Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.486
Filter
1.
Turk J Med Sci ; 54(2): 471-482, 2024.
Article in English | MEDLINE | ID: mdl-39050389

ABSTRACT

Background/aim: In practice, waiting 2-3 weeks for interpolation flaps pedicle division result in certain morbidities and discomfort for patient. The division time of flap pedicle depends on neovascularization from the recipient bed and includes wound healing stages. We aimed to investigate the effect of recombinant human epidermal growth factor (rhEGF) on the flap viability during early pedicle division. Materials and methods: Thirty-six rats were allocated to two main groups as control and study. A cranial based flap measuring 5 × 5 cm was elevated from the back, including all layers of the skin. While the cranial half of the defect was primarily closed, the flap was inset into the distal half. In the study group, a single dose of 20 µg EGF was injected into the recipient site and wound edges before the flap inset. The control group received no treatment. Each main group was divided into three subgroups based on pedicle division time of 8, 11 and 14 days. After pedicle division, each flap was monitored and photographed for 7 days, and histopathological samples were collected. Viable and necrotic areas were compared, and flaps were examined histopathologically. Results: The necrosis area in the study group on the 11th day was significantly lower than that in the control group. The fibroblastic activity, granulation tissue and neovascularization on the 8th day, the granulation tissue level on the 11th day, and the neovascularization level on the 14th day were significantly higher in the study groups. Conclusion: Following the application of EGF, the necrosis area decreased within the study group. Histopathological assessments revealed a statistically significant increase in parameters related to granulation tissue and fibroblastic activity, notably neovascularization, across all subgroups within the study. It was concluded that the use of EGF positively affected the neovascularization, and flaps could be divided earlier.


Subject(s)
Epidermal Growth Factor , Neovascularization, Physiologic , Recombinant Proteins , Surgical Flaps , Animals , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/administration & dosage , Surgical Flaps/blood supply , Rats , Neovascularization, Physiologic/drug effects , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Wound Healing/drug effects , Humans , Male , Rats, Sprague-Dawley
2.
Drug Dev Res ; 85(5): e22234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39041350

ABSTRACT

Recombinant human epidermal growth factor (rhEGF) is widely utilized as an antiaging compound in wound-healing therapies and cosmetic purposes. However, topical administration of rhEGF has limited treatment outcomes because of its poor percutaneous penetration and rapid proteinase degradation. To overcome these obstacles, this study aims to develop and characterize rhEGF-containing conventional liposomes (rhEGF-CLs) and transferosomes (rhEGF-TFs) as efficient dermal carriers. Physicochemical characterization such as particle size, zeta potential (ZP), morphology, encapsulation efficiency (EE%), and release properties of nanocarriers as well as in vitro cytotoxicity in human dermal fibroblast (HDF) and human embryonic kidney (HEK293) cell lines were investigated. rhEGF-TFs at the rhEGF concentration ranging from 0.05 to 1.0 µg/mL were chosen as the optimum formulation due to the desired release profile, acceptable EE%, optimal cell proliferation, and minimal cytotoxicity compared to the control and free rhEGF. However, higher concentrations caused a decrease in cell viability. The ratio 20:80 of Tween 80 to lipid was optimal for rhEGF-TFs-2, which had an average diameter of 233.23 ± 2.64 nm, polydispersity index of 0.33 ± 0.05, ZP of -15.46 ± 0.29 mV, and EE% of 60.50 ± 1.91. The formulations remained stable at 5°C for at least 1 month. TEM and SEM microscopy revealed that rhEGF-TFs-2 had a regular shape and unilamellar structure. In vitro drug release studies confirmed the superiority of rhEGF-TFs-2 in terms of optimal cumulative release of rhEGF approximately 82% within 24 h. Franz diffusion cell study showed higher rhEGF-TFs-2 skin permeation compared to free rhEGF solution. Taken together, we concluded that rhEGF-TFs can be used as a promising formulation for wound healing and skin regeneration products.


Subject(s)
Cell Survival , Epidermal Growth Factor , Liposomes , Recombinant Proteins , Humans , Epidermal Growth Factor/administration & dosage , Epidermal Growth Factor/pharmacology , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Cell Survival/drug effects , HEK293 Cells , Particle Size , Administration, Cutaneous , Fibroblasts/drug effects , Drug Liberation
3.
ACS Biomater Sci Eng ; 10(8): 5080-5093, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39038278

ABSTRACT

Ensuring good definition of scaffolds used for 3D cell culture is a prominent challenge that hampers the development of tissue engineering platforms. Since dextran repels cell adhesion, using dextran-based materials biofunctionalized through a bottom-up approach allows for precise control over material definition. Here, we report the design of dextran hydrogels displaying a fully interconnected macropore network for the culture of vascular spheroids in vitro. We biofunctionalized the hydrogels with the RGD peptide sequence to promote cell adhesion. We used an affinity peptide pair, the E/K coiled coil, to load the gels with epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Dual functionalization with adhesive and proliferative cues allows vascular spheroids to colonize naturally cell-repellant dextran. In supplement-depleted medium, we report improved colonization of the macropores compared to that of unmodified dextran. Altogether, we propose a well-defined and highly versatile platform for tissue engineering and tissue vascularization applications.


Subject(s)
Dextrans , Hydrogels , Dextrans/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/chemistry , Oligopeptides/chemistry , Oligopeptides/pharmacology , Tissue Engineering/methods , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Cell Adhesion/drug effects , Porosity , Human Umbilical Vein Endothelial Cells/drug effects , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Neovascularization, Physiologic/drug effects , Tissue Scaffolds/chemistry , Intercellular Signaling Peptides and Proteins/pharmacology , Peptides/chemistry , Peptides/pharmacology
4.
PeerJ ; 12: e17806, 2024.
Article in English | MEDLINE | ID: mdl-39035165

ABSTRACT

Epidermal growth factor (EGF) protein is a crucial biomolecule involved in regulating cell growth, proliferation, migration and differentiation, which is used in various therapeutic applications, such as wound healing and tissue regeneration. The production of recombinant EGF is essential for studying its biological function and for its clinical translation. However, EGF protein expressed in prokaryotic cells often occurs in inclusion bodies, and co-expression with soluble tag protein is an effective method to prepare recombinant EGF. In this study, we expressed recombinant human EGF (rhEGF) fused to a HaloTag (Halo-rhEGF) and a large portion of Halo-rhEGF was found in the soluble fraction. Cell growth assay showed that the purified Halo-rhEGF protein could promote the proliferation of fibroblasts (NIH 3T3) and epithelial cells (HaCaT), and significantly increased their viability. Phosphorylation of the intracellular signaling proteins, ERK1/2 and c-Jun, was stimulated by treatment with Halo-rhEGF and the expression levels of proteins regulating cell proliferation were significantly increased. RNA sequencing analysis revealed that rhEGF could increase the transcription of genes enriched in ribosome generation and cell proliferation. Moreover, Halo-rhEGF can be labelled by HaloTag ligand for fluorescence imaging and can be slowly released in tissue repair by binding to anion biomaterials. In conclusion, HaloTag is an efficient fusion tag for rhEGF protein expression, purification and controlled release, and Halo-rhEGF can promote the proliferation and viability of epithelial and fibroblast cells.


Subject(s)
Cell Proliferation , Epidermal Growth Factor , Humans , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/genetics , Cell Proliferation/drug effects , Mice , Animals , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , NIH 3T3 Cells , Cell Survival/drug effects , Recombinant Proteins/pharmacology , Recombinant Proteins/metabolism
5.
Mol Biol Cell ; 35(9): ar118, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39024272

ABSTRACT

Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3ß. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.


Subject(s)
Acyltransferases , Epidermal Growth Factor , ErbB Receptors , Phosphatidylinositol Phosphates , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol Phosphates/metabolism , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Acyltransferases/metabolism , ErbB Receptors/metabolism , Cell Line, Tumor , Phosphorylation , Cell Proliferation
6.
Int J Biol Macromol ; 274(Pt 1): 132917, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851612

ABSTRACT

The development of a multifunctional wound dressing that can adapt to the shape of wounds and provide controlled drug release is crucial for diabetic patients. This study developed a carboxymethyl chitosan-based hydrogel dressing with enhanced mechanical properties and tissue adherence that were achieved by incorporating pectin (PE) and polydopamine (PDA) and loading the hydrogel with recombinant human epidermal growth factor (rhEGF). This EGF@PDA-CMCS-PE hydrogel demonstrated robust tissue adhesion, enhanced mechanical properties, and superior water retention and vapor permeability. It also exhibited significant antioxidant capacity. The results showed that EGF@PDA-CMCS-PE could effectively scavenge 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate), (1,1-diphenyl-2-picrylhydrazyl), and superoxide anions and increase superoxide dismutase and catalase levels in vivo. In vitro cytotoxicity and antibacterial assays showed good biocompatibility and antimicrobial properties. The sustained release of EGF by the hydrogel was confirmed, with a gradual release profile over 120 h. In vivo studies in diabetic mice showed that the hydrogel significantly accelerated wound healing, with a wound contraction rate of 97.84% by day 14. Histopathological analysis revealed that the hydrogel promoted fibroblast proliferation, neovascularization, and orderly connective tissue formation, leading to a more uniform and compact wound-healing process. Thus, EGF@PDA-CMCS-PE hydrogel presents a promising tool for managing chronic diabetic wounds, offering a valuable strategy for future clinical applications.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Epidermal Growth Factor , Hydrogels , Pectins , Wound Healing , Animals , Humans , Male , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Chitosan/chemistry , Chitosan/analogs & derivatives , Diabetes Mellitus, Experimental/drug therapy , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Indoles/chemistry , Indoles/pharmacology , Pectins/chemistry , Pectins/pharmacology , Polymers/chemistry , Recombinant Proteins/pharmacology , Recombinant Proteins/chemistry , Wound Healing/drug effects
7.
Int J Biol Macromol ; 274(Pt 2): 133423, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942404

ABSTRACT

Conventional wound dressings are monolithically designed to cover the injured areas as well as absorb the exudates at injured site. Furthermore, antibacterial drugs and growth prompting factors are additionally appended to realize sensible and omnibearing wound management, exhibiting long and tedious treatment process in practice. Consequently, the creation of multifunctional wound dressings that combines wound repair enhancement with antibacterial properties turns out to be significant for simplifying wound managements. In our investigation, electronegative human epidermal growth factor (hEGF) was combined with the positively charged Zn-Al layered double hydroxides (Zn-Al LDHs) via electrostatic interaction while the obtained hEGF/LDH was integrated with sodium hyaluronate hydrogel (SH) hydrogel, forming a composite hydrogel with synergistic benefits for wound management. The innovative hEGF/LDH@SH hydrogel equipped with fine biocompatibility was designed to optimize wound healing in which hEGF stimulates epithelial cell growth while LDH released antibacterial factor Zn2+ against Methicillin-resistant staphylococcus aureus (MRSA) and Escherichia coli (E.coli) under acidic wound environment. Additionally, the SH hydrogel constructed a three-dimensional structure that not only safeguarded the wound area but also maintained a moist environment conducive to recovery. The synthesized hEGF/LDH was confirmed via fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermo-gravimetry (TG) measurements. The release of Zn2+ from Zn-Al LDH under acid circumstance was detected via inductively coupled plasma (ICP) and the in vitro bactericidal experiments endowed the antibacterial property of hEGF/LDH@SH hydrogel. In vitro drug release experiments illustrated the controlled-release of hEGF from hEGF/LDH which promoted the long-term affect of hEGF at wound site. In vitro cell experiments verified that the hEGF/LDH@SH hydrogel motivated the promotion on cell proliferation and migration without cytotoxicity. An in vivo study of the repairing of MRSA-infected wound in mice indicated that hEGF/LDH@SH hydrogel serves as a simple and novel, innoxious and efficient wound healing approach. This brand new hydrogel possesses properties of promoting the regeneration of skin tissue, achieving antimicrobial therapy without any accessional antibacterial drugs as well as realizing controlled release of hEGF.


Subject(s)
Anti-Bacterial Agents , Hyaluronic Acid , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Wound Healing , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Humans , Escherichia coli/drug effects , Escherichia coli/growth & development , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/chemistry , Microbial Sensitivity Tests , Zinc/chemistry , Zinc/pharmacology , Hydrogen-Ion Concentration
8.
Biochim Biophys Acta Gen Subj ; 1868(9): 130660, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871061

ABSTRACT

Caveolin-1 is critical for interacting with the TGF-ß receptor (TGFßR) and EGF receptor (EGFR) signaling, often observed in advanced cancers and tissue fibrosis. However, the mechanism underlying caveolin-1-mediated transactivation of TGFßR and EGFR signaling remains unclear. Therefore, we sought to determine whether caveolin-1 is involved in canonical and non-canonical TGFßR and EGFR signaling transactivation in this study. Methyl-ß-cyclodextrin (MßCD) was used to disrupt the cholesterol-containing membranes domains, and the caveolin-1 scaffolding domain (CSD) peptide was used to mimic the CSD of caveolin-1. Additionally, we transfected the Madin-Darby canine kidney cells with wild-type or phosphorylation-defective caveolin-1. We discovered that tyrosine 14 of caveolin-1 was critical for the negative regulation of TGFßR and EGFR canonical signaling. On the contrary, caveolin-1 inhibited TGF-ß1-induced ERK2 activation independent of tyrosine 14 phosphorylation. Although EGF failed to induce Smad3 phosphorylation in caveolin-1 knockdown cells, it activated Smad3 upon MßCD co-treatment, indicating that caveolin-1 indirectly regulated the non-canonical pathway of EGF. In conclusion, caveolin-1 differentially modulates TGFßR and EGFR signaling. Thus, targeting caveolin-1 is a potential strategy for treating diseases involving TGF-ß1 and EGF signaling.


Subject(s)
Caveolin 1 , ErbB Receptors , Signal Transduction , Animals , Dogs , Caveolin 1/metabolism , Caveolin 1/genetics , Madin Darby Canine Kidney Cells , ErbB Receptors/metabolism , Phosphorylation , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Transforming Growth Factor beta/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Humans , Transforming Growth Factor beta1/metabolism
9.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 243-247, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814208

ABSTRACT

Burns are the most severe type of trauma, and the resulting ischemia and hypoxia damage can promote the dysfunction and even failure of tissues and organs throughout the body, endangering patients' life safety. Recombinant human growth hormone (rhGH) has the functions of promoting protein synthesis to reverse negative nitrogen balance, accelerating wound healing, and improving immune function, which is widely used in the treatment of burns. However, the exact mechanism and pathway of rhGH's action is not yet fully understood. In this study, we observed the wound repair effect of recombinant human growth hormone (rhGH) on burned mice and further analyzed the mechanism of action, which can provide more comprehensive reference opinions for clinical practice. First, by establishing a burn mouse model and and intervening with different doses of rhGH, we found that the wound healing capacity of mice was significantly enhanced and the inflammatory and oxidative stress responses were obviously alleviated, confirming the excellent promotion of wound repair and anti-inflammatory and antioxidant effects of rhGH. Subsequently, we found that the expression of p-ERK1/2/ERK1/2, EGF, TGF-ß, and VEGF proteins was elevated in the traumatic tissues of mice after rhGH intervention, suggesting that the pathway of action of rhGH might be related to the activation of ERK pathway to promote the regeneration of traumatic capillaries.


Subject(s)
Burns , Human Growth Hormone , MAP Kinase Signaling System , Neovascularization, Physiologic , Recombinant Proteins , Wound Healing , Animals , Burns/drug therapy , Burns/pathology , Wound Healing/drug effects , MAP Kinase Signaling System/drug effects , Recombinant Proteins/pharmacology , Mice , Human Growth Hormone/pharmacology , Humans , Neovascularization, Physiologic/drug effects , Male , Oxidative Stress/drug effects , Disease Models, Animal , Vascular Endothelial Growth Factor A/metabolism , Transforming Growth Factor beta/metabolism , Mice, Inbred C57BL , Epidermal Growth Factor/pharmacology , Angiogenesis
10.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724835

ABSTRACT

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Subject(s)
Docetaxel , Metal Nanoparticles , Prostatic Neoplasms , Radiation-Sensitizing Agents , Silver , Humans , Docetaxel/pharmacology , Male , Silver/pharmacology , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Caspase 3/metabolism , Caspase 3/genetics , Antineoplastic Agents/pharmacology , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Cadherins/metabolism , Cadherins/genetics
11.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727302

ABSTRACT

We have previously shown that the transmembrane protein ODZ1 promotes cytoskeletal remodeling of glioblastoma (GBM) cells and invasion of the surrounding parenchyma through the activation of a RhoA-ROCK pathway. We also described that GBM cells can control the expression of ODZ1 through transcriptional mechanisms triggered by the binding of IL-6 to its receptor and a hypoxic environment. Epidermal growth factor (EGF) plays a key role in the invasive capacity of GBM. However, the molecular mechanisms that enable tumor cells to acquire the morphological changes to migrate out from the tumor core have not been fully characterized. Here, we show that EGF is able to induce the expression of ODZ1 in primary GBM cells. We analyzed the levels of the EGF receptor (EGFR) in 20 GBM primary cell lines and found expression in 19 of them by flow cytometry. We selected two cell lines that do or do not express the EGFR and found that EGFR-expressing cells responded to the EGF ligand by increasing ODZ1 at the mRNA and protein levels. Moreover, blockade of EGF-EGFR binding by Cetuximab, inhibition of the p38 MAPK pathway, or Additionally, the siRNA-mediated knockdown of MAPK11 (p38ß MAPK) reduced the induction of ODZ1 in response to EGF. Overall, we show that EGF may activate an EGFR-mediated signaling pathway through p38ß MAPK, to upregulate the invasion factor ODZ1, which may initiate morphological changes for tumor cells to invade the surrounding parenchyma. These data identify a new candidate of the EGF-EGFR pathway for novel therapeutic approaches.


Subject(s)
Epidermal Growth Factor , ErbB Receptors , Glioblastoma , Tenascin , Up-Regulation , Humans , Cell Line, Tumor , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Neoplasm Invasiveness , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Tenascin/genetics , Tenascin/metabolism
12.
Adv Mater ; 36(28): e2311845, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38720198

ABSTRACT

Sweat gland (SwG) regeneration is crucial for the functional rehabilitation of burn patients. In vivo chemical reprogramming that harnessing the patient's own cells in damaged tissue is of substantial interest to regenerate organs endogenously by pharmacological manipulation, which could compensate for tissue loss in devastating diseases and injuries, for example, burns. However, achieving in vivo chemical reprogramming is challenging due to the low reprogramming efficiency and an unfavorable tissue environment. Herein, this work has developed a functionalized proteinaceous nanoformulation delivery system containing prefabricated epidermal growth factor structure for on-demand delivery of a cocktail of seven SwG reprogramming components to the dermal site. Such a chemical reprogramming system can efficiently induce the conversion of epidermal keratinocytes into SwG myoepithelial cells, resulting in successful in situ regeneration of functional SwGs. Notably, in vivo chemical reprogramming of SwGs is achieved for the first time with an impressive efficiency of 30.6%, surpassing previously reported efficiencies. Overall, this proteinaceous nanoformulation provides a platform for coordinating the target delivery of multiple pharmacological agents and facilitating in vivo SwG reprogramming by chemicals. This advancement greatly improves the clinical accessibility of in vivo reprogramming and offers a non-surgical, non-viral, and cell-free strategy for in situ SwG regeneration.


Subject(s)
Cellular Reprogramming , Animals , Humans , Mice , Cellular Reprogramming/drug effects , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Regeneration/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/cytology , Nanoparticles/chemistry
13.
J Ovarian Res ; 17(1): 97, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720330

ABSTRACT

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.


Subject(s)
Amphiregulin , Betacellulin , C-Reactive Protein , Epiregulin , Luteal Cells , Serum Amyloid P-Component , Up-Regulation , Female , Humans , Amphiregulin/metabolism , Amphiregulin/genetics , Betacellulin/metabolism , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Epiregulin/metabolism , Epiregulin/genetics , ErbB Receptors/metabolism , Luteal Cells/metabolism , MAP Kinase Signaling System , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics
14.
Pigment Cell Melanoma Res ; 37(4): 514-529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705722

ABSTRACT

Epidermal melanin unit integrity is crucial for skin homeostasis and pigmentation. Epidermal growth factor (EGF) receptor (EGFR) is a pivotal player in cell growth, wound healing, and maintaining skin homeostasis. However, its influence on skin pigmentation is relatively unexplored. This study investigates the impact and underlying mechanisms of EGFR inhibitors on skin pigmentation. We evaluated EGF and EGFR expression in various skin cells using quantitative real-time PCR, Western blot, and immunofluorescence. EGF and EGFR were predominantly expressed in epidermal keratinocytes, and treatment with the EGFR tyrosine kinase inhibitors (EGFR-TKIs) gefitinib and PD153035 significantly increased stem cell factor (SCF) and endothelin-1 (ET-1) expression in cultured keratinocytes. Enhanced melanocyte migration and proliferation were observed in co-culture, as evidenced by time-lapse live imaging and single-cell tracking assays. Furthermore, topical application of gefitinib to guinea pig dorsal skin induced increased pigmentation and demonstrated efficacy in mitigating rhododendrol-induced leukoderma. Suppression of EGF signaling indirectly enhanced skin pigmentation by upregulating SCF and ET-1 in epidermal keratinocytes. This novel mechanism highlights the pivotal role of EGF signaling in regulating skin pigmentation, and topical EGFR-TKI therapy at an appropriate dose may be a promising approach for depigmentation disorder management.


Subject(s)
ErbB Receptors , Gefitinib , Hypopigmentation , Keratinocytes , Melanins , Melanocytes , Protein Kinase Inhibitors , ErbB Receptors/metabolism , Animals , Melanins/metabolism , Melanins/biosynthesis , Humans , Protein Kinase Inhibitors/pharmacology , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/pathology , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Hypopigmentation/pathology , Hypopigmentation/drug therapy , Gefitinib/pharmacology , Guinea Pigs , Skin Pigmentation/drug effects , Stem Cell Factor/metabolism , Epidermis/drug effects , Epidermis/pathology , Epidermis/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Endothelin-1/metabolism , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Quinazolines
15.
Int J Biol Macromol ; 270(Pt 1): 132365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750850

ABSTRACT

This study strategically incorporates epidermal growth factor (EGF) and keratinocyte growth factor (KGF) within a hyaluronic acid (HA) hydrogel to enhance corneal wound healing. The controlled release of EGF and KGF from the HA hydrogel is engineered to promote the regeneration of both the epithelial and stromal layers. Specifically, EGF plays a pivotal role in the regeneration of the epithelial layer, while KGF exhibits efficacy in the regeneration of the stromal layer. The combination of these growth factors facilitates efficient regeneration of each layer and demonstrates the capability to modulate each other's regenerative effects. The interplay between EGF and KGF provides an understanding of their cooperative influence on the dynamics of corneal wound healing. The results of this study contribute to the development of advanced strategies for corneal wound management and offer insights into the complex process of corneal regeneration.


Subject(s)
Epidermal Growth Factor , Fibroblast Growth Factor 7 , Hyaluronic Acid , Hydrogels , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Epidermal Growth Factor/pharmacology , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Humans , Cornea/drug effects , Cornea/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Rabbits
16.
Hematology ; 29(1): 2356292, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785187

ABSTRACT

OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.


Subject(s)
Cell Proliferation , Epidermal Growth Factor , MAP Kinase Signaling System , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Tyrosine Phosphatases, Non-Receptor , Humans , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Epidermal Growth Factor/pharmacology , MAP Kinase Signaling System/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
17.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 289-294, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814200

ABSTRACT

Collagen sponge and epidermal growth factor (EGF) promote wound healing. However, the effect of collagen sponge combined with EGF in repairing maxillofacial head and neck wounds remains unclear. The rats were divided into 3 groups, including experimental group 1 (Vaseline gauze+EGF), experimental group 2 (collagen sponge+EGF) with control group (Vaseline+normal saline), and maxillofacial head and neck wounds were simulated. Wound pathological morphology was detected by HE staining; wound EGF, IL-1ß, IL-6 along with TNF-α contents by ELISA and MMP1 level by western blot. At 7 and 14 days after treatment, wound healing rate of two experimental groups was higher than that of control group, and that of experimental group 2 presented higher than that of experimental group 1. Compared with control group, experimental group 1 had significantly fewer inflammatory cells in the wound tissue, local erythrocyte spillage outside the vascular walls, more collagen deposition and more granulation tissue. Compared with experimental group 1, inflammatory cells in wound tissues of experimental group 2 were significantly reduced, the collagen tissues were visible and arranged, and the growth of the wound granulation tissue was obvious. IL-1ß, IL-6 along with TNF-α levels in two experimental groups presented lower than control group, and EGF level was higher. More importantly, in contrast to experimental group 1, IL-1ß, IL-6 along with TNF-α in experimental group 2 presented lower, and EGF level presented higher. At 14 days after treatment, MMP1 level in two experimental groups was lower than control group. In contrast to experimental group 1, MMP1 level in experimental group 2 was lower. In summary, collagen sponge combined with EGF for the first time significantly improved the healing speed of maxillofacial head and neck wounds and reduced the scar left after wound healing.


Subject(s)
Collagen , Epidermal Growth Factor , Matrix Metalloproteinase 1 , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Wound Healing , Animals , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Wound Healing/drug effects , Collagen/metabolism , Matrix Metalloproteinase 1/metabolism , Male , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Rats , Interleukin-1beta/metabolism , Granulation Tissue/drug effects , Granulation Tissue/pathology
18.
Genes Cells ; 29(6): 512-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38597132

ABSTRACT

Macropinocytosis (MPC) is a large-scale endocytosis pathway that involves actin-dependent membrane ruffle formation and subsequent ruffle closure to generate macropinosomes for the uptake of fluid-phase cargos. MPC is categorized into two types: constitutive and stimuli-induced. Constitutive MPC in macrophages relies on extracellular Ca2+ sensing by a calcium-sensing receptor. However, the link between stimuli-induced MPC and Ca2+ remains unclear. Here, we find that both intracellular and extracellular Ca2+ are required for epidermal growth factor (EGF)-induced MPC in A431 human epidermoid carcinoma cells. Through investigation of mammalian homologs of coelomocyte uptake defective (CUP) genes, we identify ATP2B4, encoding for a Ca2+ pump called the plasma membrane calcium ATPase 4 (PMCA4), as a Ca2+-related regulator of EGF-induced MPC. Knockout (KO) of ATP2B4, as well as depletion of extracellular/intracellular Ca2+, inhibited ruffle closure and macropinosome formation, without affecting ruffle formation. We demonstrate the importance of PMCA4 activity itself, independent of interactions with other proteins via its C-terminus known as a PDZ domain-binding motif. Additionally, we show that ATP2B4-KO reduces EGF-stimulated Ca2+ oscillation during MPC. Our findings suggest that EGF-induced MPC requires ATP2B4-dependent Ca2+ dynamics.


Subject(s)
Calcium , Epidermal Growth Factor , Pinocytosis , Plasma Membrane Calcium-Transporting ATPases , Humans , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Plasma Membrane Calcium-Transporting ATPases/metabolism , Plasma Membrane Calcium-Transporting ATPases/genetics , Calcium/metabolism , Cell Line, Tumor
19.
Wound Manag Prev ; 70(1)2024 03.
Article in English | MEDLINE | ID: mdl-38608161

ABSTRACT

OBJECTIVE: To evaluate the efficacy of recombinant human epidermal growth factor (rhEGF) in healing pressure injuries (PIs). METHODS: A meta-analysis was conducted of randomized controlled trials (RCTs) involving rhEGF in the treatment of PIs that were identified in PubMed, Web of Science, the Cochrane Library, and China National Knowledge Infrastructure (CNKI). The population, intervention, comparison, outcomes, study design (PICOS) strategy was applied to determine analysis eligibility. The Cochrane risk of bias tool was used, and statistical analysis, including sensitivity analysis, was performed of 3 outcomes indicators: the primary outcome was total efficacy of rhEGF in treating PIs, and the secondary outcomes were the proportion of complete healing and the time to complete healing. Total efficacy refers to the proportion of cases that have been cured, obviously effective, or effective. Complete healing refers to cases where the wound has healed, scabbed, and the scab has sloughed off. RESULTS: Sixteen RCTs were included, comprising a total of 1,206 patients. Study and control group size varied by outcomes. The total effective healing rate in rhEGF group was 97.18%, which was significantly higher than 83.38% in control group (OR: 5.69, [95% CI: 3.61, 8.97], z=7.49, P < .001). The proportion of complete healing in the rhEGF group was 73.30%, which was higher than 39.52% in control group (OR: 3.88, [95% CI: 3.01, 5.01], z=10.39, P < .001). Furthermore, the healing time using rhEGF was shorter (SMD: -2.14 days, [95% CI: -2.60, -1.67], z=9.07, P < .001). Sensitivity analyses indicated that the results were robust. CONCLUSIONS: The meta-analysis indicated that rhEGF was effective in healing PIs with few negative effects. Further research beyond Chinese populations involving larger studies and studies that distinguish between results found in using rhEGF alone or in combination are recommended.


Subject(s)
Pressure Ulcer , Humans , China , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/therapeutic use , Pressure Ulcer/drug therapy , Randomized Controlled Trials as Topic
20.
BMC Biotechnol ; 24(1): 24, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685061

ABSTRACT

BACKGROUND: Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug's cytotoxic effect specifically towards cancer cells. However, success with targeted toxins has been hampered as the constructs commonly remain bound to the outside of the cell or, after receptor-mediated endocytosis, are either transported back to the cell surface or undergo degradation in lysosomes. Hence, solutions to ensure endosomal escape are an urgent need in treatment with targeted toxins. In this work, a molecular adapter that consists of a cell penetrating peptide and two cleavable peptides was inserted into a targeted toxin between the ribosome-inactivating protein dianthin and the epidermal growth factor. Applying cell viability assays, this study examined whether the addition of the adapter further augments the endosomal escape enhancement of the glycosylated triterpenoid SO1861, which has shown up to more than 1000-fold enhancement in the past. RESULTS: Introducing the peptide adapter into the targeted toxin led to an about 12-fold enhancement in the cytotoxicity on target cells while SO1861 caused a 430-fold increase. However, the combination of adapter and glycosylated triterpenoid resulted in a more than 4300-fold enhancement and in addition to a 51-fold gain in specificity. CONCLUSIONS: Our results demonstrated that the cleavable peptide augments the endosomal escape mediated by glycosylated triterpenoids while maintaining specificity. Thus, the adapter is a promising addition to glycosylated triterpenoids to further increase the efficacy and therapeutic window of targeted toxins.


Subject(s)
Endosomes , Humans , Endosomes/metabolism , Endosomes/drug effects , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Triterpenes/pharmacology , Triterpenes/chemistry , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL