Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.995
Filter
2.
J Clin Immunol ; 44(6): 142, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847943

ABSTRACT

PURPOSE: Common Variable Immunodeficiency (CVID) is characterized by hypogammaglobulinemia and failure of specific antibody production due to B-cell defects. However, studies have documented various T-cell abnormalities, potentially linked to viral complications. The frequency of Cytomegalovirus (CMV) replication in CVID cohorts is poorly studied. To address this gap in knowledge, we set up an observational study with the objectives of identifying CVID patients with active viraemia (CMV, Epstein-Barr virus (EBV)), evaluating potential correlations with immunophenotypic characteristics, clinical outcome, and the dynamic progression of clinical phenotypes over time. METHODS: 31 CVID patients were retrospectively analysed according to viraemia, clinical and immunologic characteristics. 21 patients with non CVID humoral immunodeficiency were also evaluated as control. RESULTS: Active viral replication of CMV and/or EBV was observed in 25% of all patients. CMV replication was detected only in CVID patients (16%). CVID patients with active viral replication showed reduced HLA-DR+ NK counts when compared with CMV-DNA negative CVID patients. Viraemic patients had lower counts of LIN-DNAMbright and LIN-CD16+ inflammatory lymphoid precursors which correlated with NK-cell subsets. Analysis of the dynamic progression of CVID clinical phenotypes over time, showed that the initial infectious phenotype progressed to complicated phenotypes with time. All CMV viraemic patients had complicated disease. CONCLUSION: Taken together, an impaired production of inflammatory precursors and NK activation is present in CVID patients with active viraemia. Since "Complicated" CVID occurs as a function of disease duration, there is need for an accurate evaluation of this aspect to improve classification and clinical management of CVID patients.


Subject(s)
Common Variable Immunodeficiency , Cytomegalovirus Infections , Cytomegalovirus , Herpesvirus 4, Human , Virus Replication , Humans , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/complications , Male , Female , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Cytomegalovirus/physiology , Adult , Middle Aged , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/immunology , Retrospective Studies , Killer Cells, Natural/immunology , Young Adult , Viremia/immunology , Epstein-Barr Virus Infections/immunology , Immunophenotyping , Aged , Adolescent
3.
J Infect Public Health ; 17(7): 102462, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824738

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder influenced by age, sex, genetic factors, immune alterations, and infections. Multiple lines of evidence suggest that changes in antibody response are linked to AD pathology. METHODS: To elucidate the mechanisms underlying AD development, we investigated antibodies that target autoimmune epitopes using high-resolution epitope microarrays. Our study compared two groups: individuals with AD (n = 19) and non-demented (ND) controls (n = 19). To validate the results, we measured antibody levels in plasma samples from AD patients (n = 96), mild cognitive impairment (MCI; n = 91), and ND controls (n = 97). To further explore the invlovement of EBV, we performed epitope masking immunofluorescence microscopy analysis and tests to induce lytic replication using the B95-8 cell line. RESULTS: In this study, we analyzed high-resolution epitope-specific serum antibody levels in AD, revealing significant disparities in antibodies targeting multiple epitopes between the AD and control groups. Particularly noteworthy was the significant down-regulation of antibody (anti-DG#29) targeting an epitope of Epstein-Barr virus nuclear antigen 1 (EBNA1). This down-regulation increased AD risk in female patients (odds ratio up to 6.6), but not in male patients. Our investigation further revealed that the down-regulation of the antibody (anti-DG#29) is associated with EBV reactivation in AD, as indicated by the analysis of EBV VCA IgG or IgM levels. Additionally, our data demonstrated that the epitope region on EBNA1 for the antibody is hidden during the EBV lytic reactivation of B95-8 cells. CONCLUSION: Our findings suggest a potential relationship of EBV in the development of AD in female. Moreover, we propose that antibodies targeting the epitope (DG#29) of EBNA1 could serve as valuable indicators of AD risk in female.


Subject(s)
Alzheimer Disease , Antibodies, Viral , Epitopes , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans , Alzheimer Disease/immunology , Alzheimer Disease/virology , Alzheimer Disease/blood , Female , Male , Epstein-Barr Virus Nuclear Antigens/immunology , Aged , Antibodies, Viral/blood , Epitopes/immunology , Herpesvirus 4, Human/immunology , Cognitive Dysfunction/immunology , Aged, 80 and over , Epstein-Barr Virus Infections/immunology , Middle Aged
4.
Cells ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891094

ABSTRACT

Primary Epstein-Barr virus (EBV) infection which can manifest as infectious mononucleosis (IM) is commonly acquired during childhood. EBV primarily invades B cells leading to a lytic reaction; the control of the infection is handled by natural killer and T cells in immunocompetent individuals. The infection has a wide spectrum of clinical findings and can lead to serious complications in patients with certain underlying immunological dysfunctions. We retrospectively investigated peripheral white blood cell populations' surface marker characteristics in IM using a comprehensive flow cytometry marker panel. Twenty-one cases of IM and seventeen EBV-seropositive cases without IM serving as controls were included. We observed novel alterations in lymphocyte, neutrophil, and monocyte populations. In addition to increased activated cytotoxic T cells and low B cells, we demonstrated high T-large granular lymphocyte (T-LGL) populations in IM cases. Furthermore, despite T cells' increased HLA-DR expression, another activation marker, CD11b, was lower in T-LGL populations. Monocytes showed increased CD16 expression; CD64 was higher in neutrophils. Our findings point to monocyte and neutrophil activation which may account for acute clinical features and may contribute to the understanding of IM immunobiology. Furthermore, they may serve as a useful tool in investigating inherited and post-transplant conditions characterized by deficiencies in controlling EBV infection.


Subject(s)
Epstein-Barr Virus Infections , Flow Cytometry , Leukocytes , Humans , Flow Cytometry/methods , Male , Female , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/virology , Child , Leukocytes/immunology , Herpesvirus 4, Human/immunology , Adolescent , Adult , Infectious Mononucleosis/immunology , Infectious Mononucleosis/blood , Infectious Mononucleosis/virology , Monocytes/immunology , Monocytes/virology , Monocytes/metabolism , Child, Preschool , Neutrophils/immunology , Acute Disease , Retrospective Studies , Young Adult
5.
PLoS Pathog ; 20(6): e1012177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843296

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.


Subject(s)
Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/immunology , Female , Male , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Adult , Antibodies, Viral/immunology , Middle Aged , Cross Reactions/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , T-Lymphocytes/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/virology , Antigens, Viral/immunology , Viral Load , Infectious Mononucleosis/immunology , Infectious Mononucleosis/virology , Epstein-Barr Virus Nuclear Antigens/immunology , Immunoglobulin G/immunology
6.
Nat Commun ; 15(1): 4841, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844783

ABSTRACT

Kaposi sarcoma associated herpesvirus (KSHV) is associated with around 1% of all human tumors, including the B cell malignancy primary effusion lymphoma (PEL), in which co-infection with the Epstein Barr virus (EBV) can almost always be found in malignant cells. Here, we demonstrate that KSHV/EBV co-infection of mice with reconstituted human immune systems (humanized mice) leads to IgM responses against both latent and lytic KSHV antigens, and expansion of central and effector memory CD4+ and CD8+ T cells. Among these, KSHV/EBV dual-infection allows for the priming of CD8+ T cells that are specific for the lytic KSHV antigen K6 and able to kill KSHV/EBV infected B cells. This suggests that K6 may represent a vaccine antigen for the control of KSHV and its associated pathologies in high seroprevalence regions, such as Sub-Saharan Africa.


Subject(s)
B-Lymphocytes , CD8-Positive T-Lymphocytes , Herpesvirus 8, Human , Animals , Herpesvirus 8, Human/immunology , Humans , B-Lymphocytes/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Coinfection/immunology , Coinfection/virology , CD4-Positive T-Lymphocytes/immunology , Herpesvirus 4, Human/immunology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Immunoglobulin M/immunology , Antigens, Viral/immunology , Mice, SCID , Lymphoma, Primary Effusion/immunology , Lymphoma, Primary Effusion/virology , Antibodies, Viral/immunology
7.
Nat Commun ; 15(1): 5310, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906867

ABSTRACT

Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is closely associated with various malignancies. Considering the complex life cycle of EBV, developing vaccines targeting key entry glycoproteins to elicit robust and durable adaptive immune responses may provide better protection. EBV gHgL-, gB- and gp42-specific antibodies in healthy EBV carriers contributed to sera neutralizing abilities in vitro, indicating that they are potential antigen candidates. To enhance the immunogenicity of these antigens, we formulate three nanovaccines by co-delivering molecular adjuvants (CpG and MPLA) and antigens (gHgL, gB or gp42). These nanovaccines induce robust humoral and cellular responses through efficient activation of dendritic cells and germinal center response. Importantly, these nanovaccines generate high levels of neutralizing antibodies recognizing vulnerable sites of all three antigens. IgGs induced by a cocktail vaccine containing three nanovaccines confer superior protection from lethal EBV challenge in female humanized mice compared to IgG elicited by individual NP-gHgL, NP-gB and NP-gp42. Importantly, serum antibodies elicited by cocktail nanovaccine immunization confer durable protection against EBV-associated lymphoma. Overall, the cocktail nanovaccine shows robust immunogenicity and is a promising candidate for further clinical trials.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Glycoproteins , Herpesvirus 4, Human , Animals , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/virology , Antibodies, Neutralizing/immunology , Herpesvirus 4, Human/immunology , Humans , Female , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Glycoproteins/immunology , Glycoproteins/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Adjuvants, Immunologic/administration & dosage , Lymphoma/immunology , Lymphoma/virology , Nanovaccines
8.
J Clin Immunol ; 44(7): 155, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922539

ABSTRACT

PURPOSE: Moesin (MSN) deficiency is a recently reported combined immunodeficiency, and few cases have been reported to date. We describe a Chinese patient with a novel mutation causing MSN deficiency and a novel phenotype. METHODS: Clinical and immunological data were collected. Whole-exome sequencing was performed to identify gene mutations. MSN protein expression and T cell proliferation and activation were determined by flow cytometry. Cell migration was confirmed with a Transwell assay. Autoantibody levels were analyzed using antigen microarrays. RESULTS: The patient was a 10-year-old boy who presented with recurrent fever, oral ulcers and dermatomyositis-like symptoms, such as periorbital edema, facial swelling, elevated creatine kinase levels, and abnormal electromyography and muscle biopsy results. Epstein-Barr virus (EBV) DNA was detected in the serum, cells and tissues of this patient. He further developed nasal-type NK/T-cell lymphoma. A novel hemizygous mutation (c.68 A > G, p.N23S) in the MSN gene was found. The immunological phenotype of this patient included persistent decreases in T and B lymphocyte counts but normal immunoglobulin IgG levels. The patient had attenuated MSN protein expression and impaired T-cell proliferation and migration. The proportions of Tfh cells and CD21low B cells in the patient were higher than those in the controls. Moreover, 82 IgG and 102 IgM autoantibodies were more abundant in the patient than in the healthy controls. CONCLUSIONS: The novel mutation N23S is pathogenic and leads to a severe clinical phenotype. EBV infection, tumor, and dermatomyositis-like autoimmune symptoms may be associated with MSN deficiency, further expanding the understanding of the disease.


Subject(s)
Dermatomyositis , Epstein-Barr Virus Infections , Microfilament Proteins , Mutation , Humans , Male , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Dermatomyositis/genetics , Dermatomyositis/diagnosis , Dermatomyositis/immunology , Child , Microfilament Proteins/genetics , Mutation/genetics , Herpesvirus 4, Human , Exome Sequencing , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Autoantibodies/blood , Autoantibodies/immunology , Phenotype , T-Lymphocytes/immunology
9.
J Immunother Cancer ; 12(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886114

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) is a double-stranded DNA oncogenic virus. Several types of solid tumors, such as nasopharyngeal carcinoma, EBV-associated gastric carcinoma, and lymphoepithelioma-like carcinoma of the lung, have been linked to EBV infection. Currently, several TCR-T-cell therapies for EBV-associated tumors are in clinical trials, but due to the suppressive immune microenvironment of solid tumors, the clinical application of TCR-T-cell therapy for EBV-associated solid tumors is limited. Figuring out the mechanism by which EBV participates in the formation of the tumor immunosuppressive microenvironment will help T cells or TCR-T cells break through the limitation and exert stronger antitumor potential. METHODS: Flow cytometry was used for analyzing macrophage differentiation phenotypes induced by EBV-infected and EBV-uninfected tumors, as well as the function of T cells co-cultured with these macrophages. Xenograft model in mice was used to explore the effects of M2 macrophages, TCR-T cells, and matrix metalloprotein 9 (MMP9) inhibitors on the growth of EBV-infected tumors. RESULTS: EBV-positive tumors exhibited an exhaustion profile of T cells, despite the presence of a large T-cell infiltration. EBV-infected tumors recruited a large number of mononuclear macrophages with CCL5 and induced CD163+M2 macrophages polarization through the secretion of CSF1 and the promotion of autocrine IL10 production by mononuclear macrophages. Massive secretion of MMP9 by this group of CD163+M2 macrophages induced by EBV infection was an important factor contributing to T-cell exhaustion and TCR-T-cell therapy resistance in EBV-positive tumors, and the use of MMP9 inhibitors improved the function of T cells cocultured with M2 macrophages. Finally, the combination of an MMP9 inhibitor with TCR-T cells targeting EBV-positive tumors significantly inhibited the growth of xenografts in mice. CONCLUSIONS: MMP9 inhibitors improve TCR-T cell function suppressed by EBV-induced M2 macrophages. TCR-T-cell therapy combined with MMP9 inhibitors was an effective therapeutic strategy for EBV-positive solid tumors.


Subject(s)
Antigens, CD , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Macrophages , Matrix Metalloproteinase 9 , Receptors, Cell Surface , Animals , Mice , Humans , Matrix Metalloproteinase 9/metabolism , Macrophages/immunology , Macrophages/metabolism , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/virology , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Receptors, Antigen, T-Cell/metabolism , Tumor Microenvironment , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunotherapy, Adoptive/methods
10.
Cell Rep Med ; 5(6): 101587, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38781964

ABSTRACT

Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.


Subject(s)
Antibodies, Neutralizing , Herpesvirus 4, Human , Lymphocryptovirus , Macaca mulatta , Nanoparticles , Vaccination , Animals , Nanoparticles/chemistry , Herpesvirus 4, Human/immunology , Lymphocryptovirus/immunology , Vaccination/methods , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/virology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Humans , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/virology
11.
Mol Immunol ; 171: 22-35, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749236

ABSTRACT

OBJECTIVES: Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS: Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS: Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION: This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Interferon-alpha , Lupus Erythematosus, Systemic , Mice, Inbred MRL lpr , Proto-Oncogene Proteins c-maf , T-Lymphocytes, Regulatory , Th17 Cells , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/virology , Th17 Cells/immunology , Humans , Animals , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , T-Lymphocytes, Regulatory/immunology , Mice , Interferon-alpha/immunology , Interferon-alpha/metabolism , Female , Adult , Herpesvirus 4, Human/immunology , Proto-Oncogene Proteins c-maf/immunology , Proto-Oncogene Proteins c-maf/genetics , Male , Cell Differentiation/immunology , Disease Progression , Middle Aged , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/immunology , Young Adult
12.
Nat Microbiol ; 9(6): 1540-1554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806670

ABSTRACT

Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV. SLCLs derived from MS patient B cells during active disease had higher EBV lytic gene expression than SLCLs from MS patients with stable disease or HCs. Host gene expression analysis revealed activation of pathways associated with hypercytokinemia and interferon signalling in MS SLCLs and upregulation of forkhead box protein 1 (FOXP1), which contributes to EBV lytic gene expression. We demonstrate that antiviral approaches targeting EBV replication decreased cytokine production and autologous CD4+ T cell responses in this ex vivo model. These data suggest that dysregulation of intrinsic B cell control of EBV gene expression drives a pro-inflammatory, pathogenic B cell phenotype that can be attenuated by suppressing EBV lytic gene expression.


Subject(s)
B-Lymphocytes , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Herpesvirus 4, Human/genetics , Multiple Sclerosis/virology , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Cytokines/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Transcriptome , Virus Replication , Gene Expression Regulation, Viral , Cell Line , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Gene Expression Profiling , Adult , Female , Male
13.
Biochem Pharmacol ; 225: 116270, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734316

ABSTRACT

Epstein-Barr Virus (EBV), is a ubiquitous γ-Herpesvirus that infects over 95% of the human population and can establish a life-long infection without causing any clinical symptoms in healthy individuals by residing in memory B-cells. Primary infection occurs in childhood and is mostly asymptomatic, however in some young adults it can result in infectious mononucleosis (IM). In immunocompromised individuals however, EBV infection has been associated with many different malignancies. Since EBV can infect both epithelial and B-cells and very rarely NK cells and T-cells, it is associated with both epithelial cancers like nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC), with lymphomas including Burkitt Lymphoma (BL) or Post-transplant Lymphoproliferative Disorder (PTLD) and rarely with NK/T-cell lymphomas. Currently there are no approved antivirals active in PTLD nor in any other malignancy. Moreover, lytic phase disease almost never requires antiviral treatment. Although many novel therapies against EBV have been described, the management and/or prevention of EBV primary infections or reactivations remains difficult. In this review, we discuss EBV infection, therapies targeting EBV in both lytic and latent state with novel therapeutics developed that show anti-EBV activity as well as EBV-associated malignancies both, epithelial and lymphoproliferative malignancies and emerging therapies targeting the EBV-infected cells.


Subject(s)
Antiviral Agents , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Immunocompromised Host , Humans , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/drug therapy , Herpesvirus 4, Human/immunology , Antiviral Agents/therapeutic use , Animals
14.
Cell Rep Med ; 5(5): 101573, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776874

ABSTRACT

Epstein-Barr virus (EBV) is linked to various malignancies and autoimmune diseases, posing a significant global health challenge due to the lack of specific treatments or vaccines. Despite its crucial role in EBV infection in B cells, the mechanisms of the glycoprotein gp42 remain elusive. In this study, we construct an antibody phage library from 100 EBV-positive individuals, leading to the identification of two human monoclonal antibodies, 2B7 and 2C1. These antibodies effectively neutralize EBV infection in vitro and in vivo while preserving gp42's interaction with the human leukocyte antigen class II (HLA-II) receptor. Structural analysis unveils their distinct binding epitopes on gp42, different from the HLA-II binding site. Furthermore, both 2B7 and 2C1 demonstrate potent neutralization of EBV infection in HLA-II-positive epithelial cells, expanding our understanding of gp42's role. Overall, this study introduces two human anti-gp42 antibodies with potential implications for developing EBV vaccines targeting gp42 epitopes, addressing a critical gap in EBV research.


Subject(s)
Antibodies, Monoclonal , Epitopes , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Antibodies, Monoclonal/immunology , Epitopes/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Mice , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Viral Proteins/immunology , B-Lymphocytes/immunology
15.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793551

ABSTRACT

Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.


Subject(s)
Epstein-Barr Virus Infections , HLA-A2 Antigen , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Peptides , Humans , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/genetics , Peptides/immunology , Peptides/chemistry , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/virology , HLA-A11 Antigen/immunology , HLA-A11 Antigen/genetics , Proteomics/methods , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , China , Tandem Mass Spectrometry , Epitopes, T-Lymphocyte/immunology , Cell Line, Tumor
16.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747912

ABSTRACT

BACKGROUND: The goal was to study the difference of virological, immunologic, and inflammatory indicators between Epstein-Barr associated infectious mononucleosis (EBV-IM) and EBV associated hemophagocytic lymphohistiocytosis (EBV-HLH) and to explore the evaluation indicators for monitoring the therapeutic efficacy of EBV-HLH. METHODS: Twenty children with EBV-IM (IM group) and 10 children with EBV-HLH (HLH group) were selected. Virology indicators were detected; the absolute count of lymphocyte, and lymphocyte subsets were detected; the levels of immunoglobulin and ferritin were assayed. RESULTS: Compared to the IM group, the HLH group showed a decrease in EBV-specific VCA-IgM antibody levels (U = 29.0, p = 0.006) and an increase in EBV-specific NA-IgG antibody levels (U = 17.0, p = 0.001), while there was no significant difference in EB-DNA loads (t = 0.417, p = 0.680). The counts of lymphocytes, and various lymphocyte subsets in the HLH group were lower than those in the IM group. Inflammatory markers in the HLH group were significantly higher than those in IM group. Dynamic monitoring of virological, immunological, and inflammatory indicators in HLH patients during treatment showed that EBV DNA gradually decreased in patients with good prognosis. Inflammatory indicators significantly decreased and returned to normal, lymphocyte count significantly increased and returned to normal during treatment. However, patients with poor prognosis showed rebound increase in EBV DNA and inflammatory indicators in the later stage of treatment, while lymphocyte count further decreased with the recurrence of the disease. CONCLUSIONS: Exhausted and damaged immune function in host by persistent stimulation of EB viral antigen is one of the main pathogeneses of EB-HLH. Lymphocyte count and serum ferritin level are effective indicators to monitor the therapeutic efficacy during the treatment to HLH.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Infectious Mononucleosis , Lymphohistiocytosis, Hemophagocytic , Humans , Child , Male , Female , Child, Preschool , Herpesvirus 4, Human/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/virology , Lymphohistiocytosis, Hemophagocytic/blood , Infectious Mononucleosis/immunology , Infectious Mononucleosis/blood , Infectious Mononucleosis/virology , Infectious Mononucleosis/diagnosis , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/blood , DNA, Viral/blood , Inflammation/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Load , Ferritins/blood , Lymphocyte Count , Adolescent , Infant , Lymphocyte Subsets/immunology
17.
Exp Clin Transplant ; 22(4): 307-310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38742322

ABSTRACT

Posttransplant lymphoproliferative disorder is a life-threatening complication after solid-organ transplants. In adults, recipients of heart transplants have the highest risk, whereas renal transplant recipients have the lowest risk among all solid-organ transplants. The most common site for posttransplant lymphoproliferative disorders are gastrointestinal tract followed by the graft itself. Airway involvement in posttransplant lymphoproliferative disorder is rarely encountered. We report a case of a 26-year-old renal allograft recipient who presented to the emergency room with airway obstruction necessitating an emergency tracheostomy. Imaging revealed a left tonsillar mass extending into the nasopharynx and retropharyngeal space causing complete oropharyngeal occlusion. Endoscopic biopsy from nasopharyngeal mass showed a diffuse large B-cell lymphoma and was Ebstein-Barr virus positive. Reduction in immunosuppression and treatment with posttransplant lymphoproliferative disorder-1 risk-stratified approach resulted in complete remission.


Subject(s)
Airway Obstruction , Immunosuppressive Agents , Kidney Transplantation , Lymphoma, Large B-Cell, Diffuse , Humans , Kidney Transplantation/adverse effects , Adult , Treatment Outcome , Airway Obstruction/etiology , Airway Obstruction/virology , Airway Obstruction/diagnosis , Immunosuppressive Agents/adverse effects , Male , Lymphoma, Large B-Cell, Diffuse/virology , Acute Disease , Biopsy , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Tracheostomy/adverse effects , Remission Induction , Immunocompromised Host , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/surgery , Nasopharyngeal Neoplasms/diagnosis
19.
Immunology ; 172(4): 627-640, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38736328

ABSTRACT

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.


Subject(s)
Antigens, CD1d , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Immunotherapy, Adoptive , Lymphoma, B-Cell , Natural Killer T-Cells , Antigens, CD1d/metabolism , Antigens, CD1d/immunology , Humans , Animals , Natural Killer T-Cells/immunology , Immunotherapy, Adoptive/methods , Herpesvirus 4, Human/immunology , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Mice , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/therapy , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mice, SCID , Mice, Inbred NOD
20.
Biochem Biophys Res Commun ; 715: 149984, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38688056

ABSTRACT

Epstein-Barr virus (EBV) and other viral infections are possible triggers of autoimmune diseases, such as rheumatoid arthritis (RA). To analyze the causative relationship between EBV infections and RA development, we performed experiment on humanized NOD/Shi-scid/IL-2RγCnull (hu-NOG) mice reconstituted human immune system components and infected with EBV. In EBV-infected hu-NOG mice, breakdown of knee joint bones was found to be accompanied by the accumulation of receptor activator of nuclear factor-κB (NF-κB) (RANK) ligand (RANKL), a key factor in osteoclastogenesis, human CD19 and EBV-encoded small RNA (EBER)-bearing cells. Accumulation of these cells expanded in the bone marrow adjacent to the bone breakage, showing a histological feature like to that in bone marrow edema. On the other hand, human RANK/human matrix metalloprotease-9 (MMP-9) positive, osteoclast-like cells were found at broken bone portion of EBV-infected mouse knee joint. In addition, human macrophage-colony stimulating factor (M-CSF), an essential factor in development of osteoclasts, evidently expressed in spleen and bone marrow of EBV-infected humanized mice. Furthermore, RANKL and M-CSF were identified at certain period of EBV-transformed B lymphoblastoid cells (BLBCs) derived from umbilical cord blood lymphocytes. Co-culturing bone marrow cells of hu-NOG mice with EBV-transformed BLBCs resulted in the induction of a multinucleated cell population positive for tartrate-resistant acid phosphatase and human MMP-9 which indicating human osteoclast-like cells. These findings suggest that EBV-infected BLBCs induce human aberrant osteoclastogenesis, which cause erosive arthritis in the joints.


Subject(s)
Epstein-Barr Virus Infections , Mice, Inbred NOD , Mice, SCID , Osteoclasts , Animals , Mice , Humans , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoclasts/virology , Osteoclasts/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/pathology , RANK Ligand/metabolism , Herpesvirus 4, Human/immunology , Osteogenesis , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology , Arthritis, Rheumatoid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...