Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.907
Filter
1.
Front Immunol ; 15: 1298971, 2024.
Article in English | MEDLINE | ID: mdl-38953021

ABSTRACT

Introduction: More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods: A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results: The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion: The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.


Subject(s)
Gastrointestinal Microbiome , Phenols , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Fluorocarbons , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Coculture Techniques , Environmental Pollutants/toxicity , Bacteria/drug effects , Bacteria/immunology
2.
Environ Geochem Health ; 46(8): 271, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954040

ABSTRACT

Pyrethroids are synthetic organic insecticides. Deltamethrin, as one of the pyrethroids, has high insecticidal activity against pests and parasites and is less toxic to mammals, and is widely used in cities and urban areas worldwide. After entering the natural environment, deltamethrin circulates between solid, liquid and gas phases and enters organisms through the food chain, posing significant health risks. Increasing evidence has shown that deltamethrin has varying degrees of toxicity to a variety of organisms. This review summarized worldwide studies of deltamethrin residues in different media and found that deltamethrin is widely detected in a range of environments (including soil, water, sediment, and air) and organisms. In addition, the metabolism of deltamethrin, including metabolites and enzymes, was discussed. This review shed the mechanism of toxicity of deltamethrin and its metabolites, including neurotoxicity, immunotoxicity, endocrine disruption toxicity, reproductive toxicity, hepatorenal toxicity. This review is aim to provide reference for the ecological security and human health risk assessment of deltamethrin.


Subject(s)
Insecticides , Nitriles , Pyrethrins , Pyrethrins/toxicity , Nitriles/toxicity , Insecticides/toxicity , Humans , Animals , Pesticide Residues/toxicity , Pesticide Residues/analysis , Risk Assessment , Environmental Pollutants/toxicity
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 917-923, 2024 Jun 06.
Article in Chinese | MEDLINE | ID: mdl-38955742

ABSTRACT

Persistent Organic Pollutants (POPs) have the characteristics of resistance to environmental degradation, bioaccumulation and long-distance migration potential. Maternal exposure to POPs during pregnancy can enter the fetal blood circulation through the placental barrier, and have a potential impact on the functional development of the nervous system of the offspring. This in turn leads to the occurrence and development of neurological defects and diseases in adulthood. The purpose of this paper is to elucidate the effects of exposure to three major POPs (organochlorine compounds, perfluoroalkyl and polyfluoroalkyl substances, and polybrominated diphenyl ethers) during pregnancy on the functional development of the nervous system (social emotions, cognition, language, exercise, and adaptability) in children, and to provide reference for subsequent studies.


Subject(s)
Nervous System , Persistent Organic Pollutants , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Child , Nervous System/drug effects , Nervous System/growth & development , Maternal Exposure/adverse effects , Halogenated Diphenyl Ethers/toxicity , Hydrocarbons, Chlorinated , Child Development/drug effects , Environmental Pollutants/toxicity
4.
Front Endocrinol (Lausanne) ; 15: 1429884, 2024.
Article in English | MEDLINE | ID: mdl-38962683

ABSTRACT

The thyroid gland regulates most of the physiological processes. Environmental factors, including climate change, pollution, nutritional changes, and exposure to chemicals, have been recognized to impact thyroid function and health. Thyroid disorders and cancer have increased in the last decade, the latter increasing by 1.1% annually, suggesting that environmental contaminants must play a role. This narrative review explores current knowledge on the relationships among environmental factors and thyroid gland anatomy and function, reporting recent data, mechanisms, and gaps through which environmental factors act. Global warming changes thyroid function, and living in both iodine-poor areas and volcanic regions can represent a threat to thyroid function and can favor cancers because of low iodine intake and exposure to heavy metals and radon. Areas with high nitrate and nitrite concentrations in water and soil also negatively affect thyroid function. Air pollution, particularly particulate matter in outdoor air, can worsen thyroid function and can be carcinogenic. Environmental exposure to endocrine-disrupting chemicals can alter thyroid function in many ways, as some chemicals can mimic and/or disrupt thyroid hormone synthesis, release, and action on target tissues, such as bisphenols, phthalates, perchlorate, and per- and poly-fluoroalkyl substances. When discussing diet and nutrition, there is recent evidence of microbiome-associated changes, and an elevated consumption of animal fat would be associated with an increased production of thyroid autoantibodies. There is some evidence of negative effects of microplastics. Finally, infectious diseases can significantly affect thyroid function; recently, lessons have been learned from the SARS-CoV-2 pandemic. Understanding how environmental factors and contaminants influence thyroid function is crucial for developing preventive strategies and policies to guarantee appropriate development and healthy metabolism in the new generations and for preventing thyroid disease and cancer in adults and the elderly. However, there are many gaps in understanding that warrant further research.


Subject(s)
Environmental Exposure , Environmental Pollutants , Thyroid Diseases , Thyroid Gland , Humans , Thyroid Gland/drug effects , Thyroid Diseases/epidemiology , Thyroid Diseases/chemically induced , Thyroid Diseases/etiology , Environmental Exposure/adverse effects , Adult , Environmental Pollutants/toxicity , Environmental Pollutants/adverse effects , Endocrine Disruptors/adverse effects , Female , Pregnancy
5.
J Ovarian Res ; 17(1): 134, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943138

ABSTRACT

BACKGROUND: Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS: Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS: F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION: Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.


Subject(s)
Ovarian Follicle , Ovarian Reserve , Female , Animals , Rabbits , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Humans , Ovarian Reserve/drug effects , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Ovary/drug effects , Ovary/metabolism , Environmental Exposure/adverse effects
6.
J Hazard Mater ; 475: 134863, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885590

ABSTRACT

Early life phthalates exposure has been associated with adverse respiratory outcomes. However, evidence linking prenatal phthalates exposure and childhood lung function has been inconclusive. Additionally, few studies have examined phthalates exposure as a mixture and explored sexually dimorphic associations. We aimed to investigate sex-specific associations of prenatal phthalates mixtures with childhood lung function using the PROGRESS cohort in Mexico (N = 476). Prenatal phthalate concentrations were measured in maternal urine collected during the 2nd and 3rd trimesters. Children's lung function was evaluated at ages 8-13 years. Individual associations were assessed using multivariable linear regression, and mixture associations were modeled using repeated holdout WQS regression and hierarchical BKMR; data was stratified by sex to explore sex-specific associations. We identified significant interactions between 2nd trimester phthalates mixture and sex on FEV1 and FVC z-scores. Higher 2nd trimester phthalate concentrations were associated with higher FEV1 (ß = 0.054, 95 %CI: 0.005, 0.104) and FVC z-scores (ß = 0.074, 95 % CI: 0.024, 0.124) in females and with lower measures in males (FEV1, ß = -0.017, 95 %CI: -0.066, 0.026; FVC, ß = -0.014, 95 %CI: -0.065, 0.030). This study indicates that prenatal exposure to phthalates is related to childhood lung function in a sex-specific manner.


Subject(s)
Lung , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Phthalic Acids/urine , Phthalic Acids/toxicity , Female , Child , Mexico , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Adolescent , Lung/drug effects , Lung/physiopathology , Maternal Exposure/adverse effects , Environmental Pollutants/urine , Environmental Pollutants/toxicity , Respiratory Function Tests
7.
J Hazard Mater ; 475: 134862, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885585

ABSTRACT

The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.


Subject(s)
Environmental Pollutants , Gastrointestinal Microbiome , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , Humans , Halogenated Diphenyl Ethers/toxicity , Gastrointestinal Microbiome/drug effects , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Female , Male , Child , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Dust/analysis , Child, Preschool , Environmental Exposure , Metabolomics , Electronic Waste , China , Metals/metabolism , Metals/toxicity , Organophosphates/toxicity , Organophosphates/metabolism
8.
Reproduction ; 168(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847770

ABSTRACT

Over the past 50 years, there has been a concerning decline in male reproductive health and an increase in male infertility which is now recognised as a major health concern globally. While male infertility can be linked to some genetic and lifestyle factors, these do not fully explain the rate of declining male reproductive health. Increasing evidence from human and animal studies suggests that exposure to chemicals found ubiquitously in the environment may in part play a role. Many studies on chemical exposure, however, have assessed the effects of exposure to individual environmental chemicals (ECs), usually at levels not relevant to everyday human exposure. There is a need for study models which reflect the 'real-life' nature of EC exposure. One such model is the biosolids-treated pasture (BTP) sheep model which utilises biosolids application to agricultural land to examine the effects of exposure to low-level mixtures of chemicals. Biosolids are the by-product of the treatment of wastewater from industrial and domestic sources and so their composition is reflective of the ECs to which humans are exposed. Over the last 20 years, the BTP sheep model has published multiple effects on offspring physiology including consistent effects on the male reproductive system in fetal, neonatal, juvenile, and adult offspring. This review focuses on the evidence from these studies which strongly suggests that low-level EC exposure during gestation can alter several components of the male reproductive system and highlights the BTP model as a more relevant model to study real-life EC exposure effects.


Subject(s)
Environmental Exposure , Reproduction , Male , Animals , Reproduction/drug effects , Humans , Environmental Exposure/adverse effects , Infertility, Male/chemically induced , Infertility, Male/etiology , Sheep , Female , Pregnancy , Environmental Pollutants/toxicity , Sewage/adverse effects , Prenatal Exposure Delayed Effects
9.
Environ Geochem Health ; 46(7): 238, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849627

ABSTRACT

Microplastics (MPs) are defined as plastic particles or fragments with a diameter of less than 5 mm. These particles have been identified as causing male reproductive toxicity, although the precise mechanism behind this association is yet to be fully understood. Recent research has found that exposure to polystyrene microplastics (PS-MPs) can disrupt spermatogenesis by impacting the integrity of the blood-testis barrier (BTB), a formidable barrier within mammalian blood tissues. The BTB safeguards germ cells from harmful substances and infiltration by immune cells. However, the disruption of the BTB leads to the entry of environmental pollutants and immune cells into the seminiferous tubules, resulting in adverse reproductive effects. Additionally, PS-MPs induce reproductive damage by generating oxidative stress, inflammation, autophagy, and alterations in the composition of intestinal flora. Despite these findings, the precise mechanism by which PS-MPs disrupt the BTB remains inconclusive, necessitating further investigation into the underlying processes. This review aims to enhance our understanding of the pernicious effects of PS-MP exposure on the BTB and explore potential mechanisms to offer novel perspectives on BTB damage caused by PS-MPs.


Subject(s)
Blood-Testis Barrier , Microplastics , Polystyrenes , Microplastics/toxicity , Polystyrenes/toxicity , Male , Humans , Blood-Testis Barrier/drug effects , Animals , Spermatogenesis/drug effects , Oxidative Stress/drug effects , Environmental Pollutants/toxicity
10.
Sci Total Environ ; 945: 173738, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38844219

ABSTRACT

Ionic liquids (ILs) become emerging environmental pollutants. Especially, alkyl imidazolium ILs commonly showed stimulation in toxicological studies and mechanisms remained to be explored. In the present study, alkyl imidazolium tetrafluoroborate ([amim]BF4), with ethyl ([emim]), hexyl ([hmim]) and octyl ([omim]) as side-chains, were chosen as target ILs. Their toxicities on the reproduction and lifespan of Caenorhabditis elegans were explored with two types (A and B) exposure arrangements to mimic realistic intermittent multi-generational exposure scenarios. In type A scenario, there was an exposure every 4 generations with 12 generations in total, and in type B one, there was an exposure every two generations with 12 generations in total. Result showed that [emim]BF4 caused inhibition on the reproduction in 8 generations in type A exposure but 6 ones in type B exposure. Meanwhile, [hmim]BF4 showed inhibition in one generation and stimulation in 3 generations in type A exposure, but stimulation in 6 generations in type B exposure. Also, [omim]BF4 showed stimulation in one generation in type B exposure. Collectively, the results demonstrated less frequencies of inhibition, or more frequencies of stimulation, in the exposure scenario with more frequent exposures. Further mechanism exploration was performed to measure the lipid storage and metabolism in the aspect of energy supply. Results showed that [emim]BF4, [hmim]BF4 and [omim]BF4 commonly stimulated the triglyceride (TG) levels across generations. They also disturbed the activities of glycerol-3-phosphate acyltransferase (GPAT) and acetyl CoA carboxylase (ACC) in lipogenesis, those of adipose triglyceride lipase (ATGL) and carnitine acyl transferase (CPT) in lipolysis, and also the contents of acetyl-CoA (ACA). Further data analysis indicated the energy allocation among life traits including reproduction, antioxidant responses and hormone regulations.


Subject(s)
Caenorhabditis elegans , Imidazoles , Ionic Liquids , Lipid Metabolism , Reproduction , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Lipid Metabolism/drug effects , Imidazoles/toxicity , Reproduction/drug effects , Ionic Liquids/toxicity , Environmental Pollutants/toxicity , Borates/toxicity
12.
Biomed Environ Sci ; 37(5): 479-493, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843921

ABSTRACT

Objective: To investigate changes in the urinary metabolite profiles of children exposed to polycyclic aromatic hydrocarbons (PAHs) during critical brain development and explore their potential link with the intestinal microbiota. Methods: Liquid chromatography-tandem mass spectrometry was used to determine ten hydroxyl metabolites of PAHs (OH-PAHs) in 36-month-old children. Subsequently, 37 children were categorized into low- and high-exposure groups based on the sum of the ten OH-PAHs. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to identify non-targeted metabolites in the urine samples. Furthermore, fecal flora abundance was assessed by 16S rRNA gene sequencing using Illumina MiSeq. Results: The concentrations of 21 metabolites were significantly higher in the high exposure group than in the low exposure group (variable importance for projection > 1, P < 0.05). Most of these metabolites were positively correlated with the hydroxyl metabolites of naphthalene, fluorine, and phenanthrene ( r = 0.336-0.531). The identified differential metabolites primarily belonged to pathways associated with inflammation or proinflammatory states, including amino acid, lipid, and nucleotide metabolism. Additionally, these distinct metabolites were significantly associated with specific intestinal flora abundances ( r = 0.34-0.55), which were mainly involved in neurodevelopment. Conclusion: Higher PAH exposure in young children affected metabolic homeostasis, particularly that of certain gut microbiota-derived metabolites. Further investigation is needed to explore the potential influence of PAHs on the gut microbiota and their possible association with neurodevelopmental outcomes.


Subject(s)
Gastrointestinal Microbiome , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/urine , Male , Child, Preschool , Female , Gastrointestinal Microbiome/drug effects , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Metabolomics , Metabolome/drug effects
13.
J Environ Sci (China) ; 145: 1-12, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844310

ABSTRACT

The potential association between colorectal cancer (CRC) and environmental pollutants is worrisome. Previous studies have found that some perfluoroalkyl acids, including perfluorooctane sulfonate (PFOS), induced colorectal tumors in experimental animals and promoted the migration of and invasion by CRC cells in vitro, but the underlying mechanism is unclear. Here, we investigated the effects of PFOS on the proliferation and migration of CRC cells and the potential mechanisms involving activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition (EMT). It was found that PFOS promoted the growth and migration of HCT116 cells at non-cytotoxic concentrations and increased the mRNA expression of the migration-related angiogenic cytokines vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In a mechanistic investigation, the up-stream signal pathway PI3K/Akt-NF-κB was activated by PFOS, and the process was suppressed by LY294002 (PI3K/Akt inhibitor) and BAY11-7082 (NF-κB inhibitor) respectively, leading to less proliferation of HCT116 cells. Furthermore, matrix metalloproteinases (MMP) and EMT-related markers were up-regulated after PFOS exposure, and were also suppressed respectively by LY294002 and BAY11-7082. Moreover, the up-regulation of EMT markers was suppressed by a MMP inhibitor GM6001. Taken together, our results indicated that PFOS promotes colorectal cancer cell migration and proliferation by activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition. This could be a potential toxicological mechanism of PFOS-induced malignant development of colorectal cancer.


Subject(s)
Alkanesulfonic Acids , Cell Movement , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Fluorocarbons , Fluorocarbons/toxicity , Alkanesulfonic Acids/toxicity , Epithelial-Mesenchymal Transition/drug effects , Colorectal Neoplasms/pathology , Humans , Cell Movement/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Environmental Pollutants/toxicity , HCT116 Cells , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor
14.
Front Public Health ; 12: 1361901, 2024.
Article in English | MEDLINE | ID: mdl-38873314

ABSTRACT

With the acceleration of urbanization, the risk of urban population exposure to environmental pollutants is increasing. Protecting public health is the top priority in the construction of smart cities. The purpose of this study is to propose a method for identifying toxicological biological indicators of human exposure in smart cities based on public health data and deep learning to achieve accurate assessment and management of exposure risks. Initially, the study used a network of sensors within the smart city infrastructure to collect environmental monitoring data, including indicators such as air quality, water quality, and soil pollution. Using public health data, a database containing information on types and concentrations of environmental pollutants has been established. Convolutional neural network was used to recognize the pattern of environmental monitoring data, identify the relationship between different indicators, and build the correlation model between health indicators and environmental indicators. Identify biological indicators associated with environmental pollution exposure through training optimization. Experimental analysis showed that the prediction accuracy of the model reached 93.45%, which could provide decision support for the government and the health sector. In the recognition of the association pattern between respiratory diseases, cardiovascular diseases and environmental exposure factors such as PM2.5 and SO2, the fitting degree between the model and the simulation value reached more than 0.90. The research design model can play a positive role in public health and provide new decision-making ideas for protecting public health.


Subject(s)
Cities , Deep Learning , Environmental Exposure , Environmental Monitoring , Public Health , Humans , Environmental Monitoring/methods , Environmental Pollutants/toxicity
15.
Sci Total Environ ; 942: 173812, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38857795

ABSTRACT

Prenatal exposures to toxic metals and trace elements have been linked to childhood neurodevelopment. However, existing evidence remains inconclusive, and further research is needed to investigate the mixture effects of multiple metal exposures on childhood neurodevelopment. We aimed to examine the associations between prenatal exposure to specific metals and metal mixtures and neurodevelopment in children. In this prospective cohort study, we used the multivariable linear regressions and the robust modified Poisson regressions to explore the associations of prenatal exposure to 25 specific metals with neurodevelopment among children at 3 years of age in 854 mother-child pairs from the Jiangsu Birth Cohort (JBC) Study. The Bayesian kernel machine regression (BKMR) was employed to assess the joint effects of multiple metals on neurodevelopment. Prenatal manganese (Mn) exposure was negatively associated with the risk of non-optimal cognition development of children, while vanadium (V), copper (Cu), zinc (Zn), antimony (Sb), cerium (Ce) and uranium (U) exposures were positively associated with the risk of non-optimal gross motor development. BKMR identified an interaction effect between Sb and Ce on non-optimal gross motor development. Additionally, an element risk score (ERS), representing the mixture effect of multiple metal exposures including V, Cu, Zn, Sb, Ce and U was constructed based on weights from a Poisson regression model. Children with ERS in the highest tertile had higher probability of non-optimal gross motor development (RR = 2.37, 95 % CI: 1.15, 4.86) versus those at the lowest tertile. Notably, Sb [conditional-posterior inclusion probabilities (cPIP) = 0.511] and U (cPIP = 0.386) mainly contributed to the increased risk of non-optimal gross motor development. The findings highlight the importance of paying attention to the joint effects of multiple metals on children's neurodevelopment. The ERS score may serve as an indicator of comprehensive metal exposure risk for children's neurodevelopment.


Subject(s)
Child Development , Maternal Exposure , Metals , Prenatal Exposure Delayed Effects , Humans , Female , Prenatal Exposure Delayed Effects/chemically induced , Pregnancy , Child, Preschool , Prospective Studies , Child Development/drug effects , Metals/toxicity , Male , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Environmental Pollutants/toxicity , Birth Cohort , China/epidemiology
16.
Environ Int ; 189: 108728, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850672

ABSTRACT

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.


Subject(s)
Benzhydryl Compounds , Environmental Monitoring , Environmental Pollutants , Phenols , Phenols/toxicity , Benzhydryl Compounds/toxicity , Environmental Pollutants/toxicity , Environmental Monitoring/methods , Animals , Humans , Endocrine Disruptors/toxicity
17.
Ecotoxicol Environ Saf ; 280: 116557, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850695

ABSTRACT

Decabromodiphenyl ether (BDE-209) is an organic compound that is widely used in rubber, textile, electronics, plastics and other industries. It has been found that BDE-209 has a destructive effect on the reproductive system of mammals. However, the effect of BDE-209 exposure on oocyte quality and whether there is a viable salvage strategy have not been reported. Here, we report that murine oocytes exposed to BDE-209 produce a series of meiostic defects, including increased fragmentation rates and decreased PBE. Furthermore, exposure of oocytes to BDE-209 hinders mitochondrial function and disrupts mitochondrial integrity. Our observations show that supplementation with NMN successfully alleviated the meiosis impairment caused by BDE-209 and averted oocyte apoptosis by suppressing ROS generation. In conclusion, our findings suggest that NMN supplementation may be able to alleviate the oocyte quality impairment induced by BDE-209 exposure, providing a potential strategy for protecting oocytes from environmental pollutant exposure.


Subject(s)
Halogenated Diphenyl Ethers , Oocytes , Reactive Oxygen Species , Animals , Halogenated Diphenyl Ethers/toxicity , Oocytes/drug effects , Mice , Reactive Oxygen Species/metabolism , Female , Apoptosis/drug effects , Mitochondria/drug effects , Environmental Pollutants/toxicity , Meiosis/drug effects , Flame Retardants/toxicity
18.
Ecotoxicol Environ Saf ; 280: 116539, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38870734

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds which are comprised of two or more fused benzene rings. As a typical environmental pollutant, PAHs are widely distributed in water, soil, atmosphere and food. Despite extensive researches on the mechanisms of health damage caused by PAHs, especially their carcinogenic and mutagenic toxicity, there is still a lack of comprehensive summarization and synthesis regarding the mechanisms of PAHs on the gut-testis axis, which represents an intricate interplay between the gastrointestinal and reproductive systems. Thus, this review primarily focuses on the potential forms of interaction between PAHs and the gut microbiota and summarizes their adverse outcomes that may lead to gut microbiota dysbiosis, then compiles the possible mechanistic pathways on dysbiosis of the gut microbiota impairing the male reproductive function, in order to provide valuable insights for future research and guide further exploration into the intricate mechanisms underlying the impact of gut microbiota dysbiosis caused by PAHs on male reproductive function.


Subject(s)
Dysbiosis , Environmental Pollutants , Gastrointestinal Microbiome , Polycyclic Aromatic Hydrocarbons , Testis , Polycyclic Aromatic Hydrocarbons/toxicity , Male , Gastrointestinal Microbiome/drug effects , Testis/drug effects , Humans , Animals , Environmental Pollutants/toxicity , Dysbiosis/chemically induced , Reproduction/drug effects , Gastrointestinal Tract/drug effects
19.
Ecotoxicol Environ Saf ; 280: 116551, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38875818

ABSTRACT

Polystyrene nanoplastics (PS-NPs), emerging and increasingly pervasive environmental contaminants, have the potential to cause persistent harm to organisms. Although previous reports have documented local accumulation and adverse effects in a variety of major organs after PS-NPs exposure, the impact of PS-NPs exposure on erectile function remains unexplored. Herein, we established a rat model of oral exposure to 100 nm PS-NPs for 28 days. To determine the best dose range of PS-NPs, we designed both low-dose and high-dose PS-NPs groups, which correspond to the minimum and maximum human intake doses, respectively. The findings indicated that PS-NPs could accumulate within the corpus cavernosum and high dose but not low dose of PS-NPs triggered erectile dysfunction. Moreover, the toxicological effects of PS-NPs on erectile function include fibrosis in the corpus cavernous, endothelial dysfunction, reduction in testosterone levels, elevated oxidative stress and apoptosis. Overall, this study revealed that PS-NPs exposure can cause erectile dysfunction via multiple ways, which provided new insights into the toxicity of PS-NPs.


Subject(s)
Erectile Dysfunction , Oxidative Stress , Penis , Polystyrenes , Rats, Sprague-Dawley , Animals , Erectile Dysfunction/chemically induced , Male , Polystyrenes/toxicity , Rats , Oxidative Stress/drug effects , Penis/drug effects , Testosterone/blood , Nanoparticles/toxicity , Apoptosis/drug effects , Environmental Pollutants/toxicity
20.
Environ Health Perspect ; 132(6): 67003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833407

ABSTRACT

BACKGROUND: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS: Female mice were exposed to human relevant doses of either Pb (32 ppm) via drinking water or DEHP (5mg/kg-day) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS: The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n=13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n=55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS: These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.


Subject(s)
DNA Methylation , Genomic Imprinting , Lead , Liver , Animals , DNA Methylation/drug effects , Mice , Female , Liver/drug effects , Male , Lead/toxicity , Lead/blood , Genomic Imprinting/drug effects , Diethylhexyl Phthalate/toxicity , Brain/drug effects , Environmental Pollutants/toxicity , Maternal Exposure , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects , Epigenesis, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...