Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.052
Filter
1.
BMC Biotechnol ; 24(1): 45, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970027

ABSTRACT

Marburg virus (MARV) is a highly contagious and virulent agent belonging to Filoviridae family. MARV causes severe hemorrhagic fever in humans and non-human primates. Owing to its highly virulent nature, preventive approaches are promising for its control. There is currently no approved drug or vaccine against MARV, and management mainly involves supportive care to treat symptoms and prevent complications. Our aim was to design a novel multi-epitope vaccine (MEV) against MARV using immunoinformatics studies. In this study, various proteins (VP35, VP40 and glycoprotein precursor) were used and potential epitopes were selected. CTL and HTL epitopes covered 79.44% and 70.55% of the global population, respectively. The designed MEV construct was stable and expressed in Escherichia coli (E. coli) host. The physicochemical properties were also acceptable. MARV MEV candidate could predict comprehensive immune responses such as those of humoral and cellular in silico. Additionally, efficient interaction to toll-like receptor 3 (TLR3) and its agonist (ß-defensin) was predicted. There is a need for validation of these results using further in vitro and in vivo studies.


Subject(s)
Computational Biology , Marburg Virus Disease , Marburgvirus , Viral Vaccines , Marburgvirus/immunology , Marburg Virus Disease/prevention & control , Marburg Virus Disease/immunology , Viral Vaccines/immunology , Computational Biology/methods , Animals , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes/immunology , Epitopes/genetics , Epitopes/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Immunoinformatics
2.
Virol J ; 21(1): 152, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970084

ABSTRACT

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS: In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS: A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION: The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.


Subject(s)
Genetic Variation , Human papillomavirus 18 , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Phylogeny , Oncogene Proteins, Viral/genetics , China , Humans , Human papillomavirus 18/genetics , Human papillomavirus 18/classification , Papillomavirus E7 Proteins/genetics , Capsid Proteins/genetics , Female , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Repressor Proteins/genetics , Epitopes, B-Lymphocyte/genetics , DNA-Binding Proteins
3.
Sci Rep ; 14(1): 16721, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030304

ABSTRACT

Antigen-specific cytotoxic CD8 T cells are extremely effective in controlling tumor growth and have been the focus of immunotherapy approaches. We leverage in silico tools to investigate whether the occurrence of mutations in proteins previously described as immunogenic and highly expressed by glioblastoma multiforme (GBM), such as Epidermal Growth Factor Receptor (EGFR), Isocitrate Dehydrogenase 1 (IDH1), Phosphatase and Tensin homolog (PTEN) and Tumor Protein 53 (TP53), may be contributing to the differential presentation of immunogenic epitopes. We recovered Class I MHC binding information from wild-type and mutated proteins using the Immune Epitope Database (IEDB). After that, we built peptide-MHC (pMHC-I) models in HLA-arena, followed by hierarchical clustering analysis based on electrostatic surface features from each complex. We identified point mutations that are determinants for the presentation of a set of peptides from TP53 protein. We point to structural features in the pMHC-I complexes of wild-type and mutated peptides, which may play a role in the recognition of CD8 T cells. To further explore these features, we performed 100 ns molecular dynamics simulations for the peptide pairs (wt/mut) selected. In pursuit of novel therapeutic targets for GBM treatment, we selected peptides where our predictive results indicated that mutations would not disrupt epitope presentation, thereby maintaining a specific CD8 T cell immune response. These peptides hold potential for future GBM interventions, including peptide-based or mRNA vaccine development applications.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , Glioblastoma , Isocitrate Dehydrogenase , Tumor Suppressor Protein p53 , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/therapy , Humans , CD8-Positive T-Lymphocytes/immunology , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Isocitrate Dehydrogenase/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , Antigen Presentation/immunology , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , PTEN Phosphohydrolase/chemistry , ErbB Receptors/immunology , ErbB Receptors/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/therapy
4.
Emerg Microbes Infect ; 13(1): 2377606, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979723

ABSTRACT

The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The in-vivo mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.


Subject(s)
AIDS Vaccines , CD8-Positive T-Lymphocytes , HIV Infections , mRNA Vaccines , AIDS Vaccines/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Female , HIV Infections/prevention & control , HIV Infections/immunology , HIV Infections/virology , Humans , HIV-1/immunology , HIV-1/genetics , Nanoparticles/chemistry , HIV Protease/genetics , HIV Protease/immunology , Kenya , Sex Workers , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes/immunology , Epitopes/genetics , RNA, Messenger/genetics , RNA, Messenger/immunology , Liposomes
5.
BMC Vet Res ; 20(1): 312, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997779

ABSTRACT

BACKGROUND: Canine circovirus (CanineCV) is a single-stranded circular DNA virus that infects domestic and wild canids in many countries. CanineCV is associated with gastroenteritis and diarrhea, respiratory disease, and generalized vasculitis leading to a fatal event. The Capsid protein (Cap) is a structural protein of the virus which has high genetic variability and plays a role in the canine immune response. In this study, we cloned the full-length CanineCV Capsid gene (Cap). In-silico analyses were used to explore the genomic and amino acid variability and natural selection acting on the Cap gene. The immune relevance for T-cell and B-cell epitopes was predicted by the immunoinformatic approach. RESULTS: According to the Cap gene, our results showed that CanineCV was separated into five phylogenetic groups. The obtained CanineCV strain from this study was grouped with the previously discovered Thai strain (MG737385), as supported by a haplotype network. Entropy analyses revealed high nucleotide and amino acid variability of the Capsid region. Selection pressure analysis revealed four codons at positions 24, 50, 103, and 111 in the Cap protein evolved under diversifying selection. Prediction of B-cell epitopes exhibited four consensus sequences based on physiochemical properties, and eleven peptide sequences were predicted as T-cell epitopes. In addition, the positive selection sites were located within T-cell and B-cell epitopes, suggesting the role of the host immune system as a driving force in virus evolution. CONCLUSIONS: Our study provides knowledge of CanineCV genetic diversity, virus evolution, and potential epitopes for host cell immune response.


Subject(s)
Capsid Proteins , Circovirus , Phylogeny , Thailand , Circovirus/genetics , Capsid Proteins/genetics , Animals , Dogs , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Genetic Variation , Dog Diseases/virology , Amino Acid Sequence
6.
Appl Microbiol Biotechnol ; 108(1): 424, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037584

ABSTRACT

Leptospirosis, a neglected zoonotic disease, is caused by pathogenic spirochetes belonging to the genus Leptospira and has one of the highest morbidity and mortality rates worldwide. Vaccination stands out as one of the most effective preventive measures for susceptible populations. Within the outer membrane of Leptospira spp., we find the LIC12287, LIC11711, and LIC13259 lipoproteins. These are of interest due to their surface location and potential immunogenicity. Thorough examination revealed the conservation of these proteins among pathogenic Leptospira spp.; we mapped the distribution of T- and B-cell epitopes along their sequences and assessed the 3D structures of each protein. This information aided in selecting immunodominant regions for the development of a chimeric protein. Through gene synthesis, we successfully constructed a chimeric protein, which was subsequently expressed, purified, and characterized. Hamsters were immunized with the chimeric lipoprotein, formulated with adjuvants aluminum hydroxide, EMULSIGEN®-D, Sigma Adjuvant System®, and Montanide™ ISA206VG. Another group was vaccinated with an inactivated Escherichia coli bacterin expressing the chimeric protein. Following vaccination, hamsters were challenged with a virulent L. interrogans strain. Our evaluation of the humoral immune response revealed the production of IgG antibodies, detectable 28 days after the second dose, in contrast to pre-immune samples and control groups. This demonstrates the potential of the chimeric protein to elicit a robust humoral immune response; however, no protection against challenge was achieved. While this study provides valuable insights into the subject, further research is warranted to identify protective antigens that could be utilized in the development of a leptospirosis vaccine. KEY POINTS: • Several T- and B-cell epitopes were identified in all the three proteins. • Four different adjuvants were used in vaccine formulations. • Immunization stimulated significant levels of IgG2/3 in vaccinated animals.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Leptospirosis , Lipoproteins , Animals , Leptospirosis/prevention & control , Leptospirosis/immunology , Lipoproteins/immunology , Lipoproteins/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Cricetinae , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Adjuvants, Immunologic/administration & dosage , Immunoglobulin G/blood , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Leptospira interrogans/immunology , Leptospira interrogans/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Vaccination , Immunity, Humoral , Leptospira/immunology , Leptospira/genetics , Immunogenicity, Vaccine
7.
Front Immunol ; 15: 1356314, 2024.
Article in English | MEDLINE | ID: mdl-38840924

ABSTRACT

Introduction: Outbreaks of coronaviruses and especially the recent COVID-19 pandemic emphasize the importance of immunological research in this area to mitigate the effect of future incidents. Bioinformatics approaches are capable of providing multisided insights from virus sequencing data, although currently available software options are not entirely suitable for a specific task of mutation surveillance within immunogenic epitopes of SARS-CoV-2. Method: Here, we describe the development of a mutation tracker, EpitopeScan, a Python3 package with command line and graphical user interface tools facilitating the investigation of the mutation dynamics in SARS-CoV-2 epitopes via analysis of multiple-sequence alignments of genomes over time. We provide an application case by examining three Spike protein-derived immunodominant CD4+ T-cell epitopes restricted by HLA-DRB1*04:01, an allele strongly associated with susceptibility to rheumatoid arthritis (RA). Mutations in these peptides are relevant for immune monitoring of CD4+ T-cell responses against SARS-CoV-2 spike protein in patients with RA. The analysis focused on 2.3 million SARS-CoV-2 genomes sampled in England. Results: We detail cases of epitope conservation over time, partial loss of conservation, and complete divergence from the wild type following the emergence of the N969K Omicron-specific mutation in November 2021. The wild type and the mutated peptide represent potential candidates to monitor variant-specific CD4+ T-cell responses. EpitopeScan is available via GitHub repository https://github.com/Aleksandr-biochem/EpitopeScan.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , Mutation , SARS-CoV-2 , Software , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , COVID-19/immunology , COVID-19/genetics , COVID-19/virology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , Computational Biology/methods , Immunodominant Epitopes/immunology , Immunodominant Epitopes/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology
8.
Immunohorizons ; 8(6): 415-430, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38885041

ABSTRACT

The individual HLA-related susceptibility to emerging viral diseases such as COVID-19 underscores the importance of understanding how HLA polymorphism influences peptide presentation and T cell recognition. Similar to HLA-A*0101, which is one of the earliest identified HLA alleles among the human population, HLA-A*2601 possesses a similar characteristic for the binding peptide and acts as a prevalent allomorph in HLA-I. In this study, we found that, compared with HLA-A*0101, HLA-A*2601 individuals exhibit distinctive features for the T cell responses to SARS-CoV-2 and influenza virus after infection and/or vaccination. The heterogeneous T cell responses can be attributed to the distinct preference of HLA-A*2601 and HLA-A*0101 to T cell epitope motifs with negative-charged residues at the P1 and P3 positions, respectively. Furthermore, we determined the crystal structures of the HLA-A*2601 complexed to four peptides derived from SARS-CoV-2 and human papillomavirus, with one structure of HLA-A*0101 for comparison. The shallow pocket C of HLA-A*2601 results in the promiscuous presentation of peptides with "switchable" bulged conformations because of the secondary anchor in the median portion. Notably, the hydrogen bond network formed between the negative-charged P1 anchors and the HLA-A*2601-specific residues lead to a "closed" conformation and solid placement for the P1 secondary anchor accommodation in pocket A. This insight sheds light on the intricate relationship between HLA I allelic allomorphs, peptide binding, and the immune response and provides valuable implications for understanding disease susceptibility and potential vaccine design.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , SARS-CoV-2 , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , COVID-19/virology , HLA-A Antigens/immunology , HLA-A Antigens/genetics , HLA-A Antigens/metabolism , HLA-A Antigens/chemistry , Peptides/immunology , Peptides/chemistry , Alleles , HLA-A1 Antigen
9.
Cancer Immunol Immunother ; 73(8): 150, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832948

ABSTRACT

Hotspot driver mutations presented by human leukocyte antigens might be recognized by anti-tumor T cells. Based on their advantages of tumor-specificity and immunogenicity, neoantigens derived from hotspot mutations, such as PIK3CAH1047L, may serve as emerging targets for cancer immunotherapies. NetMHCpan V4.1 was utilized for predicting neoepitopes of PIK3CA hotspot mutation. Using in vitro stimulation, antigen-specific T cells targeting the HLA-A*11:01-restricted PIK3CA mutation were isolated from healthy donor-derived peripheral blood mononuclear cells. T cell receptors (TCRs) were cloned using single-cell PCR and sequencing. Their functionality was assessed through T cell activation markers, cytokine production and cytotoxic response to cancer cell lines pulsed with peptides or transduced genes of mutant PIK3CA. Immunogenic mutant antigens from PIK3CA and their corresponding CD8+ T cells were identified. These PIK3CA mutation-specific CD8+ T cells were subsequently enriched, and their TCRs were isolated. The TCR clones exhibited mutation-specific and HLA-restricted reactivity, demonstrating varying degrees of functional avidity. Identified TCR genes were transferred into CD8+ Jurkat cells and primary T cells deficient of endogenous TCRs. TCR-expressing cells demonstrated specific recognition and reactivity against the PIK3CAH1047L peptide presented by HLA-A*11:01-expressing K562 cells. Furthermore, mutation-specific TCR-T cells demonstrated an elevation in cytokine production and profound cytotoxic effects against HLA-A*11:01+ malignant cell lines harboring PIK3CAH1047L. Our data demonstrate the immunogenicity of an HLA-A*11:01-restricted PIK3CA hotspot mutation and its targeting therapeutic potential, together with promising candidates of TCR-T cell therapy.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Mutation , Neoplasms , Receptors, Antigen, T-Cell , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy/methods , HLA-A11 Antigen/genetics , HLA-A11 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Cell Line, Tumor
10.
Methods Mol Biol ; 2809: 215-235, 2024.
Article in English | MEDLINE | ID: mdl-38907900

ABSTRACT

MHC-II molecules are key mediators of antigen presentation in vertebrate species and bind to their ligands with high specificity. The very high polymorphism of MHC-II genes within species and the fast-evolving nature of these genes across species has resulted in tens of thousands of different alleles, with hundreds of new alleles being discovered yearly through large sequencing projects in different species. Here we describe how to use MixMHC2pred to predict the binding specificity of any MHC-II allele directly from its amino acid sequence. We then show how both MHC-II ligands and CD4+ T cell epitopes can be predicted in different species with our approach. MixMHC2pred is available at http://mixmhc2pred.gfellerlab.org/ .


Subject(s)
Alleles , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class II , Ligands , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Animals , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Protein Binding , Software , Computational Biology/methods , Antigen Presentation/genetics , Amino Acid Sequence
11.
Signal Transduct Target Ther ; 9(1): 160, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866784

ABSTRACT

The herd immunity against SARS-CoV-2 is continuously consolidated across the world during the ongoing pandemic. However, the potential function of the nonconserved epitopes in the reverse preexisting cross-reactivity induced by SARS-CoV-2 to other human coronaviruses is not well explored. In our research, we assessed T cell responses to both conserved and nonconserved peptides shared by SARS-CoV-2 and SARS-CoV, identifying cross-reactive CD8+ T cell epitopes using enzyme-linked immunospot and intracellular cytokine staining assays. Then, in vitro refolding and circular dichroism were performed to evaluate the thermal stability of the HLA/peptide complexes. Lastly, single-cell T cell receptor reservoir was analyzed based on tetramer staining. Here, we discovered that cross-reactive T cells targeting SARS-CoV were present in individuals who had recovered from COVID-19, and identified SARS-CoV-2 CD8+ T cell epitopes spanning the major structural antigens. T cell responses induced by the nonconserved peptides between SARS-CoV-2 and SARS-CoV were higher and played a dominant role in the cross-reactivity in COVID-19 convalescents. Cross-T cell reactivity was also observed within the identified series of CD8+ T cell epitopes. For representative immunodominant peptide pairs, although the HLA binding capacities for peptides from SARS-CoV-2 and SARS-CoV were similar, the TCR repertoires recognizing these peptides were distinct. Our results could provide beneficial information for the development of peptide-based universal vaccines against coronaviruses.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Cross Reactions , Epitopes, T-Lymphocyte , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , CD8-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/genetics , Female , Male , Adult , Pandemics , Middle Aged
12.
Methods Mol Biol ; 2809: 171-192, 2024.
Article in English | MEDLINE | ID: mdl-38907898

ABSTRACT

To optimize outcomes in solid organ transplantation, the HLA genes are regularly compared and matched between the donor and recipient. However, in many cases a transplant cannot be fully matched, due to widespread variation across populations and the hyperpolymorphism of HLA alleles. Mismatches of the HLA molecules in transplanted tissue can be recognized by immune cells of the recipient, leading to immune response and possibly organ rejection. These adverse outcomes are reduced by analysis using epitope-focused models that consider the immune relevance of the mismatched HLA.PIRCHE, an acronym for Predicted Indirectly ReCognizable HLA Epitopes, aims to categorize and quantify HLA mismatches in a patient-donor pair by predicting HLA-derived T cell epitopes. Specifically, the algorithm predicts and counts the HLA-derived peptides that can be presented by the host HLA, known as indirectly-presented T cell epitopes. Looking at the immune-relevant epitopes within HLA allows a more biologically relevant understanding of immune response, and provides an expanded donor pool for a more refined matching strategy compared with allele-level matching. This PIRCHE algorithm is available for analysis of single transplantations, as well as bulk analysis for population studies and statistical analysis for comparison of probability of organ availability and risk profiles.


Subject(s)
Algorithms , Epitopes, T-Lymphocyte , HLA Antigens , Histocompatibility Testing , Organ Transplantation , Humans , Organ Transplantation/adverse effects , Histocompatibility Testing/methods , HLA Antigens/genetics , HLA Antigens/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Graft Rejection/immunology , Graft Rejection/genetics , Alleles , Tissue Donors
13.
Toxins (Basel) ; 16(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38922165

ABSTRACT

Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.


Subject(s)
Phylogeny , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Pseudomonas Vaccines/immunology , Pseudomonas Vaccines/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics
14.
Vaccine ; 42(18): 3883-3898, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38777697

ABSTRACT

BACKGROUND: Community-acquired pneumonia often stems from the macrolide-resistant strain of Mycoplasma pneumoniae, yet no effective vaccine exists against it. METHODS: This study proposes a vaccine-immunoinformatics strategy for Mycoplasma pneumoniae and other pathogenic microbes. Specifically, dominant B and T cell epitopes of the Mycoplasma pneumoniae P30 adhesion protein were identified through immunoinformatics method. The vaccine sequence was then constructed by coupling with CTLA-4 extracellular region, a novel molecular adjuvant for antigen-presenting cells. Subsequently, the vaccine's physicochemical properties, antigenicity, and allergenicity were verified. Molecular dynamics modeling was employed to confirm interaction with TLR-2, TLR-4, B7-1, and B7-2. Finally, the vaccine underwent in silico cloning for expression. RESULTS: The vaccine exhibited both antigenicity and non-allergenicity. Molecular dynamics simulation, post-docking with TLR-2, TLR-4, B7-1, and B7-2, demonstrated stable interaction between the vaccine and these molecules. In silico cloning confirmed effective expression of the vaccine gene in insect baculovirus vectors. CONCLUSION: This vaccine-immunoinformatics approach holds promise for the development of vaccines against Mycoplasma pneumoniae and other pathogenic non-viral and non-bacterial microbes.


Subject(s)
Bacterial Vaccines , CTLA-4 Antigen , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Mycoplasma pneumoniae/immunology , Mycoplasma pneumoniae/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Humans , Computational Biology/methods , Pneumonia, Mycoplasma/prevention & control , Pneumonia, Mycoplasma/immunology , CTLA-4 Antigen/immunology , Molecular Dynamics Simulation , Molecular Docking Simulation , Toll-Like Receptor 2/immunology , Immunoinformatics
15.
Int Immunopharmacol ; 134: 112160, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710117

ABSTRACT

INTRODUCTION: Cholera is a severe gastrointestinal disease that manifests with rapid onset of diarrhea, vomiting, and high mortality rates. Due to its widespread occurrence in impoverished communities with poor water sanitation, there is an urgent demand for a cost-effective and highly efficient vaccine. Multi-epitope vaccines containing dominant immunological epitopes and adjuvant compounds have demonstrated potential in boosting the immune response. MATERIAL AND METHODS: B and T epitopes of OMPU, OMPW, TCPA, CTXA, and CTXB proteins were predicted using bioinformatics methods. Subsequently, highly antigenic multi-epitopes that are non-allergenic and non-toxic were synthesized. These multi-epitopes were then cloned into the pCOMB phagemid. A plasmid M13KO7ΔpIII containing all helper phage proteins except pIII was created to produce the recombinant phage. Female Balb/c mice were divided into three groups and immunized accordingly. The mice received the helper phage, recombinant phage or PBS via gavage feeding thrice within two weeks. Serum samples were collected before and after immunization for the ELISA test as well as evaluating immune system induction through ELISpot testing of spleen lymphocytes. RESULTS: The titer of the recombinant phage was determined to be 1011 PFU/ml. The presence of the recombinant phage was confirmed through differences in optical density between sample and control groups in the ELISA phage technique, as well as by observing transduction activity, which demonstrated successful production of a recombinant phage displaying the Vibrio multi-epitope on M13 phage pIII. ELISA results revealed significant differences in phage antibodies before and after inoculation, particularly notable in the negative control mice. Mice treated with multi-epitope phages exhibited antibodies against Vibrio cholerae lysate. Additionally, ELISpot results indicated activation of cellular immunity in mice receiving both Vibrio and helper phage. CONCLUSION: This study emphasizes the potential of multi-epitope on phage to enhance both cellular and humoral immunity in mice, demonstrating how phages can be used as adjuvants to stimulate mucosal immunity and act as promising candidates for oral vaccination.


Subject(s)
Antibodies, Bacterial , Cholera Vaccines , Cholera , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Vibrio cholerae , Animals , Vibrio cholerae/immunology , Female , Cholera/prevention & control , Cholera/immunology , Cholera Vaccines/immunology , Cholera Vaccines/administration & dosage , Administration, Oral , Mice , Antibodies, Bacterial/blood , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Immunization , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Humans , Bacteriophages/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics
16.
Cell Rep Med ; 5(6): 101583, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38781962

ABSTRACT

Little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS2) vaccine breakthrough infections (BTIs) on the magnitude and breadth of the T cell repertoire after exposure to different variants. We studied samples from individuals who experienced symptomatic BTIs during Delta or Omicron waves. In the pre-BTI samples, 30% of the donors exhibited substantial immune memory against non-S (spike) SARS2 antigens, consistent with previous undiagnosed asymptomatic SARS2 infections. Following symptomatic BTI, we observed (1) enhanced S-specific CD4 and CD8 T cell responses in donors without previous asymptomatic infection, (2) expansion of CD4 and CD8 T cell responses to non-S targets (M, N, and nsps) independent of SARS2 variant, and (3) generation of novel epitopes recognizing variant-specific mutations. These variant-specific T cell responses accounted for 9%-15% of the total epitope repertoire. Overall, BTIs boost vaccine-induced immune responses by increasing the magnitude and by broadening the repertoire of T cell antigens and epitopes recognized.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , Epitopes, T-Lymphocyte , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Immunologic Memory/immunology , Female , Adult , Male , Mutation , Middle Aged , T-Lymphocytes/immunology , Breakthrough Infections
17.
Am J Hum Genet ; 111(6): 1018-1034, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749427

ABSTRACT

Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.


Subject(s)
Hepatitis B virus , Mutation , Organic Anion Transporters, Sodium-Dependent , Symporters , Humans , Hepatitis B virus/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/genetics , Symporters/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/genetics , Genome, Viral , Hepatitis B Surface Antigens/genetics , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Genomics/methods , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism
18.
BMC Infect Dis ; 24(1): 476, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714948

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.


Subject(s)
Epitopes, T-Lymphocyte , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Vaccines, DNA , Viral Vaccines , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Phlebovirus/immunology , Phlebovirus/genetics , Severe Fever with Thrombocytopenia Syndrome/prevention & control , Severe Fever with Thrombocytopenia Syndrome/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics , Humans , Computer-Aided Design , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Animals , Computational Biology
19.
BMC Genomics ; 25(1): 507, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778248

ABSTRACT

BACKGROUND: Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS: Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS: From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION: The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.


Subject(s)
Oncogene Proteins, Viral , Phylogeny , China , Humans , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Female , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Alphapapillomavirus/genetics , Alphapapillomavirus/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes/immunology , Epitopes/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Amino Acid Sequence
20.
Front Immunol ; 15: 1357731, 2024.
Article in English | MEDLINE | ID: mdl-38784379

ABSTRACT

Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.


Subject(s)
COVID-19 , Computational Biology , Epitopes, T-Lymphocyte , SARS-CoV-2 , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , COVID-19/virology , United States/epidemiology , Computational Biology/methods , CD8-Positive T-Lymphocytes/immunology , HLA-B Antigens/genetics , HLA-B Antigens/immunology , Alleles , HLA-A Antigens/genetics , HLA-A Antigens/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL