Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.298
Filter
1.
PLoS One ; 19(8): e0308251, 2024.
Article in English | MEDLINE | ID: mdl-39173004

ABSTRACT

Citrobacter koseri is a gram-negative rod that causes infections in people who have significant comorbidities and are immunocompromised. Antibiotic-resistant strains are becoming more common, which complicates infection treatment and highlights the need for innovative, effective drugs to fight these resistant strains. The enzyme complex ATP synthase participates in the adenosine triphosphate (ATP) synthesis, the fundamental energy currency of cells. This study used Computer-Aided Drug Design approaches to identify potential inhibitors of C. koseri ATP synthase. SWISS-MODEL was used to predict the 3D structure of C. koseri ATP synthase. A ligand-based pharmacophore model was developed using chemical features of ampicillin. Following ligand-based virtual screening across nine databases, the 2043 screened hits were docked to the ATP synthase active site using the standard precision mode of the glide tool. Based on their binding affinities, the top ten compounds were selected for additional investigation. The binding affinities of the chosen compounds ranged from -10.021 to -8.452 kcal/mol. The top four compounds (PubChem-25230613, PubChem-74936833, CHEMBL263035, PubChem-44208924) with the best ADMET characteristics and binding modes were chosen. Thus, the feasible binding mechanisms of the selected compounds were subjected to stability analysis using the MD Simulation study, which revealed the compounds' stability as potent inhibitors within the protein binding pocket. This computational approach provides important insights into the rational design of novel therapeutics and emphasizes the importance of targeting essential metabolic pathways when combating antibiotic-resistant pathogens. Future experimental validation and optimization of the identified inhibitors is required to determine their efficacy and safety profiles for clinical use.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Design , Ligands , Drug Evaluation, Preclinical , Pharmacophore
2.
Protein J ; 43(4): 869-887, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39097848

ABSTRACT

Polyphenol oxidase (PPO) is an industrially important enzyme associated with browning reactions. In the present study, a set of ten new dihydropyridine [2,3-d] pyrimidines (TD-Hid-1-10) were synthesized and was found to be proven characteristically by 1H NMR, 13C NMR, IR, elemental analysis, and assessed as possible PPO inhibitors. PPO was purified from banana using three-phase partitioning, achieving an 18.65-fold purification and 136.47% activity recovery. Enzyme kinetics revealed that the compounds TD-Hid-6 and TD-Hid-7 are to be the most potent inhibitors, exhibiting mixed-type inhibition profile with IC50 values of 1.14 µM, 5.29 µM respectively against purified PPO enzyme. Electronic structure calculations at the B3LYP/PBE0 level of theories using def-2 SVP, def2-TZVP basis sets with various molecular descriptors characterized the electronic behavior of studied derivatives TD-Hid-1-10. Molecular electrostatic potential (MEP) and reduced density gradient analyses of RDG-NCI provided insights into charge distributions and weak intermolecular interactions. Docking study simulations predicted binding poses within crucial amino acid sequence in the 2y9x enzyme's active site, which is typically similar in sequence to the PPO form is not allowed. Ligands were analysed in terms of binding energies, inhibitor concentrations (mM) and various molecular interactions such as H-bonds, H-carbon, π-carbon, π-sigma, π-sigma, π-π T-shaped, π-π stacked, π-alkyl, Van der Waals and Cu interactions. The lowest binding energy (-7.83 kcal/mol) and the highest inhibitory effect (1.83 mM) were shown by the ligand Td-Hid-6, which forms H-bonds with Met280 and Asn260, exhibits π-sigma interactions with His61 and π-alkyl interactions with Val283. Other ligands also showed different interactions with various amino acids; for example, the Td-Hid-1 ligand formed H-bonds with His244 and showed π-sigma interactions with His244 and Val283.


Subject(s)
Catechol Oxidase , Drug Design , Enzyme Inhibitors , Molecular Docking Simulation , Pyrimidines , Catechol Oxidase/chemistry , Catechol Oxidase/antagonists & inhibitors , Catechol Oxidase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Pyrimidines/chemistry , Musa/chemistry , Musa/enzymology , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Structure-Activity Relationship
3.
Chem Biol Drug Des ; 104(2): e14610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39160642

ABSTRACT

NADPH oxidases (NOXs) are the sole enzyme in the human body that can directly produce reactive oxygen species. Recent studies have shown that NOXs is a very promising target for the treatment of diabetic nephropathy (DN). Here, a series of quinoline(quinolinone) derivatives have been designed based on pharmacophore strategy, synthesized and evaluated. Among them, 19d exhibits potent antiproliferative and NOXs inhibitory activities, and is worthy for further investigation.


Subject(s)
Drug Design , Enzyme Inhibitors , NADPH Oxidases , Quinolines , Quinolones , Humans , NADPH Oxidases/metabolism , NADPH Oxidases/antagonists & inhibitors , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cell Line, Tumor
4.
J Med Chem ; 67(16): 13594-13603, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39101748

ABSTRACT

Human neuraminidases play critical roles in many physiological and pathological processes. Humans have four isoenzymes of NEU, making selective inhibitors important tools to investigate the function of individual isoenzymes. A typical scaffold for NEU inhibitors is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) where C9 modifications can be critical for potency and selectivity against human NEU. To design improved DANA analogues, we generated a library of compounds with either a short alkyl chain or a biphenyl substituent linked to the C9 position through one of six amide bioisosteres. Bioisostere linkers included triazole, urea, thiourea, carbamate, thiocarbamate, and sulfonamide groups. Within this library, we identified a C9 biphenyl carbamate derivative (963) that showed high selectivity and potency for NEU3 (Ki = 0.12 ± 0.01 µM). In contrast, NEU1 and NEU4 isoenzymes preferred amide and triazole linkers, respectively. Finally, analogues with urea, sulfonamide, and amide linkers showed enhanced inhibitory activity for a bacterial NEU, NanI from Clostridium perfringens.


Subject(s)
Enzyme Inhibitors , Neuraminidase , Humans , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Clostridium perfringens/enzymology , Clostridium perfringens/drug effects , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/pharmacology , N-Acetylneuraminic Acid/analogs & derivatives , Neuraminic Acids/chemistry , Neuraminic Acids/metabolism
5.
Biochem J ; 481(16): 1075-1096, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39105673

ABSTRACT

Toxoplasma gondii is a widely distributed apicomplexan parasite causing toxoplasmosis, a critical health issue for immunocompromised individuals and for congenitally infected foetuses. Current treatment options are limited in number and associated with severe side effects. Thus, novel anti-toxoplasma agents need to be identified and developed. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is considered the rate-limiting enzyme in the non-mevalonate pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate in the parasite, and has been previously investigated for its key role as a novel drug target in some species, encompassing Plasmodia, Mycobacteria and Escherichia coli. In this study, we present the first crystal structure of T. gondii DXR (TgDXR) in a tertiary complex with the inhibitor fosmidomycin and the cofactor NADPH in dimeric conformation at 2.5 Šresolution revealing the inhibitor binding mode. In addition, we biologically characterize reverse α-phenyl-ß-thia and ß-oxa fosmidomycin analogues and show that some derivatives are strong inhibitors of TgDXR which also, in contrast with fosmidomycin, inhibit the growth of T. gondii in vitro. Here, ((3,4-dichlorophenyl)((2-(hydroxy(methyl)amino)-2-oxoethyl)thio)methyl)phosphonic acid was identified as the most potent anti T. gondii compound. These findings will enable the future design and development of more potent anti-toxoplasma DXR inhibitors.


Subject(s)
Aldose-Ketose Isomerases , Fosfomycin , Multienzyme Complexes , Toxoplasma , Toxoplasma/enzymology , Toxoplasma/drug effects , Aldose-Ketose Isomerases/antagonists & inhibitors , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/genetics , Fosfomycin/pharmacology , Fosfomycin/analogs & derivatives , Fosfomycin/chemistry , Crystallography, X-Ray , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , NADP/metabolism , NADP/chemistry , Humans , Models, Molecular , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Oxidoreductases/metabolism
6.
J Med Chem ; 67(16): 14292-14312, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39109492

ABSTRACT

Inhibiting O-GlcNAcase and thereby up-regulation of the O-GlcNAc levels of tau was a potential approach for discovering AD treatments. Herein, a series of novel highly potent OGA inhibitors embracing a 4-(arylethynyl)piperidine moiety was achieved by capitalizing on the substrate recognition domain. Extensive structure-activity relationships resulted in compound 81 with significant enzymatic inhibition (IC50 = 4.93 ± 2.05 nM) and cellular potency (EC50 = 7.47 ± 3.96 nM in PC12 cells). It markedly increased the protein O-GlcNAcylation levels and reduced the phosphorylation on Ser199, Thr205, and Ser396 of tau in the OA-injured SH-SY5Y cell model, suggesting its potential role for AD treatment. In fact, an in vivo efficacy of ameliorating cognitive impairment was observed following treatment of APP/PS1 mice with compound 81 (100 mg/kg). Additionally, the appropriate plasma PK and beneficial BBB penetration properties were also observed. Compound 81 deserves to be further explored as an anti-AD agent.


Subject(s)
Alzheimer Disease , Enzyme Inhibitors , Piperidines , beta-N-Acetylhexosaminidases , Alzheimer Disease/drug therapy , Animals , Piperidines/pharmacology , Piperidines/therapeutic use , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacokinetics , Humans , Structure-Activity Relationship , beta-N-Acetylhexosaminidases/antagonists & inhibitors , beta-N-Acetylhexosaminidases/metabolism , Rats , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacokinetics , Mice , PC12 Cells , Drug Discovery , Mice, Transgenic , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors , Male
7.
J Med Chem ; 67(16): 13534-13549, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39110625

ABSTRACT

As an oncogenic phosphatase, SHP2 acts as a converging node in the RTK-RAS-MAPK signaling pathway in cancer cells and suppresses antitumor immunity by passing signals downstream of PD-1. Here, we utilized the extra druggable pocket outside the previously identified SHP2 allosteric tunnel site by the (6,5 fused), 6 spirocyclic system. The optimized compound, JAB-3312, exhibited a SHP2 binding Kd of 0.37 nM, SHP2 enzymatic IC50 of 1.9 nM, KYSE-520 antiproliferative IC50 of 7.4 nM and p-ERK inhibitory IC50 of 0.23 nM. For JAB-3312, an oral dose of 1.0 mg/kg QD was sufficient to achieve 95% TGI in KYSE-520 xenograft model of mouse. JAB-3312 was well-tolerated in animal models, and a close correlation was observed between the plasma concentration of JAB-3312 and the p-ERK inhibition in tumors. Currently, JAB-3312 is undergoing clinical trials as a potential anticancer agent.


Subject(s)
Antineoplastic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemical synthesis , Mice , Allosteric Regulation/drug effects , Cell Line, Tumor , Structure-Activity Relationship , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Mice, Nude , Female , Neoplasms/drug therapy
8.
J Cell Mol Med ; 28(15): e18584, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135338

ABSTRACT

Breast cancer (BC) is still one of the major issues in world health, especially for women, which necessitates innovative therapeutic strategies. In this study, we investigated the efficacy of retinoic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which plays a crucial role in the biosynthesis and metabolism of oestrogen and thereby influences the progression of BC and, the main objective of this investigation is to identify the possible drug candidate against BC through computational drug design approach including PASS prediction, molecular docking, ADMET profiling, molecular dynamics simulations (MD) and density functional theory (DFT) calculations. The result has reported that total eight derivatives with high binding affinity and promising pharmacokinetic properties among 115 derivatives. In particular, ligands 04 and 07 exhibited a higher binding affinity with values of -9.9 kcal/mol and -9.1 kcal/mol, respectively, than the standard drug epirubicin hydrochloride, which had a binding affinity of -8.2 kcal/mol. The stability of the ligand-protein complexes was further confirmed by MD simulations over a 100-ns trajectory, which included assessments of hydrogen bonds, root mean square deviation (RMSD), root mean square Fluctuation (RMSF), dynamic cross-correlation matric (DCCM) and principal component analysis. The study emphasizes the need for experimental validation to confirm the therapeutic utility of these compounds. This study enhances the computational search for new BC drugs and establishes a solid foundation for subsequent experimental and clinical research.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation , Molecular Dynamics Simulation , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Female , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Ligands , Computer Simulation , Protein Binding , Tretinoin/metabolism , Drug Design , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/chemistry , Hydrogen Bonding
9.
Anal Chim Acta ; 1320: 343026, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142791

ABSTRACT

BACKGROUND: As a significant biomarker of melanocytic lesions, tyrosinase (TYR) plays an essential role in the clinical diagnosis and treatment of melanin-related diseases. Thus, it is important to develop robust methods for assessing TYR activity. Covalent organic frameworks (COFs) have garnered considerable attention owing to their unique properties, including high chemical stability, good biocompatibility, and large surface area compared with organic dyes, noble metal nanoclusters, and semiconductor quantum dots. However, most COFs are insoluble in water and exhibit weak or no fluorescence emission. Therefore, the development of a water-soluble fluorescent COF for detecting TYR activity in biological samples remains highly desired. RESULTS: In this work, a sensitive and facile fluorometric method based on fluorescent COF was constructed for the detection of TYR activity in human serum samples. The water-soluble COF was fabricated through the condensation polymerization of 4',4‴,4''''',4'''''''-(1,2-ethene-diylidene) tetrakis [1,1'-biphenyl]-4-carboxaldehyde and 2,4,6-tris-(4-aminophenyl)-triazine. The resulting COF displayed yellow-green fluorescence with a maximum emission peak at 560 nm. Tyrosine was catalyzed by TYR to produce melanin-like polymers which formed a coating on the surface of COF and effectively quenched its fluorescence due to fluorescence resonance energy transfer. The proposed approach demonstrated a strong linear correlation in the range of 0.5-80 U/L with a low detection limit of 0.09 U/L. Additionally, the limit of detection for kojic acid, serving as a representative TYR inhibitor, was determined to be 0.0004 µg/mL. SIGNIFICANCE: Our proposed fluorometric sensing platform exhibited exceptional selectivity, sensitivity, and satisfactory recoveries in human serum samples, which is of paramount importance for the clinical diagnostics of melanin-related diseases. Furthermore, the proposed approach was further employed for the screening of TYR inhibitors, suggesting the potential applications in clinical treatment and pharmaceutical research.


Subject(s)
Enzyme Inhibitors , Fluorescent Dyes , Metal-Organic Frameworks , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Metal-Organic Frameworks/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Spectrometry, Fluorescence , Limit of Detection , Enzyme Assays/methods , Pyrones
10.
Biochemistry ; 63(16): 2063-2074, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110954

ABSTRACT

Melanin biosynthesis in different organisms is performed by a tyrosinase action. Excessive enzyme activity and pigment accumulation result in different diseases and disorders including skin cancers, blemishes, and darkening. In fruits and vegetables, it causes unwanted browning of these products and reduces their appearance quality and economic value. Inhibiting enzyme activity and finding novel powerful and safe inhibitors are highly important in agriculture, food, medical, and pharmaceutical industries. In this regard, in the present study, some novel synthetic pyridine-based compounds including 2,6-bis (tosyloxymethyl) pyridine (compound 3), 2,6-bis (butylthiomethyl) pyridine (compound 4), and 2,6-bis (phenylthiomethyl) pyridine (compound 5) were synthesized for the first time, and their inhibitory potencies were assessed on mushroom tyrosinase diphenolase activity. The results showed that while all tested compounds significantly decreased the enzyme activity, compounds 4 and 5 had the highest inhibitory effects (respectively, 80 and 89% inhibition with the IC50 values of 17.0 and 9.0 µmol L-1), and the inhibition mechanism was mixed-type for both compounds. Ligand-binding studies were carried out by fluorescence quenching and molecular docking methods to investigate the enzyme-compound interactions. Fluorescence quenching results revealed that the compounds can form nonfluorescent complexes with the enzyme and result in quenching of its intrinsic emission by the static process. Molecular docking analyses predicted the binding positions and the amino acid residues involved in the interactions. These compounds appear to be suitable candidates for more studies on tyrosinase inhibition.


Subject(s)
Agaricales , Enzyme Inhibitors , Molecular Docking Simulation , Monophenol Monooxygenase , Pyridines , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/metabolism , Agaricales/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Spectrometry, Fluorescence , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/metabolism
11.
Arch Biochem Biophys ; 759: 110111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111614

ABSTRACT

Chikungunya virus (CHIKV), transmitted by mosquitoes, poses a significant global health threat. Presently, no effective treatment options are available to reduce the disease burden. The lack of approved therapeutics against CHIKV and the complex spectrum of chronic musculoskeletal and neurological manifestations raise significant concerns, and repurposing drugs could offer swift avenues in the development of effective treatment strategies. RNA capping is a crucial step meditated by non-structural protein 1 (nsP1) in CHIKV replication. In this study, FDA-approved antivirals targeting CHIKV nsP1 methyltransferase (MTase) have been identified by structure-based virtual screening. Berbamine Hydrochloride (BH), ABT199/Venetoclax (ABT), and Ponatinib (PT) were the top-hits, which exhibited robust binding energies. Tryptophan fluorescence spectroscopy-based assay confirmed binding of BH-, ABT-, and PT to purified nsP1 with KD values ∼5.45 µM, ∼161.3 µM, and ∼3.83 µM, respectively. In a capillary electrophoresis-based assay, a decrease in CHIKV nsP1 MTase activity was observed in a dose-dependent manner. Treatment with BH, ABT, and PT lead to a dose-dependent reduction in the virus titer with IC50 < 100, ∼6.75, and <3.9 nM, respectively, and reduced viral mRNA levels. The nsP1 MTases are highly conserved among alphaviruses; therefore, BH, ABT, and PT, as expected, inhibited replication machinery in Sindbis virus (SINV) replicon assay with IC50 ∼1.94, ∼0.23, and >1.25 µM, respectively. These results highlight the potential of repurposing drugs as rapid and effective antiviral therapeutics against CHIKV.


Subject(s)
Antiviral Agents , Chikungunya virus , Methyltransferases , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Chikungunya virus/drug effects , Animals , Sulfonamides/pharmacology , Sulfonamides/chemistry , Humans , Pyridazines/pharmacology , Pyridazines/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Virus Replication/drug effects , Imidazoles/pharmacology , Imidazoles/chemistry , Benzylisoquinolines
12.
PLoS One ; 19(8): e0306124, 2024.
Article in English | MEDLINE | ID: mdl-39141629

ABSTRACT

Multidrug resistance (MDR) mechanisms in cancer cells are greatly influenced by glutathione transferase P1-1 (hGSTP1-1). The use of synthetic or natural compounds as hGSTP1-1 inhibitors is considered an effective approach to overcome MDR. Nine compounds consisting of coumarin-6-sulfonamide linked to chalcone derivatives were synthesized and evaluated for their ability to inhibit hGSTP1-1. Among the synthetic derivatives, compounds 5g, 5f, and 5a displayed the most potent inhibitory effect, with IC50 values of 12.2 ± 0.5 µΜ, 12.7 ± 0.7 and 16.3 ± 0.6, respectively. Kinetic inhibition analysis of the most potent molecule, 5g, showed that it behaves as a mixed-type inhibitor of the target enzyme. An in vitro cytotoxicity assessment of 5a, 5f, and 5g against the human prostate cancer cell lines DU-145 and PC3, as well as the breast cancer cell line MCF-7, demonstrated that compound 5g exhibited the most pronounced cytotoxic effect on all tested cell lines. Molecular docking studies were performed to predict the structural and molecular determinants of 5g, 5f, and 5a binding to hGSTP1-1. In agreement with the experimental data, the results revealed that 5g exhibited the lowest docking score among the three studied inhibitors as a consequence of shape complementarity, governed by van der Waals, hydrogen bonds and a π-π stacking interaction. These findings suggest that coumarin-chalcone hybrids offer new perspectives for the development of safe and efficient natural product-based sensitizers that can target hGSTP1-1 for anticancer purposes.


Subject(s)
Coumarins , Glutathione S-Transferase pi , Molecular Docking Simulation , Sulfonamides , Humans , Coumarins/chemistry , Coumarins/pharmacology , Glutathione S-Transferase pi/antagonists & inhibitors , Glutathione S-Transferase pi/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Cell Line, Tumor , Chalcone/chemistry , Chalcone/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chalcones/chemistry , Chalcones/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , MCF-7 Cells
13.
Nat Commun ; 15(1): 7003, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143110

ABSTRACT

DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM. AB25583 exhibits 6 nM IC50 against Polθ-hel, selectively kills BRCA1/2-deficient cells, and acts synergistically with olaparib in cancer cells harboring pathogenic BRCA1/2 mutations. Cryo-EM uncovers predominantly dimeric Polθ-hel:AB25583 complex structures at 3.0-3.2 Å. The structures reveal a binding-pocket deep inside the helicase central-channel, which underscores the high specificity and potency of AB25583. The cryo-EM structures in conjunction with biochemical data indicate that AB25583 inhibits the ATPase activity of Polθ-hel helicase via an allosteric mechanism. These detailed structural data and insights about AB25583 inhibition pave the way for accelerating drug development targeting Polθ-hel in HDR-deficient cancers.


Subject(s)
Cryoelectron Microscopy , DNA Helicases , DNA Polymerase theta , DNA-Directed DNA Polymerase , Humans , DNA Helicases/metabolism , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Helicases/antagonists & inhibitors , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/chemistry , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/chemistry , Piperazines/pharmacology , Piperazines/chemistry , Cell Line, Tumor , Phthalazines/pharmacology , Phthalazines/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Models, Molecular , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Protein Binding
14.
Protein Sci ; 33(7): e5072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39133178

ABSTRACT

Δ1-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery. We screened a library of 71 low molecular weight compounds (average MW of 131 Da) against PYCR1 using an enzyme activity assay. Hit compounds were validated with X-ray crystallography and kinetic assays to determine affinity parameters. The library was counter-screened against human Δ1-pyrroline-5-carboxylate reductase isoform 3 and proline dehydrogenase (PRODH) to assess specificity/promiscuity. Twelve PYCR1 and one PRODH inhibitor crystal structures were determined. Three compounds inhibit PYCR1 with competitive inhibition parameter of 100 µM or lower. Among these, (S)-tetrahydro-2H-pyran-2-carboxylic acid (70 µM) has higher affinity than the current best tool compound N-formyl-l-proline, is 30 times more specific for PYCR1 over human Δ1-pyrroline-5-carboxylate reductase isoform 3, and negligibly inhibits PRODH. Structure-affinity relationships suggest that hydrogen bonding of the heteroatom of this compound is important for binding to PYCR1. The structures of PYCR1 and PRODH complexed with 1-hydroxyethane-1-sulfonate demonstrate that the sulfonate group is a suitable replacement for the carboxylate anchor. This result suggests that the exploration of carboxylic acid isosteres may be a promising strategy for discovering new classes of PYCR1 and PRODH inhibitors. The structure of PYCR1 complexed with l-pipecolate and NADH supports the hypothesis that PYCR1 has an alternative function in lysine metabolism.


Subject(s)
Enzyme Inhibitors , Proline , Pyrroline Carboxylate Reductases , delta-1-Pyrroline-5-Carboxylate Reductase , Pyrroline Carboxylate Reductases/metabolism , Pyrroline Carboxylate Reductases/antagonists & inhibitors , Pyrroline Carboxylate Reductases/chemistry , Pyrroline Carboxylate Reductases/genetics , Humans , Crystallography, X-Ray , Proline/chemistry , Proline/analogs & derivatives , Proline/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Molecular Weight , Proline Oxidase/metabolism , Proline Oxidase/chemistry , Proline Oxidase/antagonists & inhibitors , Proline Oxidase/genetics , Models, Molecular
15.
J Enzyme Inhib Med Chem ; 39(1): 2387415, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39140677

ABSTRACT

EcGUS has drawn considerable attention for its role as a target in alleviating serious GIAEs. In this study, a series of 72 (thio)urea derivatives were designed, synthesised, and biologically assayed. The bioassay results revealed that E-9 (IC50 = 2.68 µM) exhibited a promising inhibitory effect on EcGUS, surpassing EcGUS inhibitor D-saccharic acid-1,4-lactone (DSL, IC50 = 45.8 µM). Additionally, the inhibitory kinetic study indicated that E-9 (Ki = 1.64 µM) acted as an uncompetitive inhibitor against EcGUS. The structure-activity relationship revealed that introducing an electron-withdrawing group into the benzene ring at the para-position is beneficial for enhancing inhibitory activity against EcGUS. Furthermore, molecular docking analysis indicated that E-9 has a strong affinity to EcGUS by forming interactions with residues Asp 163, Tyr 472, and Glu 504. Overall, these results suggested that E-9 could be a potent EcGUS inhibitor, providing valuable insights and guidelines for the development of future inhibitors targeting EcGUS.


Subject(s)
Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors , Escherichia coli , Glucuronidase , Structure-Activity Relationship , Molecular Structure , Escherichia coli/drug effects , Escherichia coli/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Molecular Docking Simulation , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Glycoproteins
16.
J Enzyme Inhib Med Chem ; 39(1): 2388207, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39140692

ABSTRACT

The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.


Subject(s)
Aldehyde-Lyases , Antitubercular Agents , Dose-Response Relationship, Drug , Enzyme Inhibitors , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Structure-Activity Relationship , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/chemistry , Vero Cells , Molecular Structure , Crystallography, X-Ray , Chlorocebus aethiops , Animals , Guanine/pharmacology , Guanine/chemistry , Guanine/analogs & derivatives , Guanine/chemical synthesis , Molecular Docking Simulation , Hep G2 Cells , Models, Molecular
17.
J Agric Food Chem ; 72(32): 17802-17812, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092526

ABSTRACT

Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 µg/mL and against Cercospora arachidicola even below 2 µg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.


Subject(s)
Enzyme Inhibitors , Fungicides, Industrial , Pyrazoles , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Molecular Docking Simulation , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Ascomycota/drug effects , Ascomycota/enzymology , Molecular Structure
18.
Molecules ; 29(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125044

ABSTRACT

Eleutherococcus divaricatus (Siebold and Zucc.) S. Y. Hu. has been used in Traditional Chinese Medicine (TCM) due to its anticancer, immunostimulant, and anti-inflammatory activities. However, its mechanism of action and chemical composition are still insufficiently understood and require more advanced research, especially for cases in which anti-inflammatory properties are beneficial. The aim of this study was to evaluate the impact of E. divaricatus root extracts and fractions on proinflammatory serum hyaluronidase and tyrosinase in children diagnosed with acute lymphoblastic leukemia. Antioxidant and anti-melanoma activities were also examined and correlated with metabolomic data. For the first time, we discovered that the ethyl acetate fraction significantly inhibits hyaluronidase activity, with mean group values of 55.82% and 63.8% for aescin used as a control. However, interestingly, the fraction showed no activity against human tyrosinase, and in A375 melanoma cells treated with a doxorubicin fraction, doxorubicin activity decreased. This fraction exhibited the most potent antioxidant activity, which can be attributed to high contents of polyphenols, especially caffeic acid (24 mg/g). The findings suggest an important role of the ethyl acetate fraction in hyaluronidase inhibition, which may additionally indicate its anti-inflammatory property. The results suggest that this fraction can be used in inflammatory-related diseases, although with precautions in cases of patients undergoing chemotherapy.


Subject(s)
Acetates , Antioxidants , Eleutherococcus , Hyaluronoglucosaminidase , Melanoma , Monophenol Monooxygenase , Plant Extracts , Plant Roots , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Roots/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Melanoma/drug therapy , Melanoma/metabolism , Acetates/chemistry , Eleutherococcus/chemistry , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
19.
Nutrients ; 16(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125445

ABSTRACT

Researchers are increasingly interested in discovering new pancreatic lipase inhibitors as anti-obesity ingredients. Medicine-and-food homology plants contain a diverse set of natural bioactive compounds with promising development potential. This study screened and identified potent pancreatic lipase inhibitors from 20 commonly consumed medicine-and-food homology plants using affinity ultrafiltration combined with spectroscopy and docking simulations. The results showed that turmeric exhibited the highest pancreatic lipase-inhibitory activity, and curcumin, demethoxycurcumin, and bisdemethoxycurcumin were discovered to be potent pancreatic lipase inhibitors within the turmeric extract, with IC50 values of 0.52 ± 0.04, 1.12 ± 0.05, and 3.30 ± 0.08 mg/mL, respectively. In addition, the enzymatic kinetics analyses demonstrated that the inhibition type of the three curcuminoids was the reversible competitive model, and curcumin exhibited a higher binding affinity and greater impact on the secondary structure of pancreatic lipase than found with demethoxycurcumin or bisdemethoxycurcumin, as observed through fluorescence spectroscopy and circular dichroism. Furthermore, docking simulations supported the above experimental findings, and revealed that the three curcuminoids might interact with amino acid residues in the binding pocket of pancreatic lipase through non-covalent actions, such as hydrogen bonding and π-π stacking, thereby inhibiting the pancreatic lipase. Collectively, these findings suggest that the bioactive compounds of turmeric, in particular curcumin, can be promising dietary pancreatic lipase inhibitors for the prevention and management of obesity.


Subject(s)
Curcuma , Curcumin , Diarylheptanoids , Enzyme Inhibitors , Lipase , Molecular Docking Simulation , Pancreas , Lipase/antagonists & inhibitors , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Curcuma/chemistry , Diarylheptanoids/pharmacology , Pancreas/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Plants, Medicinal/chemistry
20.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125602

ABSTRACT

The benzofuran core inhibitors HCV-796, BMS-929075, MK-8876, compound 2, and compound 9B exhibit good pan-genotypic activity against various genotypes of NS5B polymerase. To elucidate their mechanism of action, multiple molecular simulation methods were used to investigate the complex systems of these inhibitors binding to GT1a, 1b, 2a, and 2b NS5B polymerases. The calculation results indicated that these five inhibitors can not only interact with the residues in the palm II subdomain of NS5B polymerase, but also with the residues in the palm I subdomain or the palm I/III overlap region. Interestingly, the binding of inhibitors with longer substituents at the C5 position (BMS-929075, MK-8876, compound 2, and compound 9B) to the GT1a and 2b NS5B polymerases exhibits different binding patterns compared to the binding to the GT1b and 2a NS5B polymerases. The interactions between the para-fluorophenyl groups at the C2 positions of the inhibitors and the residues at the binding pockets, together with the interactions between the substituents at the C5 positions and the residues at the reverse ß-fold (residues 441-456), play a key role in recognition and the induction of the binding. The relevant studies could provide valuable information for further research and development of novel anti-HCV benzofuran core pan-genotypic inhibitors.


Subject(s)
Antiviral Agents , Benzofurans , Genotype , Hepacivirus , Viral Nonstructural Proteins , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Benzofurans/chemistry , Benzofurans/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepacivirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Molecular Docking Simulation , Binding Sites , Protein Binding , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , RNA-Dependent RNA Polymerase
SELECTION OF CITATIONS
SEARCH DETAIL