Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.141
Filter
1.
BMC Public Health ; 24(1): 2079, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090615

ABSTRACT

BACKGROUND: Many studies have investigated the role of metals in various types of malignancies. Considering the wide range of studies conducted in this field and the achievement of different results, the presented systematic review was performed to obtain the results of investigations on the prevention and occurrence of various types of cancer associated with metal exposures. METHODS: In this review, research was conducted in the three databases: Scopus, PubMed, and Web of Science without historical restrictions until May 31, 2024. Animal studies, books, review articles, conference papers, and letters to the editors were omitted. The special checklist of Joanna Briggs Institute (JBI) was used for the quality assessment of the articles. Finally, the findings were classified according to the effect of the metal as preventive or carcinogenic. RESULTS: The total number of retrieved articles was 4695, and 71 eligible results were used for further investigation. In most studies, the concentration of toxic metals such as lead (Pb), chromium (Cr (VI)), arsenic (As), cadmium (Cd), and nickel (Ni) in the biological and clinical samples of cancer patients was higher than that of healthy people. In addition, the presence of essential elements, such as selenium (Se), zinc (Zn), iron (Fe), and manganese (Mn) in tolerable low concentrations was revealed to have anti-cancer properties, while exposure to high concentrations has detrimental health effects. CONCLUSIONS: Metals have carcinogenic effects at high levels of exposure. Taking preventive measures, implementing timely screening, and reducing the emission of metal-associated pollutants can play an effective role in reducing cancer rates around the world.


Subject(s)
Carcinogens , Neoplasms , Humans , Neoplasms/prevention & control , Carcinogens/toxicity , Metals , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Metals, Heavy
3.
Prog Community Health Partnersh ; 18(2): 141-153, 2024.
Article in English | MEDLINE | ID: mdl-38946561

ABSTRACT

BACKGROUND: Soil constitutes a major source of childhood lead exposure, disproportionately affecting communities of color. Mulching offers a low-cost interim control. OBJECTIVES: A community-academic partnership was established for lead poisoning prevention, with a three-fold aim: (1) control soil lead hazards by applying mulch, (2) identify home lead hazards with screening kits, and (3) connect residents to resources to address lead hazards. METHODS: Student volunteers canvassed neighborhoods one month prior to the annual event. They requested consent for mulching, distributed lead screening kits, and screened residents for grant eligibility. Soil samples were collected from each home before mulching. According to principles of community-based participatory research, materials and plans were iterative, guided and adjusted by neighborhood association feedback, and detailed reports about home lead results were shared with each participating resident. Composite neighborhood data and survey results were shared with volunteers and community partners. RESULTS: The project was evaluated in the third (41 homes) and fourth (48 homes) years of implementation. Before mulching, the median soil lead level was over 400 ppm, and after mulching, it was less than 20 ppm. Lead screening kits identified widespread lead hazards in paint, soil, and dust, but not water. Challenges remain in (a) increasing child blood lead testing and (b) increasing submissions for city grant funding for lead abatement. Evaluation surveys indicate a sense of ownership in the project among community partners and high levels of engagement among students. CONCLUSIONS: Community-academic partnerships are an effective tool for lead poisoning prevention, generating evidence for public health action.


Subject(s)
Community-Based Participatory Research , Community-Institutional Relations , Lead Poisoning , Humans , Lead Poisoning/prevention & control , Lead , Universities/organization & administration , Environmental Exposure/prevention & control , Environmental Exposure/adverse effects , Child
4.
Lancet Planet Health ; 8(7): e476-e488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969475

ABSTRACT

BACKGROUND: Climate actions targeting combustion sources can generate large ancillary health benefits via associated air-quality improvements. Therefore, understanding the health costs associated with ambient fine particulate matter (PM2·5) from combustion sources can guide policy design for both air pollution and climate mitigation efforts. METHODS: In this modelling study, we estimated the health costs attributable to ambient PM2·5 from six major combustion sources across 204 countries using updated concentration-response models and an age-adjusted valuation method. We defined major combustion sources as the sum of total coal, liquid fuel and natural gas, solid biofuel, agricultural waste burning, other fires, and 50% of the anthropogenic fugitive, combustion, and industrial dust source. FINDINGS: Global long-term exposure to ambient PM2·5 from combustion sources imposed US$1·1 (95% uncertainty interval 0·8-1·5) trillion in health costs in 2019, accounting for 56% of the total health costs from all PM2·5 sources. Comparing source contributions to PM2·5 concentrations and health costs, we observed a higher share of health costs from combustion sources compared to their contribution to population-weighted PM2·5 concentration across 134 countries, accounting for more than 87% of the global population. This disparity was primarily attributed to the non-linear relationship between PM2·5 concentration and its associated health costs. Globally, phasing out fossil fuels can generate 23% higher relative health benefits compared to their share of PM2·5 reductions. Specifically, the share of health costs for total coal was 36% higher than the source's contributions to corresponding PM2·5 concentrations and the share of health costs for liquid fuel and natural gas was 12% higher. Other than fossil fuels, South Asia was expected to show 16% greater relative health benefits than the percentage reduction in PM2·5 from the abatement of solid biofuel emissions. INTERPRETATION: In most countries, targeting combustion sources might offer greater health benefits than non-combustion sources. This finding provides additional rationale for climate actions aimed at phasing out combustion sources, especially those related to fossil fuels and solid biofuel. Mitigation efforts designed according to source-specific health costs can more effectively avoid health costs than strategies that depend solely on the source contributions to overall PM2·5 concentration. FUNDING: The Health Effects Institute, the National Natural Science Foundation of China, and NASA.


Subject(s)
Air Pollutants , Air Pollution , Global Health , Particulate Matter , Particulate Matter/analysis , Air Pollution/economics , Air Pollution/prevention & control , Humans , Air Pollutants/analysis , Models, Theoretical , Environmental Exposure/prevention & control , Coal/economics
5.
Science ; 385(6707): 386-390, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052781

ABSTRACT

The most up-to-date estimate of the global burden of disease indicates that ambient air pollution, including fine particulate matter and ozone, contributes to an estimated 5.2 million deaths each year. In this review, we highlight the challenges in estimating population exposure to air pollution and attributable health risks, particularly in low- and middle-income countries and among vulnerable populations. To protect public health, the evidence so far confirms urgent needs to prioritize interdisciplinary research on air pollution exposure and risk assessment and to develop evidence-based intervention policies and risk communication strategies. Here, we synthesize the emerging evidence supporting the monitoring and evaluation of the progress in implementation of the Global Air Quality Guidelines prepared by the World Health Organization.


Subject(s)
Air Pollution , Environmental Exposure , Environmental Monitoring , Particulate Matter , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/prevention & control , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Global Health , Ozone/adverse effects , Ozone/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Public Health , Risk Assessment , World Health Organization
6.
Int J Public Health ; 69: 1606909, 2024.
Article in English | MEDLINE | ID: mdl-38882560

ABSTRACT

Objectives: This study aims to estimate the short-term preventable mortality and associated economic costs of complying with the World Health Organization (WHO) air quality guidelines (AQGs) limit values for PM10 and PM2.5 in nine major Latin American cities. Methods: We estimated city-specific PM-mortality associations using time-series regression models and calculated the attributable mortality fraction. Next, we used the value of statistical life to calculate the economic benefits of complying with the WHO AQGs limit values. Results: In most cities, PM concentrations exceeded the WHO AQGs limit values more than 90% of the days. PM10 was found to be associated with an average excess mortality of 1.88% with concentrations above WHO AQGs limit values, while for PM2.5 it was 1.05%. The associated annual economic costs varied widely, between US$ 19.5 million to 3,386.9 million for PM10, and US$ 196.3 million to 2,209.6 million for PM2.5. Conclusion: Our findings suggest that there is an urgent need for policymakers to develop interventions to achieve sustainable air quality improvements in Latin America. Complying with the WHO AQGs limit values for PM10 and PM2.5 in Latin American cities would substantially benefits for urban populations.


Subject(s)
Air Pollution , Cities , Particulate Matter , World Health Organization , Particulate Matter/analysis , Particulate Matter/economics , Humans , Latin America , Air Pollution/economics , Air Pollution/prevention & control , Air Pollution/analysis , Air Pollutants/analysis , Air Pollutants/economics , Mortality , Environmental Exposure/prevention & control , Environmental Exposure/economics
7.
J Public Health Manag Pract ; 30(4): E184-E187, 2024.
Article in English | MEDLINE | ID: mdl-38833669

ABSTRACT

Chronic arsenic exposure is associated with adverse health outcomes, and early life exposure is particularly damaging. Households with pregnant people and young children drinking from unregulated wells in arsenic-prevalent regions are therefore a public health priority for outreach and intervention. A partnership between Columbia University, New Jersey government partners, and Hunterdon Healthcare has informed Hunterdon County residents of the risks faced from drinking arsenic-contaminated water and offered free well testing through a practice-based water test kit distribution and an online patient portal outreach. Encouraged by those successes, Hunterdon Healthcare incorporated questions about drinking water source and arsenic testing history into the electronic medical record (EMR) template used by most primary care practices in Hunterdon County. The new EMR fields allow for additional targeting of risk-based outreach and water test kit distribution, offering promising new opportunities for public health and environmental medicine outreach, surveillance, and research.


Subject(s)
Drinking Water , Electronic Health Records , Public Health , New Jersey , Humans , Electronic Health Records/statistics & numerical data , Drinking Water/analysis , Public Health/methods , Arsenic/analysis , Environmental Exposure/prevention & control , Environmental Exposure/adverse effects
8.
Sci Total Environ ; 943: 173787, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851352

ABSTRACT

The cities of North India, such as Delhi, face a significant public health threat from severe air pollution. Between October 2021 and January 2022, 79 % of Delhi's daily average PM2.5 (Particulate matter with an aerodynamic diameter ≤ 2.5 µm) values exceeded 100 µg/m3 (the permissible level being 60 µg/m3 as per Indian standards). In response to this acute exposure, using Respiratory Face Masks (RFMs) is a cost-effective solution to reduce immediate health risks while policymakers develop long-term emission control plans. Our research focuses on the health and economic benefits of using RFMs to prevent acute exposure to PM2.5 pollution in Delhi for different age groups. Our findings indicate that, among the fifty chosen RFMs, M50 has greatest potential to prevent short-term excess mortality (908 in age ranges 5-44), followed by M49 (745) and M48 (568). These RFMs resulted in estimated economic benefits of 500.6 (46 %), 411.1 (37 %), and 313.4 (29 %) million Indian Rupee (INR), respectively during October-January 2021-22. By wearing RFMs such as M50, M49, and M48 during episodes of bad air quality, it is estimated that 13 % of short-term excess mortality and associated costs could be saved if at least 30 % of Delhi residents followed an alert issued by an operational Air Quality Early Warning System (AQEWS) developed by the Ministry of Earth Sciences. Our research suggests that RFMs can notably decrease health and economic burdens amid peak PM2.5 pollution in post-monsoon and winter seasons until long-term emission reduction strategies are adopted. It is suggested that an advisory may be crafted in collaboration with statutory bodies and should be disseminated to assist the vulnerable population in using RFMs during winter. The analysis presented in this research is purely science based and outcomes of study are in no way to be construed as endorsement of product.


Subject(s)
Air Pollutants , Air Pollution , Masks , Particulate Matter , India , Particulate Matter/analysis , Humans , Air Pollution/prevention & control , Air Pollutants/analysis , Environmental Exposure/prevention & control , Cities , Child , Adolescent , Child, Preschool , Adult , Young Adult
9.
NPJ Prim Care Respir Med ; 34(1): 14, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834570

ABSTRACT

The FRESHAIR4Life study aims to reduce the non-communicable disease (NCD) burden by implementing preventive interventions targeting adolescents' exposure to tobacco use and air pollution (AP) worldwide. This paper presents the FRESHAIR4Life methodology and initial rapid review results. The rapid review, using various databases and PubMed, aimed to guide decision-making on risk factor focus, target areas, and populations. It showed variable NCD mortality rates related to tobacco use and AP across the participating countries, with tobacco as the main risk factor in the Kyrgyz Republic, Greece, and Romania, and AP prevailing in Pakistan and Uganda. Adolescent exposure levels, sources, and correlates varied. The study will continue with an in-depth situational analysis to guide the selection, adaptation, and integration of evidence-based interventions into the FRESHAIR4Life prevention package. This package will be implemented, evaluated, assessed for cost-effectiveness, and iteratively refined. The research places a strong emphasis on co-creation, capacity building, and comprehensive communication and dissemination.


Subject(s)
Air Pollution , Noncommunicable Diseases , Humans , Adolescent , Air Pollution/adverse effects , Noncommunicable Diseases/prevention & control , Vulnerable Populations , Tobacco Use/prevention & control , Romania , Pakistan , Uganda/epidemiology , Greece/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Global Health , Risk Factors
10.
Circ Res ; 134(9): 1197-1217, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662863

ABSTRACT

Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Environmental Exposure , Humans , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Exercise , Particulate Matter/adverse effects , Air Pollutants/adverse effects , Air Pollution/adverse effects
11.
Health Phys ; 126(6): 367-373, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38568162

ABSTRACT

ABSTRACT: The process to arrive at the radiation protection practices of today to protect workers, patients, and the public, including sensitive populations, has been a long and deliberative one. This paper presents an overview of the US Environmental Protection Agency's (US EPA) responsibility in protecting human health and the environment from unnecessary exposure to radiation. The origins of this responsibility can be traced back to early efforts, a century ago, to protect workers from x rays and radium. The system of radiation protection we employ today is robust and informed by the latest scientific consensus. It has helped reduce or eliminate unnecessary exposures to workers, patients, and the public while enabling the safe and beneficial uses of radiation and radioactive material in diverse areas such as energy, medicine, research, and space exploration. Periodic reviews and analyses of research on health effects of radiation by scientific bodies such as the National Academy of Sciences, National Council on Radiation Protection and Measurements, United Nations Scientific Committee on the Effects of Atomic Radiation, and the International Commission on Radiological Protection continue to inform radiation protection practices while new scientific information is gathered. As a public health agency, US EPA is keenly interested in research findings that can better elucidate the effects of exposure to low doses and low dose rates of radiation as applicable to protection of diverse populations from various sources of exposure. Professional organizations such as the Health Physics Society can provide radiation protection practitioners with continuing education programs on the state of the science and describe the key underpinnings of the system of radiological protection. Such efforts will help equip and prepare radiation protection professionals to more effectively communicate radiation health information with their stakeholders.


Subject(s)
Radiation Protection , Radiation Protection/legislation & jurisprudence , Radiation Protection/standards , Humans , United States , Policy Making , United States Environmental Protection Agency , Radiation Exposure/prevention & control , Radiation Exposure/adverse effects , Science , Environmental Exposure/prevention & control
12.
Arch Dis Child ; 109(6): 483-487, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38503436

ABSTRACT

OBJECTIVE: To assess levels of pollutants at the sites of new schools and whether pupils are likely to be protected from associated risks. SETTING: Air pollution causes damage to children's health by increasing respiratory tract infection rates, asthma exacerbations, allergies and childhood cancers. Further effects include poorer neurocognitive outcomes and multisystemic illness in adulthood. DESIGN: We obtained a list of all 187 proposed new schools in England from 2017 to 2025 and found locations for 147 of them. We assessed air quality against WHO air quality targets and the air quality percentile of the location relative to pollution levels across the UK. We review relevant legislation and guidance. RESULTS: Our analysis found 86% of new schools (126/147) exceeded all three WHO targets, and every location exceeded at least one. Nationally, 76% (112/147) of sites were in the 60th or greater pollution percentile. Within London, the median pollution percentile was the 90th, with a minimum of 76th and maximum of 99th (IQR=83 rd to 94th). CONCLUSION: The guidance for school proposals does not include any requirement to assess air quality at the identified site. Building regulations also fail to consider how widespread poor air quality is, and significantly underestimates the levels of major air pollutants surrounding schools. Therefore it is unlikely that adequate action to reduce pupil and staff exposure is undertaken.We argue that air quality assessment should be mandatory at the proposal and planning stage of any new school building and that national guidance and legislation urgently needs to be updated.


Subject(s)
Air Pollution , Schools , Humans , England/epidemiology , Child , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/legislation & jurisprudence , Air Pollutants/analysis , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Environmental Monitoring/methods , Play and Playthings
13.
Curr Allergy Asthma Rep ; 24(5): 233-251, 2024 05.
Article in English | MEDLINE | ID: mdl-38492159

ABSTRACT

PURPOSE OF REVIEW: In this review, we detail the exposome (consisting of environmental factors such as diet, microbial colonization, allergens, pollutants, and stressors), mechanistic and clinical research supporting its influence on atopic disease, and potentiation from climate change. We highlight contemporary environmental interventions and available evidence substantiating their roles in atopic disease prevention, from observational cohorts to randomized controlled trials, when available. RECENT FINDINGS: Early introduction to allergenic foods is an effective primary prevention strategy to reduce food allergy. Diverse dietary intake also appears to be a promising strategy for allergic disease prevention, but additional study is necessary. Air pollution and tobacco smoke are highly associated with allergic disease, among other medical comorbidities, paving the way for campaigns and legislation to reduce these exposures. There is no clear evidence that oral vitamin D supplementation, prebiotic or probiotic supplementation, daily emollient application, and antiviral prophylaxis are effective in preventing atopic disease, but these interventions require further study. While some environmental interventions have a well-defined role in the prevention of atopic disease, additional study of many remaining interventions is necessary to enhance our understanding of their role in disease prevention. Alignment of research findings from randomized controlled trials with public policy is essential to develop meaningful public health outcomes and prevent allergic disease on the population level.


Subject(s)
Environmental Exposure , Humans , Environmental Exposure/prevention & control , Environmental Exposure/adverse effects , Allergens/immunology , Climate Change , Hypersensitivity, Immediate/prevention & control , Exposome , Food Hypersensitivity/prevention & control , Diet , Air Pollution/adverse effects , Air Pollution/prevention & control
15.
Thorax ; 79(6): 495-507, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38388489

ABSTRACT

INTRODUCTION: Elevated particulate matter (PM) concentrations of anthropogenic and/or desert dust origin are associated with increased morbidity among children with asthma. OBJECTIVE: The Mitigating the Health Effects of Desert Dust Storms Using Exposure-Reduction Approaches randomised controlled trial assessed the impact of exposure reduction recommendations, including indoor air filtration, on childhood asthma control during high desert dust storms (DDS) season in Cyprus and Greece. DESIGN, PARTICIPANTS, INTERVENTIONS AND SETTING: Primary school children with asthma were randomised into three parallel groups: (a) no intervention (controls); (b) outdoor intervention (early alerts notifications, recommendations to stay indoors and limit outdoor physical activity during DDS) and (c) combined intervention (same as (b) combined with indoor air purification with high efficiency particulate air filters in children's homes and school classrooms. Asthma symptom control was assessed using the childhood Asthma Control Test (c-ACT), spirometry (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC)) and fractional exhaled nitric oxide (FeNO). RESULTS: In total, 182 children with asthma (age; mean=9.5, SD=1.63) were evaluated during 2019 and 2021. After three follow-up months, the combined intervention group demonstrated a significant improvement in c-ACT in comparison to controls (ß=2.63, 95% CI 0.72 to 4.54, p=0.007), which was more profound among atopic children (ß=3.56, 95% CI 0.04 to 7.07, p=0.047). Similarly, FEV1% predicted (ß=4.26, 95% CI 0.54 to 7.99, p=0.025), the need for any asthma medication and unscheduled clinician visits, but not FVC% and FeNO, were significantly improved in the combined intervention compared with controls. CONCLUSION: Recommendations to reduce exposure and use of indoor air filtration in areas with high PM pollution may improve symptom control and lung function in children with asthma. TRIAL REGISTRATION NUMBER: NCT03503812.


Subject(s)
Asthma , Dust , Humans , Asthma/prevention & control , Child , Male , Female , Cyprus , Particulate Matter/analysis , Particulate Matter/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Greece , Air Filters , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Nitric Oxide/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Forced Expiratory Volume
16.
Epidemiol Health ; 46: e2024009, 2024.
Article in English | MEDLINE | ID: mdl-38186248

ABSTRACT

OBJECTIVES: Smoke-free areas have expanded and related campaigns have been implemented since 1995 in Korea. As a result, household secondhand smoke (SHS) exposure has decreased over the past 15 years. We assessed the cohort effect, the effect of a 2008 campaign on household SHS exposure, and the impact of a complete smoking ban in public places along with increased penalties, as implemented in December 2011. METHODS: Nationally representative cross-sectional 15-wave survey data of Korean adolescents were used. The 810,516 participants were classified into 6 grade groups, 15 period groups, and 20 middle school admission cohorts. An age-period-cohort analysis, conducted with the intrinsic estimator method, was used to assess the cohort effect of household SHS exposure, and interrupted-time series analyses were conducted to evaluate the effects of the smoke-free policy and the campaign. RESULTS: For cohorts who entered middle school from 2002 to 2008, the risk of household SHS exposure decreased among both boys and girls. Immediately after implementation of the smoke-free policy, the prevalence of household SHS exposure by period decreased significantly for boys (coefficient, -8.96; p<0.05) and non-significantly for girls (coefficient, -6.99; p=0.07). After the campaign, there was a significant decrease in household SHS exposure by cohort among boys, both immediately and post-intervention (coefficient, -4.84; p=0.03; coefficient, -1.22; p=0.02, respectively). CONCLUSIONS: A school-admission-cohort effect was found on household SHS exposure among adolescents, which was associated with the smoke-free policy and the campaign. Anti-smoking interventions should be implemented consistently and simultaneously.


Subject(s)
Smoke-Free Policy , Tobacco Smoke Pollution , Male , Female , Humans , Adolescent , Tobacco Smoke Pollution/prevention & control , Cross-Sectional Studies , Interrupted Time Series Analysis , Republic of Korea/epidemiology , Environmental Exposure/prevention & control
17.
J Pediatr Nurs ; 76: e50-e59, 2024.
Article in English | MEDLINE | ID: mdl-38278746

ABSTRACT

PROBLEM: Toddlers are more prone to exposure to widely distributed air pollution and to health damage from it. However, systematic summaries of evidence on protective behaviors against air pollution for toddlers are lacking. OBJECTIVE: To identify currently available evidence on protective behaviors against air pollution for toddlers. METHODS: The literature retrieval was performed in selected databases, limited from 2002 to 2022. Studies meeting the following criteria were included and praised: 1) clinical practice guideline, systematic review, expert consensus, recommended practice, randomized control test (RCT) or cohort study published in Chinese or English; 2) studies reporting effects of protective behaviors against air pollution on toddlers' health outcomes or providing recommendation on these behaviors. The evidence in the included studies was extracted, synthesized and graded for evidence summary. RESULTS: Studies (N = 19) were used for evidence summary development and 35 pieces of best evidence were synthesized, which were divided into three categories, including "avoiding or reducing air pollution generation", "removing existing air pollution", and "avoiding or reducing exposure to existing air pollution". CONCLUSIONS: More evidence is needed to identify protective measures against outdoor air pollution and tobacco smoke. Research in the future should focus on the safety, effectiveness and feasibility of universal measures implemented in toddlers, and try to develop protective measures specific to toddlers which highlight their special nature. IMPLICATIONS: The results of this study can help pediatric nurses provide individualized advice and assistance for toddlers and their families, and conduct research on the effectiveness of toddler-targeting protective behaviors more efficiently.


Subject(s)
Air Pollution , Humans , Air Pollution/adverse effects , Air Pollution/prevention & control , Child, Preschool , Infant , Female , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Male
18.
BMC Public Health ; 24(1): 312, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38281022

ABSTRACT

BACKGROUND: Wildfire smoke exposure has become a growing public health concern, as megafires and fires at the wildland urban interface increase in incidence and severity. Smoke contains many pollutants that negatively impact health and is linked to a number of health complications and chronic diseases. Communicating effectively with the public, especially at-risk populations, to reduce their exposure to this environmental pollutant has become a public health priority. Although wildfire smoke risk communication research has also increased in the past decade, best practice guidance is limited, and most health communications do not adhere to health literacy principles: readability, accessibility, and actionability. This scoping review identifies peer-reviewed studies about wildfire smoke risk communications to identify gaps in research and evaluation of communications and programs that seek to educate the public. METHODS: Four hundred fifty-one articles were identified from Web of Science and PubMed databases. After screening, 21 articles were included in the final sample for the abstraction process and qualitative thematic analysis. Ten articles were based in the US, with the other half in Australia, Canada, Italy, and other countries. Fifteen articles examined communication materials and messaging recommendations. Eight papers described communication delivery strategies. Eleven articles discussed behavior change. Six articles touched on risk communications for vulnerable populations; findings were limited and called for increasing awareness and prioritizing risk communications for at-risk populations. RESULTS: This scoping review found limited studies describing behavior change to reduce wildfire smoke exposure, characteristics of effective communication materials and messaging, and communication delivery strategies. Literature on risk communications, dissemination, and behavior change for vulnerable populations was even more limited. CONCLUSIONS: Recommendations include providing risk communications that are easy-to-understand and adapted to specific needs of at-risk groups. Communications should provide a limited number of messages that include specific actions for avoiding smoke exposure. Effective communications should use mixed media formats and a wide variety of dissemination strategies. There is a pressing need for more intervention research and effectiveness evaluation of risk communications about wildfire smoke exposure, and more development and dissemination of risk communications for both the general public and vulnerable populations.


Subject(s)
Environmental Pollutants , Fires , Health Communication , Wildfires , Humans , Smoke/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Fires/prevention & control
19.
BMC Pediatr ; 23(1): 556, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925402

ABSTRACT

BACKGROUND: Air pollution harms health across the life course. Children are at particular risk of adverse effects during development, which may impact on health in later life. Interventions that improve air quality are urgently needed both to improve public health now, and prevent longer-term increased vulnerability to chronic disease. Low Emission Zones are a public health policy intervention aimed at reducing traffic-derived contributions to urban air pollution, but evidence that they deliver health benefits is lacking. We describe a natural experiment study (CHILL: Children's Health in London and Luton) to evaluate the impacts of the introduction of London's Ultra Low Emission Zone (ULEZ) on children's health. METHODS: CHILL is a prospective two-arm parallel longitudinal cohort study recruiting children at age 6-9 years from primary schools in Central London (the focus of the first phase of the ULEZ) and Luton (a comparator site), with the primary outcome being the impact of changes in annual air pollutant exposures (nitrogen oxides [NOx], nitrogen dioxide [NO2], particulate matter with a diameter of less than 2.5micrograms [PM2.5], and less than 10 micrograms [PM10]) across the two sites on lung function growth, measured as post-bronchodilator forced expiratory volume in one second (FEV1) over five years. Secondary outcomes include physical activity, cognitive development, mental health, quality of life, health inequalities, and a range of respiratory and health economic data. DISCUSSION: CHILL's prospective parallel cohort design will enable robust conclusions to be drawn on the effectiveness of the ULEZ at improving air quality and delivering improvements in children's respiratory health. With increasing proportions of the world's population now living in large urban areas exceeding World Health Organisation air pollution limit guidelines, our study findings will have important implications for the design and implementation of Low Emission and Clean Air Zones in the UK, and worldwide. CLINICALTRIALS: GOV: NCT04695093 (05/01/2021).


Subject(s)
Air Pollution , Child Health , Child , Humans , Air Pollution/adverse effects , Air Pollution/prevention & control , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , London , Longitudinal Studies , Particulate Matter , Prospective Studies , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL