli causes watery to bloody diarrhea, which may progress to hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that antibiotic treatment may worsen the pathology of an enterohemorrhagic Escherichia coli (EHEC) infection, recent work has shown that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can alleviate colonization resistance, facilitate secondary infections, and potentially lead to more severe illness. To address the consequences in the context of an EHEC infection, we used the established mouse infection model organism Citrobacter rodentium ϕstx2dact and monitored changes in fecal microbiota composition during infection and antibiotic treatment. C. rodentium ϕstx2dact infection resulted in minor changes compared to antibiotic treatment. The infection caused clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae and a transient increase in Enterobacteriaceae distinct from Citrobacter. Antibiotic treatments of the infection resulted in marked and distinct variations in microbiota composition, diversity, and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Shiga toxin-mediated organ damage, had the least disruptive effects on the intestinal microbiota, while kanamycin and tetracycline, which rapidly cleared the infection without causing organ damage, caused a severe reduction in diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera, whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the need to address the impact of individual antibiotics in the clinical care of life-threatening infections and consider microbiota-regenerating therapies.IMPORTANCEUnderstanding the impact of antibiotic treatment on EHEC infections is crucial for appropriate clinical care. While discouraged by early studies, recent findings suggest certain antibiotics can impede disease progression. Here, we investigated the impact of individual antibiotics on the fecal microbiota in the context of an established EHEC mouse model using C. rodentium ϕstx2dact. The infection caused significant variations in the microbiota, leading to a transient increase in Enterobacteriaceae distinct from Citrobacter. However, these effects were minor compared to those observed for antibiotic treatments. Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental effect on the fecal microbiota, causing a substantial reduction in microbial diversity. Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a reduced impact on microbiota composition and diversity. Taken together, our findings emphasize the delicate balance required to weigh the harmful effects of infection and antibiosis in treatment.


Subject(s)
Anti-Bacterial Agents , Citrobacter rodentium , Enterobacteriaceae Infections , Feces , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Citrobacter rodentium/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/adverse effects , Feces/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Gastrointestinal Microbiome/drug effects , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Enterohemorrhagic Escherichia coli/drug effects , Enrofloxacin/pharmacology , Enrofloxacin/therapeutic use , Female , Disease Models, Animal , Dysbiosis/microbiology
14.
J Biosci Bioeng ; 137(6): 445-452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553372

ABSTRACT

Bacteria produce and release small signal molecules, autoinducers, as an indicator of their cell density. The system, called a quorum-sensing (QS) system, is used to control not only virulence factors but also antibiotic production, sporulation, competence, and biofilm formation in bacteria. Different from antibiotics, QS inhibitors are expected to specifically repress the virulence factors in pathogenic bacteria without inhibiting growth or bactericidal effects. Therefore, since QS inhibitors have little risk of antibiotic-resistant bacteria emergence, they have been proposed as promising anti-bacterial agents. In the present study, we aimed to find new QS inhibitors that prohibit the signaling cascade of autoinducer 3 (AI-3) recognized by a QseCB two-component system that regulates some virulence factors of pathogens, such as enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica subsp. enterica serovar Typhimurium. We have established the method for QS-inhibitor screening using a newly constructed plasmid pLES-AQSA. E. coli DH5α transformed with the pLES-AQSA can produce ß-galactosidase that converts 5-bromo-4-chloro-3-indolyl ß-d-galactopyranoside (X-gal) into blue pigment (5-bromo-4-chloro-indoxyl) under the control of the QseCB system. By screening, Heyndrickxia coagulans (formerly Bacillus coagulans) 29-2E was found to produce an exopolysaccharide (EPS)-like water-soluble polymer that prohibits QseCB-mediated ß-galactosidase production without antibacterial activities. Further, the simultaneous injection of the 29-2E strain significantly improves the survival rate of Salmonella Typhimurium-infected silkworm larvae (from 0% to 83.3%), suggesting that the substance may be a promising inhibitor against the virulence of pathogens without risk of the emergence of antibiotic-resistant bacteria.


Subject(s)
Quorum Sensing , Salmonella typhimurium , Quorum Sensing/drug effects , Salmonella typhimurium/drug effects , Virulence , Bacillus/metabolism , Anti-Bacterial Agents/pharmacology , Lactones/pharmacology , Lactones/metabolism , Virulence Factors/metabolism , Virulence Factors/genetics , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Enterohemorrhagic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/metabolism , Biofilms/drug effects , Biofilms/growth & development , Homoserine/analogs & derivatives
15.
Cell Rep ; 43(4): 114004, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38522070

ABSTRACT

During infections, host cells are exposed to pathogen-associated molecular patterns (PAMPs) and virulence factors that stimulate multiple signaling pathways that interact additively, synergistically, or antagonistically. The net effect of such higher-order interactions is a vital determinant of the outcome of host-pathogen interactions. Here, we demonstrate one such complex interplay between bacterial exotoxin- and PAMP-induced innate immune pathways. We show that two caspases activated during enterohemorrhagic Escherichia coli (EHEC) infection by lipopolysaccharide (LPS) and Shiga toxin (Stx) interact in a functionally antagonistic manner; cytosolic LPS-activated caspase-11 cleaves full-length gasdermin D (GSDMD), generating an active pore-forming N-terminal fragment (NT-GSDMD); subsequently, caspase-3 activated by EHEC Stx cleaves the caspase-11-generated NT-GSDMD to render it nonfunctional, thereby inhibiting pyroptosis and interleukin-1ß maturation. Bacteria typically subvert inflammasomes by targeting upstream components such as NLR sensors or full-length GSDMD but not active NT-GSDMD. Thus, our findings uncover a distinct immune evasion strategy where a bacterial toxin disables active NT-GSDMD by co-opting caspase-3.


Subject(s)
Caspase 3 , Gasdermins , Intracellular Signaling Peptides and Proteins , Macrophages , Phosphate-Binding Proteins , Pyroptosis , Pyroptosis/drug effects , Phosphate-Binding Proteins/metabolism , Macrophages/metabolism , Macrophages/microbiology , Intracellular Signaling Peptides and Proteins/metabolism , Caspase 3/metabolism , Humans , Animals , Mice , Apoptosis Regulatory Proteins/metabolism , Bacterial Toxins/metabolism , Caspases/metabolism , Lipopolysaccharides/pharmacology , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/pathogenicity , Caspases, Initiator/metabolism , Inflammasomes/metabolism , Mice, Inbred C57BL , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Interleukin-1beta/metabolism
16.
Gut Microbes ; 16(1): 2308049, 2024.
Article in English | MEDLINE | ID: mdl-38299318

ABSTRACT

Infectious diarrheal diseases are the third leading cause of mortality in young children, many of which are driven by Gram-negative bacterial pathogens. To establish successful host infections these pathogens employ a plethora of virulence factors necessary to compete with the resident microbiota, and evade and subvert the host defenses. The type II secretion system (T2SS) is one such conserved molecular machine that allows for the delivery of effector proteins into the extracellular milieu. To explore the role of the T2SS during natural host infection, we used Citrobacter rodentium, a murine enteric pathogen, as a model of human intestinal disease caused by pathogenic Escherichia coli such as Enteropathogenic and Enterohemorrhagic E. coli (EPEC and EHEC). In this study, we determined that the C. rodentium genome encodes one T2SS and 22 potential T2SS-secreted protein effectors, as predicted via sequence homology. We demonstrated that this system was functional in vitro, identifying a role in intestinal mucin degradation allowing for its utilization as a carbon source, and promoting C. rodentium attachment to a mucus-producing colon cell line. During host infection, loss of the T2SS or associated effectors led to a significant colonization defect and lack of systemic spread. In mice susceptible to lethal infection, T2SS-deficient C. rodentium was strongly attenuated, resulting in reduced morbidity and mortality in infected hosts. Together these data highlight the important role of the T2SS and its effector repertoire during C. rodentium pathogenesis, aiding in successful host mucosal colonization.


Subject(s)
Enterobacteriaceae Infections , Enterohemorrhagic Escherichia coli , Gastrointestinal Microbiome , Type II Secretion Systems , Child , Humans , Animals , Mice , Child, Preschool , Citrobacter rodentium/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Enterobacteriaceae Infections/microbiology
17.
Vet Microbiol ; 291: 110013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364468

ABSTRACT

Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-ß, while decreased the content of IL-1ß compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-ß, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1ß, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1ß, the gene expressions of IL-1ß, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-ß and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.


Subject(s)
Enterohemorrhagic Escherichia coli , Swine Diseases , Animals , Swine , Occludin/genetics , Occludin/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Interleukin-8/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4 , Cell Line , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/veterinary , Cytokines/genetics , Cytokines/metabolism , Epithelial Cells/metabolism , Transforming Growth Factor beta/metabolism , Intestinal Mucosa , Swine Diseases/drug therapy , Swine Diseases/metabolism
18.
Int J Med Microbiol ; 314: 151610, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310676

ABSTRACT

Shiga toxin-producing E. coli (STEC), including the subgroup of enterohemorrhagic E. coli (EHEC), are important bacterial pathogens which cause diarrhea and the severe clinical manifestation hemolytic uremic syndrome (HUS). Genomic surveillance of STEC/EHEC is a state-of-the-art tool to identify infection clusters and to extract markers of circulating clinical strains, such as their virulence and resistance profile for risk assessment and implementation of infection prevention measures. The aim of the study was characterization of the clinical STEC population in Germany for establishment of a reference data set. To that end, from 2020 to 2022 1257 STEC isolates, including 39 of known HUS association, were analyzed and lead to a classification of 30.4 % into 129 infection clusters. Major serogroups in all clinical STEC analyzed were O26, O146, O91, O157, O103, and O145; and in HUS-associated strains were O26, O145, O157, O111, and O80. stx1 was less frequently and stx2 or a combination of stx, eaeA and ehxA were more frequently found in HUS-associated strains. Predominant stx gene subtypes in all STEC strains were stx1a (24 %) and stx2a (21 %) and in HUS-associated strains were mainly stx2a (69 %) and the combination of stx1a and stx2a (12.8 %). Furthermore, two novel O-antigen gene clusters (RKI6 and RKI7) and strains of serovars O45:H2 and O80:H2 showing multidrug resistance were detected. In conclusion, the implemented surveillance tools now allow to comprehensively define the population of clinical STEC strains including those associated with the severe disease manifestation HUS reaching a new surveillance level in Germany.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Hemolytic-Uremic Syndrome , Shiga-Toxigenic Escherichia coli , Humans , Virulence/genetics , O Antigens/genetics , Escherichia coli Proteins/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Genomics , Germany/epidemiology , Hemolytic-Uremic Syndrome/epidemiology , Hemolytic-Uremic Syndrome/microbiology , Multigene Family
19.
Poult Sci ; 103(4): 103561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417337

ABSTRACT

In order to study the prevention and control EHEC disease measures in poultry, the infection process and development of this disease and the pathological changes of various organs were to be observed. In this study, chickens were infected with different doses of enterohemorrhagic Escherichia coli (EHEC) O157:H7 using different routes of administration to establish EHEC broiler model. A total of 195 14-day-old broilers were randomly divided into 13 groups: including control group, Enema-drip groups (1010, 1011, 1012, 1013 CFUs E. coli O157:H7), gavage groups (P.O) (1011, 1012, 1013, 1014 CFUs E. coli O157:H7), and intraperitoneal injection group (I.P.) (108, 109, 1010, 1011 CFUs E. coli O157:H7). Escherichia coli (E. coli) was given using enema-drip, gavage or intraperitoneal infection. Then the feed intake, weight changes, stool and clinical symptoms of the chicks were recorded during the experiment. 7 d after E. coli infection, blood was collected from the jugular vein and serological tests were carried out. The liver, spleen, and colon of the chicks were extracted to get the organ index, bacteria load, and their histopathological changes. After infection with E. coli, some chicks feces were green or red watery stool, sometimes accompanied by foam, and the material to weight ratio of broilers in I.P. group increased significantly (P < 0.05), the 108 CFUs group were 1.3 times as large as control group. Three modeling methods can result in abnormal serum lipid metabolism and liver function indexes (increase of AST, TBA, T-Bil and TC level; decrease of ALB, TG, and TP level). Infection of chicks with O157:H7 by all 3 methods resulted in its detection in the liver, spleen, and colon. Three modeling methods significantly decreased liver index, and inflammatory cell infiltration and hyperemia were observed in liver. The spleen index in E. coli broilers by gavage and enema-drip was significantly decreased, splenic hyperemia and periarteriolar hyalinosis were observed. The spleen was enlarged with purplish-black spheroids in I.P. group broilers, and the spleen histological changes was more serious. The colon villi of broilers in gavage and enema-drip groups were thinner, more prone to rupture, intestinal lamina propria hyperemia, and inflammatory cell infiltration. Moreover, the number of goblet cells in the mucosal epithelium increased. E. coli O157:H7 can induce liver, spleen and intestinal damage and reduce growth performance of chicks. By comparing these 3 methods, we found that chicks infected with O157:H7 by gavage had more severe liver and intestinal damage, the enema-drip method caused most serious intestinal damage, and I.P. method significantly damaged the liver and spleen of chickens.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli O157 , Hyperemia , Animals , Chickens , Hyperemia/veterinary , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology
20.
Sci Rep ; 14(1): 2685, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302537

ABSTRACT

The ea22 gene resides in a relatively uncharacterized region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed upon infection. In lambda and Shiga toxin-producing phages found in enterohemorrhagic E. coli (EHEC) associated with food poisoning, Ea22 favors a lysogenic over lytic developmental state. The Ea22 protein may be considered in terms of three domains: a short amino-terminal domain, a coiled-coiled domain, and a carboxy-terminal domain (CTD). While the full-length protein is tetrameric, the CTD is dimeric when expressed individually. Here, we report the NMR solution structure of the Ea22 CTD that is described by a mixed alpha-beta fold with a dimer interface reinforced by salt bridges. A conserved mobile loop may serve as a ligand for an unknown host protein that works with Ea22 to promote bacterial survival and the formation of new lysogens. From sequence and structural comparisons, the CTD distinguishes lambda Ea22 from homologs encoded by Shiga toxin-producing bacteriophages.


Subject(s)
Bacteriophages , Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Humans , Bacteriophage lambda/genetics , Bacteriophage lambda/metabolism , Lysogeny/genetics , Bacteriophages/genetics , Bacteriophages/metabolism , Enterohemorrhagic Escherichia coli/genetics , Shiga Toxin/genetics , Escherichia coli Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL