Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.789
Filter
2.
Expert Opin Pharmacother ; 25(6): 769-782, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38753367

ABSTRACT

INTRODUCTION: Fabry's disease (FD) is a genetic lysosomal storage disorder characterized by α-galactosidase A (α-Gal A) lost/reduced activity. We aim to systematically assess the safety and efficacy of Migalastat, an oral pharmacological chaperone, that has been approved for the treatment of FD in patients with amenable mutations. METHODS: We conducted literature search following the PRISMA guidelines in major databases up to 4 February 2024, for studies that assessed the clinical outcomes of migalastat in patients with FD. The New Castle Ottawa Scale was used to evaluate the quality of the included studies. RESULTS: A total of 2141 records were identified through database searches and register searches, amongst which 26 records were screened, and 12 of these were excluded. The remaining 14 reports were sought for retrieval. The 12 retrieved articles were assessed for eligibility and their quality was assessed after their inclusion. Amongst the included studies, 5 were of high quality, 6 were of medium quality, and 1 was of low quality. CONCLUSION: Migalastat showed varied effects on enzyme activity and substrate levels, with gender-specific differences noted in GL-3 substrate activity and eGFR. Overall, it improved cardiac and renal outcomes similarly to enzyme replacement therapy, with a comparable safety profile.


Subject(s)
1-Deoxynojirimycin , Fabry Disease , alpha-Galactosidase , Fabry Disease/drug therapy , Humans , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/therapeutic use , 1-Deoxynojirimycin/adverse effects , alpha-Galactosidase/therapeutic use , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/administration & dosage , Treatment Outcome
3.
Clin Drug Investig ; 44(6): 387-398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698285

ABSTRACT

BACKGROUND AND OBJECTIVE: Aberrant accumulation of glycosphingolipids (GSLs) in the lysosome leads to GSL storage diseases. Glucosylceramide synthase inhibitors (GCSi) have the potential to treat several GSL storage diseases by reducing the synthesis of the disease-causing GSLs. AL01211 is a potent oral GCSi under investigation for Type 1 Gaucher disease and Fabry disease. Here, we evaluate the pharmacokinetics, pharmacodynamics, safety, and tolerability of AL01211 in healthy Chinese volunteers. METHODS: AL01211 was tested in a Phase 1, single-center, randomized, double-blind, placebo-controlled study with single-dose (15 and 60 mg) and multiple-dose (30 mg) arms. RESULTS: Results of AL01211 demonstrated dose-dependent pharmacokinetics, rapid absorption (median time to maximum plasma concentration [tmax] 2.5-4 hours), relatively slow clearance rate (mean apparent total clearance from plasma [CL/F] 88.3-200 L/h) and the mean terminal half-life above 30 hours. Repeated once-daily oral administration of AL01211 for 14 days had an approximately 2-fold accumulation, reaching steady-state levels between 7 and 10 days, and led to a 73% reduction in plasma glucosylceramide (GL1) on Day 14. AL01211 was safe and well tolerated, with no identified serious adverse events. CONCLUSION: AL01211 showed a favorable pharmacokinetic, pharmacodynamics, safety, and tolerability profile in healthy Chinese volunteers. These data support the further clinical development of AL01211 as a therapy for GSL storage diseases. CLINICAL TRIAL REGISTRY: Clinical Trial Registry no. CTR20221202 ( http://www.chinadrugtrials.org.cn ) registered on 6 June 2022 and ChiCTR2200061431 ( http://www.chictr.org.cn ) registered on 24 June 2022.


Subject(s)
Asian People , Glucosyltransferases , Healthy Volunteers , Humans , Double-Blind Method , Male , Adult , Administration, Oral , Young Adult , Female , Glucosyltransferases/antagonists & inhibitors , Dose-Response Relationship, Drug , China , Middle Aged , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , East Asian People
4.
Expert Opin Drug Metab Toxicol ; 20(6): 519-528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809523

ABSTRACT

INTRODUCTION: In addition to the well-established understanding of the pharmacogenetics of drug-metabolizing enzymes, there is growing data on the effects of genetic variation in drug transporters, particularly ATP-binding cassette (ABC) transporters. However, the evidence that these genetic variants can be used to predict drug effects and to adjust individual dosing to avoid adverse events is still limited. AREAS COVERED: This review presents a summary of the current literature from the PubMed database as of February 2024 regarding the impact of genetic variants on ABCG2 function and their relevance to the clinical use of the HMG-CoA reductase inhibitor rosuvastatin and the xanthine oxidase inhibitor allopurinol. EXPERT OPINION: Although there are pharmacogenetic guidelines for the ABCG2 missense variant Q141K, there is still some conflicting data regarding the clinical benefits of these recommendations. Some caution appears to be warranted in homozygous ABCG2 Q141K carriers when rosuvastatin is administered at higher doses and such information is already included in the drug label. The benefit of dose adaption to lower possible side effects needs to be evaluated in prospective clinical studies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Allopurinol , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasm Proteins , Pharmacogenetics , Rosuvastatin Calcium , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Allopurinol/pharmacokinetics , Allopurinol/administration & dosage , Allopurinol/pharmacology , Polymorphism, Genetic , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Animals , Mutation, Missense
5.
CPT Pharmacometrics Syst Pharmacol ; 13(7): 1264-1277, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38771074

ABSTRACT

Imetelstat is a novel, first-in-class, oligonucleotide telomerase inhibitor in development for the treatment of hematologic malignancies including lower-risk myelodysplastic syndromes and myelofibrosis. A nonlinear mixed-effects model was developed to characterize the population pharmacokinetics of imetelstat and identify and quantify covariates that contribute to its pharmacokinetic variability. The model was developed using plasma concentrations from 7 clinical studies including 424 patients with solid tumors or hematologic malignancies who received single-agent imetelstat via intravenous infusion at various dose levels (0.4-11.7 mg/kg) and schedules (every week to every 4 weeks). Covariate analysis included factors related to demographics, disease, laboratory results, renal and hepatic function, and antidrug antibodies. Imetelstat was described by a two-compartment, nonlinear disposition model with saturable binding/distribution and dose- and time-dependent elimination from the central compartment. Theory-based allometric scaling for body weight was included in disposition parameters. The final covariates included sex, time, malignancy, and dose on clearance; malignancy and sex on volume of the central compartment; and malignancy and spleen volume on concentration of target. Clearance in females was modestly lower, resulting in nonclinically relevant increases in predicted exposure relative to males. No effects on imetelstat pharmacokinetics were identified for mild-to-moderate hepatic or renal impairment, age, race, and antidrug antibody status. All model parameters were estimated with adequate precision (relative standard error < 29%). Visual predictive checks confirmed the capacity of the model to describe the data. The analysis supports the imetelstat body-weight-based dosing approach and lack of need for dose individualizations for imetelstat-treated patients.


Subject(s)
Oligonucleotides , Telomerase , Humans , Telomerase/antagonists & inhibitors , Male , Female , Middle Aged , Aged , Adult , Oligonucleotides/pharmacokinetics , Oligonucleotides/administration & dosage , Neoplasms/drug therapy , Models, Biological , Aged, 80 and over , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Dose-Response Relationship, Drug , Young Adult , Hematologic Neoplasms/drug therapy
6.
Am J Hematol ; 99(8): 1500-1510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38686876

ABSTRACT

Gaucher disease type 1 (GD1) is known for phenotypic heterogeneity and varied natural history. Registrational clinical trials enrolled narrowly defined phenotypes, but greater diversity is encountered in clinical practice. We report real-world outcomes with long-term eliglustat treatment in adults with GD1 in the International Collaborative Gaucher Group Gaucher Registry. Among 5985 GD1 patients in the Registry as of January 6, 2023, 872 started eliglustat at ≥18 years old; of these, 469 met inclusion criteria. We compared clinical parameters at eliglustat initiation (i.e., baseline) and follow-up in treatment-naïve patients and used linear mixed models to estimate annual change from baseline in parameters among patients who switched to eliglustat after ≥1 year on enzyme replacement therapy. Over 4 years of follow-up in non-splenectomized treatment-naïve patients, hemoglobin and platelet count increased, liver and spleen volume decreased, and total lumbar spine bone mineral density (BMD) Z-score decreased slightly. Among non-splenectomized switch patients, on average, hemoglobin decreased -0.030 (95% CI: -0.053, -0.008) g/dL (N = 272) and platelet count increased 2.229 (95% CI: 0.751, 3.706) × 103/mm3 (N = 262) annually up to 10 years; liver volume decreased (-0.009 [95% CI: -0.015, -0.003] MN) (N = 102) and spleen volume remained stable (-0.070 [95% CI: -0.150, 0.010] MN) (N = 106) annually up to 7 years; and total lumbar spine BMD Z-score increased 0.041 (95% CI: 0.015, 0.066) (N = 183) annually up to 8 years. Among splenectomized switch patients, clinical parameters were stable over time. These long-term, real-world outcomes are consistent with the eliglustat clinical trials and emerging real-world experience across the GD phenotypic spectrum.


Subject(s)
Gaucher Disease , Pyrrolidines , Registries , Humans , Gaucher Disease/drug therapy , Male , Adult , Female , Middle Aged , Pyrrolidines/therapeutic use , Pyrrolidines/administration & dosage , Pyrrolidines/adverse effects , Enzyme Replacement Therapy , Bone Density/drug effects , Treatment Outcome , Spleen/pathology , Spleen/drug effects , Aged , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/administration & dosage , Hemoglobins/analysis , Liver/pathology , Liver/drug effects , Platelet Count
7.
J Clin Pharmacol ; 64(7): 878-886, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520128

ABSTRACT

Firsocostat is an oral, liver-targeted inhibitor of acetyl-coenzyme A carboxylase in development for the treatment of metabolic dysfunction-associated steatohepatitis. Hepatic organic anion transporting polypeptides play a significant role in the disposition of firsocostat with minimal contributions from uridine diphospho-glucuronosyltransferase and cytochrome P450 3A enzymes. This phase 1 study evaluated the pharmacokinetics and safety of firsocostat in participants with mild, moderate, or severe hepatic impairment. Participants with stable mild, moderate, or severe hepatic impairment (Child-Pugh A, B, or C, respectively [n = 10 per cohort]) and healthy matched controls with normal hepatic function (n = 10 per cohort) received a single oral dose of firsocostat (20 mg for mild and moderate hepatic impairment; 5 mg for severe hepatic impairment) with intensive pharmacokinetic sampling over 96 h. Safety was monitored throughout the study. Firsocostat plasma exposure (AUCinf) was 83%, 8.7-fold, and 30-fold higher in participants with mild, moderate, and severe hepatic impairment, respectively, relative to matched controls. Firsocostat was generally well tolerated, and all reported adverse events were mild in nature. Dose adjustment is not necessary for the administration of firsocostat in patients with mild hepatic impairment. However, based on the observed increases in firsocostat exposure, dose adjustment should be considered for patients with moderate or severe hepatic impairment, and additional safety and efficacy data from future clinical trials will further inform dose adjustment.


Subject(s)
Acetyl-CoA Carboxylase , Humans , Male , Middle Aged , Female , Acetyl-CoA Carboxylase/antagonists & inhibitors , Adult , Aged , Furans/pharmacokinetics , Furans/adverse effects , Furans/administration & dosage , Liver Diseases , Area Under Curve , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/therapeutic use , Severity of Illness Index , Isobutyrates/pharmacokinetics , Isobutyrates/adverse effects , Isobutyrates/administration & dosage , Oxazoles , Pyrimidines
8.
Clin Pharmacol Drug Dev ; 13(6): 696-709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38363061

ABSTRACT

Glycosphingolipid (GSL) storage diseases are caused by deficiencies in the enzymes that metabolize different GSLs in the lysosome. Glucosylceramide synthase (GCS) inhibitors reduce GSL production and have potential to treat multiple GSL storage diseases. AL01211 is a potent, oral GCS inhibitor being developed for the treatment of Type 1 Gaucher disease and Fabry disease. AL01211 has minimal central nervous system penetration, allowing for treatment of peripheral organs without risking CNS-associated adverse effects. AL01211 was evaluated in a Phase 1 healthy volunteer study with single ascending dose (SAD) and multiple ascending dose (MAD) arms, to determine safety, pharmacokinetics including food effect, and pharmacodynamic effects on associated GSLs. In the SAD arm, AL01211 showed a Tmax of approximately 3.5 hours, mean clearance (CL/F) of 130.1 L/h, and t1/2 of 39.3 hours. Consuming a high-fat meal prior to dose administration reduced exposures 3.5-5.5-fold, indicating a food effect. In the MAD arm, AL01211 had an approximately 2-fold accumulation, reaching steady-state levels by 10 days. Increasing exposure inversely correlated with a decrease in GSL with plasma glucosylceramide and globotriacylceramide reduction from baseline levels, reaching 78% and 52% by day 14, respectively. AL01211 was generally well-tolerated with no AL01211 associated serious adverse events, thus supporting its further clinical development.


Subject(s)
Enzyme Inhibitors , Fabry Disease , Gaucher Disease , Glucosyltransferases , Healthy Volunteers , Humans , Gaucher Disease/drug therapy , Glucosyltransferases/antagonists & inhibitors , Adult , Male , Female , Administration, Oral , Young Adult , Middle Aged , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/adverse effects , Fabry Disease/drug therapy , Dose-Response Relationship, Drug , Food-Drug Interactions , Double-Blind Method , Cross-Over Studies , Adolescent
9.
J Neurol ; 271(5): 2810-2823, 2024 May.
Article in English | MEDLINE | ID: mdl-38418563

ABSTRACT

The phase III double-blind PROPEL study compared the novel two-component therapy cipaglucosidase alfa + miglustat (cipa + mig) with alglucosidase alfa + placebo (alg + pbo) in adults with late-onset Pompe disease (LOPD). This ongoing open-label extension (OLE; NCT04138277) evaluates long-term safety and efficacy of cipa + mig. Outcomes include 6-min walk distance (6MWD), forced vital capacity (FVC), creatine kinase (CK) and hexose tetrasaccharide (Hex4) levels, patient-reported outcomes and safety. Data are reported as change from PROPEL baseline to OLE week 52 (104 weeks post-PROPEL baseline). Of 118 patients treated in the OLE, 81 continued cipa + mig treatment from PROPEL (cipa + mig group; 61 enzyme replacement therapy [ERT] experienced prior to PROPEL; 20 ERT naïve) and 37 switched from alg + pbo to cipa + mig (switch group; 29 ERT experienced; 8 ERT naive). Mean (standard deviation [SD]) change in % predicted 6MWD from baseline to week 104 was + 3.1 (8.1) for cipa + mig and - 0.5 (7.8) for the ERT-experienced switch group, and + 8.6 (8.6) for cipa + mig and + 8.9 (11.7) for the ERT-naïve switch group. Mean (SD) change in % predicted FVC was - 0.6 (7.5) for cipa + mig and - 3.8 (6.2) for the ERT-experienced switch group, and - 4.8 (6.5) and - 3.1 (6.7), respectively, in ERT-naïve patients. CK and Hex4 levels improved in both treatment groups by week 104 with cipa + mig treatment. Three patients discontinued the OLE due to infusion-associated reactions. No new safety signals were identified. Cipa + mig treatment up to 104 weeks was associated with overall maintained improvements (6MWD, biomarkers) or stabilization (FVC) from baseline with continued durability, and was well tolerated, supporting long-term benefits for patients with LOPD.Trial registration number: NCT04138277; trial start date: December 18, 2019.


Subject(s)
1-Deoxynojirimycin , 1-Deoxynojirimycin/analogs & derivatives , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Humans , Male , Female , Glycogen Storage Disease Type II/drug therapy , Middle Aged , Adult , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/adverse effects , 1-Deoxynojirimycin/therapeutic use , Double-Blind Method , Enzyme Replacement Therapy/methods , alpha-Glucosidases/adverse effects , alpha-Glucosidases/administration & dosage , alpha-Glucosidases/therapeutic use , Drug Therapy, Combination , Treatment Outcome , Aged , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects
10.
N Engl J Med ; 389(8): 710-721, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37611121

ABSTRACT

BACKGROUND: Divarasib (GDC-6036) is a covalent KRAS G12C inhibitor that was designed to have high potency and selectivity. METHODS: In a phase 1 study, we evaluated divarasib administered orally once daily (at doses ranging from 50 to 400 mg) in patients who had advanced or metastatic solid tumors that harbor a KRAS G12C mutation. The primary objective was an assessment of safety; pharmacokinetics, investigator-evaluated antitumor activity, and biomarkers of response and resistance were also assessed. RESULTS: A total of 137 patients (60 with non-small-cell lung cancer [NSCLC], 55 with colorectal cancer, and 22 with other solid tumors) received divarasib. No dose-limiting toxic effects or treatment-related deaths were reported. Treatment-related adverse events occurred in 127 patients (93%); grade 3 events occurred in 15 patients (11%) and a grade 4 event in 1 patient (1%). Treatment-related adverse events resulted in a dose reduction in 19 patients (14%) and discontinuation of treatment in 4 patients (3%). Among patients with NSCLC, a confirmed response was observed in 53.4% of patients (95% confidence interval [CI], 39.9 to 66.7), and the median progression-free survival was 13.1 months (95% CI, 8.8 to could not be estimated). Among patients with colorectal cancer, a confirmed response was observed in 29.1% of patients (95% CI, 17.6 to 42.9), and the median progression-free survival was 5.6 months (95% CI, 4.1 to 8.2). Responses were also observed in patients with other solid tumors. Serial assessment of circulating tumor DNA showed declines in KRAS G12C variant allele frequency associated with response and identified genomic alterations that may confer resistance to divarasib. CONCLUSIONS: Treatment with divarasib resulted in durable clinical responses across KRAS G12C-positive tumors, with mostly low-grade adverse events. (Funded by Genentech; ClinicalTrials.gov number, NCT04449874.).


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Enzyme Inhibitors , Lung Neoplasms , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Administration, Oral , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use
11.
Cell Mol Life Sci ; 79(4): 192, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35292885

ABSTRACT

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations. Using CFBE41o- cells expressing F508del-CFTR, we provide mechanistic evidence that targeting the E1 ubiquitin-activating enzyme (UBA1) by TAK-243, a small molecule in clinical trials for other diseases, boosts the rescue of F508del-CFTR induced by CFTR correctors. Moreover, TAK-243 significantly increases the F508del-CFTR short-circuit current induced by elexacaftor/tezacaftor/ivacaftor in differentiated human primary airway epithelial cells, a gold standard for the pre-clinical evaluation of patients' responsiveness to pharmacological treatments. This new combinatory approach also leads to an improvement in CFTR conductance on cells expressing other rare CF-causing mutations, including N1303K, for which Trikafta is not approved. These findings show that Trikafta therapy can be improved by the addition of a drug targeting the misfolding detection machinery at the beginning of the ubiquitination cascade and may pave the way for an extension of Trikafta to low/non-responding rare misfolded CFTR mutants.


Subject(s)
Aminophenols/administration & dosage , Benzodioxoles/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Indoles/administration & dosage , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Pyrimidines/administration & dosage , Pyrrolidines/administration & dosage , Quinolones/administration & dosage , Sulfides/administration & dosage , Sulfonamides/administration & dosage , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Synergism , Drug Therapy, Combination , Enzyme Inhibitors/administration & dosage , Humans , Mutation , Protein Folding/drug effects , Sequence Deletion
12.
Sci Rep ; 12(1): 1701, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105915

ABSTRACT

Interferon-gamma (IFN-γ) is shown to stimulate melanoma development and progression. However, the underlying mechanism has not been completely defined. Our study aimed to determine the role of neuronal nitric oxide synthase (nNOS)-mediated signaling in IFN-γ-stimulated melanoma progression and the anti-melanoma effects of novel nNOS inhibitors. Our study shows that IFN-γ markedly induced the expression levels of nNOS in melanoma cells associated with increased intracellular nitric oxide (NO) levels. Co-treatment with novel nNOS inhibitors effectively alleviated IFN-γ-activated STAT1/3. Further, reverse phase protein array (RPPA) analysis demonstrated that IFN-γ induced the expression of HIF1α, c-Myc, and programmed death-ligand 1 (PD-L1), in contrast to IFN-α. Blocking the nNOS-mediated signaling pathway using nNOS-selective inhibitors was shown to effectively diminish IFN-γ-induced PD-L1 expression in melanoma cells. Using a human melanoma xenograft mouse model, the in vivo studies revealed that IFN-γ increased tumor growth compared to control, which was inhibited by the co-administration of nNOS inhibitor MAC-3-190. Another nNOS inhibitor, HH044, was shown to effectively inhibit in vivo tumor growth and was associated with reduced PD-L1 expression levels in melanoma xenografts. Our study demonstrates the important role of nNOS-mediated NO signaling in IFN-γ-stimulated melanoma progression. Targeting nNOS using highly selective small molecular inhibitors is a unique and effective strategy to improve melanoma treatment.


Subject(s)
Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Disease Progression , Enzyme Inhibitors/administration & dosage , Interferon-gamma/administration & dosage , Melanoma/drug therapy , Melanoma/metabolism , Nitric Oxide Synthase Type I/antagonists & inhibitors , Signal Transduction/drug effects , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Animals , B7-H1 Antigen/metabolism , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Interferon-alpha/pharmacology , Melanoma/pathology , Mice , Mice, Nude , Nitric Oxide Synthase Type I/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Skin Neoplasms/pathology , Treatment Outcome , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
13.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162999

ABSTRACT

Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3-/- in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.


Subject(s)
Enzyme Inhibitors/administration & dosage , Influenza A Virus, H1N1 Subtype/enzymology , Neuraminidase/metabolism , Orthomyxoviridae Infections/drug therapy , Protein Disulfide-Isomerases/metabolism , Viral Proteins/metabolism , A549 Cells , Animals , Cells, Cultured , Disease Models, Animal , Dogs , Enzyme Inhibitors/pharmacology , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Neuraminidase/chemistry , Orthomyxoviridae Infections/metabolism , Primary Cell Culture , Protein Folding , Trachea/cytology , Trachea/drug effects , Trachea/metabolism , Trachea/virology , Viral Proteins/chemistry
14.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164277

ABSTRACT

The pharmacokinetic profile of ZST316 and ZST152, arginine analogues with inhibitory activity towards human dimethylarginine dimethylaminohydrolase-1 (DDAH1), was investigated in mice using a newly developed HPLC-MS/MS method. The method proved to be reproducible, precise, and accurate for the measurement of the compounds in plasma and urine. Four-week-old female FVB mice received a single dose of ZST316 and ZST152 by intravenous bolus (30 mg/Kg) and oral gavage (60 mg/Kg). ZST316 Cmax was 67.4 µg/mL (intravenous) and 1.02 µg/mL (oral), with a half-life of 6 h and bioavailability of 4.7%. ZST152 Cmax was 24.9 µg/mL (intravenous) and 1.65 µg/mL (oral), with a half-life of 1.2 h and bioavailability of 33.3%. Urinary excretion of ZST152 and ZST316 was 12.5%-22.2% and 2.3%-7.5%, respectively. At least eight urinary metabolites were identified. After chronic intraperitoneal treatment with the more potent DDAH1 inhibitor, ZST316 (30 mg/Kg/day for three weeks), the bioavailability was 59% and no accumulation was observed. Treatment was well tolerated with no changes in body weight vs. untreated animals and no clinical signs of toxicity or distress. The results of this study show that ZST316 has a favorable pharmacokinetic profile, following intraperitoneal administration, to investigate the effects of DDAH1 inhibition in mice.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Enzyme Inhibitors/pharmacokinetics , Animals , Arginine/administration & dosage , Arginine/analogs & derivatives , Arginine/pharmacokinetics , Biological Availability , Chromatography, High Pressure Liquid , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Female , Humans , Mice , Tandem Mass Spectrometry
15.
Nat Commun ; 13(1): 459, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075105

ABSTRACT

Toxoplasma gondii commonly infects humans and while most infections are controlled by the immune response, currently approved drugs are not capable of clearing chronic infection in humans. Hence, approximately one third of the world's human population is at risk of reactivation, potentially leading to severe sequelae. To identify new candidates for treating chronic infection, we investigated a series of compounds derived from diversity-oriented synthesis. Bicyclic azetidines are potent low nanomolar inhibitors of phenylalanine tRNA synthetase (PheRS) in T. gondii, with excellent selectivity. Biochemical and genetic studies validate PheRS as the primary target of bicyclic azetidines in T. gondii, providing a structural basis for rational design of improved analogs. Favorable pharmacokinetic properties of a lead compound provide excellent protection from acute infection and partial protection from chronic infection in an immunocompromised mouse model of toxoplasmosis. Collectively, PheRS inhibitors of the bicyclic azetidine series offer promise for treatment of chronic toxoplasmosis.


Subject(s)
Antiprotozoal Agents/administration & dosage , Azetidines/administration & dosage , Enzyme Inhibitors/administration & dosage , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Toxoplasma/drug effects , Toxoplasma/enzymology , Toxoplasmosis/drug therapy , Animals , Antiprotozoal Agents/chemistry , Azetidines/chemistry , Enzyme Inhibitors/chemistry , Female , Humans , Kinetics , Male , Mice , Mice, Inbred CBA , Phenylalanine-tRNA Ligase/chemistry , Phenylalanine-tRNA Ligase/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Toxoplasma/genetics , Toxoplasma/growth & development , Toxoplasmosis/parasitology
16.
Sci Rep ; 12(1): 484, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013352

ABSTRACT

Treatment with a nicotinamide N-methyltransferase inhibitor (NNMTi; 5-amino-1-methylquinolinium) combined with low-fat diet (LD) promoted dramatic whole-body adiposity and weight loss in diet-induced obese (DIO) mice, rapidly normalizing these measures to age-matched lean animals, while LD switch alone was unable to restore these measures to age-matched controls in the same time frame. Since mouse microbiome profiles often highly correlate with body weight and fat composition, this study was designed to test whether the cecal microbiomes of DIO mice treated with NNMTi and LD were comparable to the microbiomes of age-matched lean counterparts and distinct from microbiomes of DIO mice maintained on a high-fat Western diet (WD) or subjected to LD switch alone. There were minimal microbiome differences between lean and obese controls, suggesting that diet composition and adiposity had limited effects. However, DIO mice switched from an obesity-promoting WD to an LD (regardless of treatment status) displayed several genera and phyla differences compared to obese and lean controls. While alpha diversity measures did not significantly differ between groups, beta diversity principal coordinates analyses suggested that mice from the same treatment group were the most similar. K-means clustering analysis of amplicon sequence variants by animal demonstrated that NNMTi-treated DIO mice switched to LD had a distinct microbiome pattern that was highlighted by decreased Erysipelatoclostridium and increased Lactobacillus relative abundances compared to vehicle counterparts; these genera are tied to body weight and metabolic regulation. Additionally, Parasutterella relative abundance, which was increased in both the vehicle- and NNMTi-treated LD-switched groups relative to the controls, significantly correlated with several adipose tissue metabolites' abundances. Collectively, these results provide a novel foundation for future investigations.


Subject(s)
Enzyme Inhibitors/administration & dosage , Gastrointestinal Microbiome/drug effects , Nicotinamide N-Methyltransferase/antagonists & inhibitors , Nicotinamide N-Methyltransferase/metabolism , Obesity/diet therapy , Obesity/drug therapy , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adiposity/drug effects , Animals , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Body Weight/drug effects , Combined Modality Therapy , Diet, Fat-Restricted , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Nicotinamide N-Methyltransferase/genetics , Obesity/metabolism , Obesity/microbiology , Quinolinium Compounds/administration & dosage
17.
Pharm Biol ; 60(1): 225-234, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35068295

ABSTRACT

CONTEXT: Cordyceps militaris and Isaria tenuipes (Cordycipitaceae) are high-value fungi that are used for health-promoting food supplements. Since laboratory cultivation has begun for these fungi, increased output has been achieved. OBJECTIVE: This study compared the chemical profiles, antioxidant, anti-tyrosinase, and skin extracellular matrix degradation inhibition between mycelium and fruiting body of C. militaris and I. tenuipes. MATERIALS AND METHODS: The antioxidative potential of 10% v/v aqueous infused extract from each fungus was separately investigated using 2,2-azinobis(3-ethylbenzo-thiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant ability, and ferric thiocyanate methods. The inhibition against MMP-1, elastase, and hyaluronidase were determined to reveal their anti-wrinkle potential. Anti-tyrosinase activities were determined. RESULTS: C. militaris and I. tenuipes extracts were found to contain a wide range of bioactive compounds, including phenolics, flavonoids, and adenosine. A correlation was discovered between the chemical compositions and their biological activities. The extract from I. tenuipes fruiting body (IF) was highlighted as an extraordinary elastase inhibitor (IC50 = 0.006 ± 0.004 mg/mL), hyaluronidase inhibitor (IC50: 30.3 ± 3.2 mg/mL), and antioxidant via radical scavenging (ABTS IC50: 0.22 ± 0.02 mg/mL; DPPH IC50: 0.05 ± 0.02 mg/mL), thereby reducing ability (EC1: 95.3 ± 4.8 mM FeSO4/g extract) and lipid peroxidation prevention (IC50: 0.40 ± 0.11 mg/mL). IF had a three-times higher EC1 value than ascorbic acid and significantly higher elastase inhibition than epigallocatechin gallate. DISCUSSION AND CONCLUSIONS: IF is proposed as a powerful natural extract with antioxidant and anti-wrinkle properties; therefore, it is suggested for further use in pharmaceutical, cosmeceutical, and nutraceutical industries.


Subject(s)
Antioxidants/pharmacology , Cordyceps/chemistry , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Animals , Antioxidants/administration & dosage , Antioxidants/isolation & purification , Ascorbic Acid/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cattle , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/isolation & purification , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Fruiting Bodies, Fungal , Inhibitory Concentration 50 , Mycelium , Skin/drug effects , Skin/metabolism , Skin Aging/drug effects , Swine
18.
Behav Pharmacol ; 33(1): 23-31, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35007233

ABSTRACT

The monoiodoacetate-induced rat model of osteoarthritis knee pain is widely used. However, there are between-study differences in the pain behavioural endpoints assessed and in the dose of intraarticular monoiodoacetate administered. This study evaluated the robustness of gait analysis as a pain behavioural endpoint in the chronic phase of this model, in comparison with mechanical hyperalgesia in the injected (ipsilateral) joint and development of mechanical allodynia in the ipsilateral hind paws. Groups of Sprague-Dawley rats received a single intraarticular injection of monoiodoacetate at 0.5, 1, 2 or 3 mg or vehicle (saline) into the left (ipsilateral) knee joint. An additional group of rats were not injected (naïve group). The pain behavioural methods used were gait analysis, measurement of pressure algometry thresholds in the ipsilateral knee joints, and assessment of mechanical allodynia in the ipsilateral hind paws using von Frey filaments. These pain behavioural endpoints were assessed premonoiodoacetate injection and for up to 42-days postmonoiodoacetate injection in a blinded manner. Body weights were also assessed as a measure of general health. Good general health was maintained as all rats gained weight at a similar rate for the 42-day study period. In the chronic phase of the model (days 9-42), intraarticular monoiodoacetate at 3 mg evoked robust alterations in multiple gait parameters as well as persistent mechanical allodynia in the ipsilateral hind paws. For the chronic phase of the monoiodoacetate-induced rat model of osteoarthritis knee pain, gait analysis, such as mechanical allodynia in the ipsilateral hind paws, is a robust pain behavioural measure.


Subject(s)
Arthralgia , Behavioral Symptoms , Gait Analysis/methods , Hyperalgesia , Osteoarthritis , Pain , Animals , Arthralgia/chemically induced , Arthralgia/psychology , Behavior Observation Techniques/methods , Behavior, Animal , Behavioral Symptoms/diagnosis , Behavioral Symptoms/physiopathology , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Hyperalgesia/diagnosis , Hyperalgesia/physiopathology , Hyperalgesia/psychology , Iodoacetic Acid/administration & dosage , Osteoarthritis/physiopathology , Osteoarthritis/psychology , Pain/physiopathology , Pain/psychology , Rats , Rats, Sprague-Dawley
19.
Bioorg Med Chem ; 53: 116525, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34871844

ABSTRACT

Mutations in isocitrate dehydrogenase 1 (IDH1) are commonly found in various human malignancies. Inhibitors of several mutant IDH1 enzymes have entered clinical trials as target therapeutic drugs for the treatment of patients with IDH1 mutations. Herein, we report the synthesis and evaluation of two 18F-labeled tracers, [18F]AG120 and [18F]AG135 for imaging expression of mutated IDH1 in positron emission tomography (PET). [18F]AG120 and [18F]AG135 were synthesized in decay-corrected radiochemical yield of 1 % and 3 %, respectively, high molar activity (52-66 MBq/nmol and 216-339 MBq/nmol, respectively) and high radiochemical purity (>99%). Both tracers showed good in vitro stability, selective uptake into mutated IDH1-expressing cells and good pharmacokinetic profiles with low uptake in most organs/tissues. Furthermore, [18F]AG120 micro-PET/CT imaging displayed significantly greater uptake in IDH1-mutant than in wild-type tumors, Relatively, uptake of [18F]AG135 was observed neither in IDH1-mutant tumor xenografts nor in wild-type tumors. This study suggests that [18F]AG120 is a promising radiotracer for PET imaging of IDH1 mutation, However, further optimization and investigation are necessary for [18F]AG135 due to the limited uptake in mutated IDH1-expressing tumors.


Subject(s)
Enzyme Inhibitors , Isocitrate Dehydrogenase , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Humans , Male , Mice , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fluorine Radioisotopes , Injections, Subcutaneous , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Structure-Activity Relationship , Tissue Distribution
20.
Clin Pharmacol Ther ; 111(2): 391-403, 2022 02.
Article in English | MEDLINE | ID: mdl-33998672

ABSTRACT

This study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of BIA 10-2474, a fatty acid amide hydrolase (FAAH) inhibitor, after first administration to healthy male and female participants. Participants (n = 116) were recruited into this phase I, double-blind, randomized, placebo-controlled, single ascending dose and multiple ascending dose (10-day) study. The primary outcome was the safety and tolerability of BIA 10-2474. Secondary outcomes were pharmacokinetics of BIA 10-2474 and pharmacodynamics, considering plasma concentrations of anandamide and three other fatty acid amides (FAAs) and leukocyte FAAH activity. Single oral doses of 0.25-100 mg and repeated oral doses of 2.5-50 mg were evaluated. BIA 10-2474 was well tolerated up to 100 mg as a single dose and up to 20 mg once daily for 10 days. In the cohort receiving repeated administrations of 50 mg, there were central nervous system adverse events in five of six participants, one with fatal outcome, which led to early termination of the study. BIA 10-2474 showed a linear relationship between dose and area under plasma concentration-time curve (AUC) across the entire dose range and reached steady state within 5-6 days of administration, with an accumulation ratio, based on AUC0-24h , of <2 on Day 10. BIA 10-2474 was rapidly absorbed with a mean terminal elimination half-life of 8-10 hours (Day 10). BIA 10-2474 caused reversible, dose-related increases in plasma FAAs. In conclusion, we propose that these data, as well as the additional data generated since the clinical trial was stopped, do not provide a complete mechanistic explanation for the tragic fatality.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Central Nervous System/drug effects , Cyclic N-Oxides/adverse effects , Enzyme Inhibitors/adverse effects , Pyridines/adverse effects , Administration, Oral , Central Nervous System/physiopathology , Cyclic N-Oxides/administration & dosage , Cyclic N-Oxides/pharmacokinetics , Double-Blind Method , Drug Administration Schedule , Drug Dosage Calculations , Early Termination of Clinical Trials , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Female , France , Healthy Volunteers , Humans , Male , Patient Safety , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...