Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.000
Filter
1.
Toxicon ; 249: 108036, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059561

ABSTRACT

Mexico has the highest diversity of snake species in the world, following Australia when considering just venomous snakes. Specifically, in Sonora, the second largest state in the country, more than 15 highly venomous species occur, including the northern black-tailed rattlesnake (Crotalus molossus). This specie's venom has not been as thoroughly researched in contrast with other Mexican vipers, nevertheless some studies report its biological activity and even pharmacological potential with antibacterial and cytotoxic activity. In this study we identified the main protein components from a pool of C. molossus venom through a gel-free proteomics approach, reporting ∼140 proteins belonging to the SVMP (38.76%), PLA2 (28.75%), CTL (11.93%), SVSP (6.03%) and LAAO (5.67%) toxin families. To study its biological activities, we evaluated its hemolytic, antibacterial, and cytotoxic activity in red blood cells, Gram positive and negative bacteria and a luminal A breast carcinoma cell line (T47D), respectively, in vitro. We report that concentrations <100 µg/mL are potentially not hemolytic and reduced the bacteria viability of E. coli and S. aureus with an IC50 of 10.27 and 11.51 µg/mL, respectively. Finally, we determined the C. molossus venom as cytotoxic against the T47D breast carcinoma cell line, with an IC50 of 1.55 µg/mL. We suggest that the evaluated cytotoxicity was due to a high abundance of SVMPs and PLA2s, since it's been reported that they affect the extracellular matrix and membrane permeation. This may provide a useful tool for pharmaceutical screening in the future.


Subject(s)
Anti-Bacterial Agents , Crotalid Venoms , Crotalus , Escherichia coli , Staphylococcus aureus , Animals , Crotalid Venoms/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Cell Line, Tumor , Humans , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Breast Neoplasms/drug therapy , Hemolysis/drug effects , Female , Microbial Sensitivity Tests , Erythrocytes/drug effects , Venomous Snakes
2.
Phytomedicine ; 131: 155796, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852475

ABSTRACT

BACKGROUND AND PURPOSE: Leishmaniasis is a globally prevalent vector-borne disease caused by parasites of the genus Leishmania. The available chemotherapeutic drugs present problems related to efficacy, emergence of parasite resistance, toxicity and high cost, justifying the search for new drugs. Several classes of compounds have demonstrated activity against Leishmania, including icetexane-type diterpenes, previously isolated from Salvia and other Lamiaceae genera. Thus, in this study, compounds of Salvia procurrens were investigated for their leishmanicidal and immunomodulatory activities. METHODS: The exudate of S. procurrens was obtained by rapidly dipping the aerial parts in dichloromethane. The compounds were isolated by column and centrifugal planar chromatography over silica gel. The effects on L. amazonensis growth, survival, membrane integrity, reactive oxygen species (ROS) generation, mitochondrial membrane potential and cytotoxicity of the compounds towards human erythrocytes, peripheral blood mononuclear cells and macrophages were evaluated. The effects on intracellular amastigote forms, nitric oxide (NO) and TNF-α production were also investigated. RESULTS: The exudate from the leaves afforded the novel icetexane 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2), fruticulin A (3) and demethylfruticulin A (4). The compounds (1-4) were tested against promastigotes of L. amazonensis and showed an effective inhibition of the parasite survival (IC50 = 4.08-16.26 µM). In addition, they also induced mitochondrial ROS production, plasma membrane permeability and mitochondrial dysfunction in treated parasites, and presented low cytotoxicity against macrophages. Furthermore, all diterpenes tested reduced the number of parasites inside macrophages, by mechanisms involving TNF-α, NO and ROS. CONCLUSION: The results suggest the potential of 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2),fruticulin A (3) and demethylfruticulin A (4) as candidates for use in further studies on the design of anti-leishmanial drugs.


Subject(s)
Leishmania , Nitric Oxide , Reactive Oxygen Species , Salvia , Tumor Necrosis Factor-alpha , Salvia/chemistry , Reactive Oxygen Species/metabolism , Humans , Leishmania/drug effects , Animals , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Mice , Macrophages/drug effects , Antiprotozoal Agents/pharmacology , Membrane Potential, Mitochondrial/drug effects , Plant Leaves/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Leukocytes, Mononuclear/drug effects , Erythrocytes/drug effects , Erythrocytes/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice, Inbred BALB C , RAW 264.7 Cells
3.
Curr Pharm Des ; 30(28): 2222-2228, 2024.
Article in English | MEDLINE | ID: mdl-38874045

ABSTRACT

BACKGROUND: Cannabidiol (CBD) is the principal non-hallucinogenic compound of Cannabis plants with high clinical interest because CBD has been described as having anti-inflammatory, analgesic and anticonvulsant properties. CBD is considered a multitarget compound as it can interact with a wide range of targets, explaining their multiplicity of effects. Some clinical studies have indicated certain side effects of CBD, including somnolence, anemia and diarrhea, while the elevation of transaminases is considered as an exclusion criterion from the trial. Since the red blood cells (RBCs) are a source of transaminase, we assayed in vitro effect on RBCs stability. METHODS: We performed in vitro experiments with RBCs obtained from human peripheral blood with normal hematological parameters exposed to CBD in the range of therapeutic uses. We evaluated RBCs morphological changes, membrane fragility and hemoglobin release as a reflection of hemolysis. RESULTS: CBD induced an increase in the hemoglobin release (3.27 µg/106 RBC), without altered RBC osmotic fragility. When RBCs suspensions were incubated with CBD the initial number of elements (RBCs + vesicles) was increased up to 65% after 20 min and returned to basal level after 40 min of incubation. In the first 20 min, the accounts of elements were enriched in the smaller vesicles that disappeared after the remaining 20 minutes. CONCLUSION: These results suggest that CBD affects the indemnity of erythrocytes in vitro, inducing the formation of hemolytic vesicles that can provide the basis for the development of anemia, transaminase elevation and underlying tissular iron overload in patients chronically treated with CBD.


Subject(s)
Cannabidiol , Erythrocytes , Cannabidiol/pharmacology , Humans , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemoglobins/metabolism , Hemolysis/drug effects , Dose-Response Relationship, Drug
4.
Braz J Biol ; 84: e278069, 2024.
Article in English | MEDLINE | ID: mdl-38865564

ABSTRACT

Products derived from medicinal plants with antimicrobial activity are considered a promising alternative in the treatment of fungal infections. In this perspective, this study proposed to evaluate the antifungal activity of the dichloromethane fraction of Annona crassiflora Mart. against C. albicans strains. Tests were carried out to determine Minimum Inhibitory Concentration (MIC), Minimum Fungicide Concentration (MFC), microbial growth kinetics, fungal cell wall and membrane mechanisms of action, antifungal biofilm activity, and cytotoxic effects on human erythrocytes. The extract presented MIC and MFC values that ranged from 256 µg/mL to 1,024 µg/mL, with fungicidal activity in the microbial growth kinetics assay. The mechanism of action did not occur through damage to the cell wall or via binding to ergosterol in the membrane, though the fraction presents activity against biofilm and is not cytotoxic in human erythrocytes. The dichloromethane fraction of Annona crassiflora Mart. presented antifungal activity and reduced biofilm growth, without toxicity against human erythrocytes; however, further studies are needed to define its mechanism of action.


Subject(s)
Annona , Antifungal Agents , Biofilms , Candida albicans , Methylene Chloride , Microbial Sensitivity Tests , Plant Extracts , Annona/chemistry , Antifungal Agents/pharmacology , Candida albicans/drug effects , Humans , Plant Extracts/pharmacology , Biofilms/drug effects , Erythrocytes/drug effects
5.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38772746

ABSTRACT

AIMS: We developed three new analogs of the antimicrobial peptide (AMP) Citropin 1.1: DAN-1-13, AJP-1-1, and HHX-2-28, and tested their potential antimicrobial and antibiofilm activities against Staphylococcus aureus and S. pseudintermedius. Potential cytotoxic or hemolytic effects were determined using cultured human keratinocytes and erythrocytes to determine their safety. METHODS AND RESULTS: To assess the antimicrobial activity of each compound, minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined against methicillin-resistant and methicillin-susceptible strains of S. aureus and S. pseudintermedius. Activity against newly formed and mature biofilms was determined in two clinical isolates using spectrophotometry and scanning electron microscopy (SEM). All three compounds exhibited antimicrobial and bactericidal activity against all studied S. aureus and S. pseudintermedius strains, with MICs ranging from 4-32 µg ml-1 and MBCs ranging from 8-128 µg ml-1. Subinhibitory concentrations of all compounds also showed ant-biofilm activity in the two tested isolates. All compounds exhibited limited cytotoxic and hemolytic activity. CONCLUSIONS: Novel analogs of Citropin 1.1 exhibit antimicrobial and bactericidal activities against S. aureus and S. pseudintermedius isolates and inhibit the biofilm formation of these bacteria.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus aureus , Staphylococcus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Erythrocytes/drug effects , Keratinocytes/drug effects
6.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734773

ABSTRACT

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Subject(s)
Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
7.
Toxicol In Vitro ; 98: 105832, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653437

ABSTRACT

Sickle cell disease (SCD) is a hereditary hemoglobinopathy, caused by a mutation at position 6 of the ß-globin chain and patients are frequently exposed to several blood transfusions in order to maintain physiological function. Transfusion blood bags are composed of PVC and phthalates (as DEHP) are often introduced to the material in order to confer malleability. In this sense, DEHP can easily elute to the blood and cause harmful effects. This study aimed to unravel DEHP effect on SCD patient's hemoglobin function. We found that HbS polymerization using whole erythrocytes is decreased by DEHP in ex vivo experiments and this effect might be mediated by the DEHP-VAL6 interaction, evaluated in silico. Isolated HbS exhibited less polymerization at low DEHP concentrations and increased polymerization rate at higher concentration. When analyzing the propensity to aggregate, HbS is more inclined to aggregate when compared to HbA due to the residue 6 mutation. Circular dichroism showed characteristic hemoglobin peaks for oxygenated HbS that are lost when oxygen is sequestered, and DEHP at higher concentration mildly recovers a peak close to the second hemoglobin one. Finally, by transmission electron microscopy we demonstrated that high DEHP concentration increased polymer formation with a more organized structure. These findings show for the first-time the beneficial effect of low-dose DEHP on HbS polymerization.


Subject(s)
Anemia, Sickle Cell , Diethylhexyl Phthalate , Erythrocytes , Hemoglobin, Sickle , Polymerization , Humans , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Hemoglobin, Sickle/genetics , Hemoglobin, Sickle/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Diethylhexyl Phthalate/toxicity , Computer Simulation
8.
Int J Parasitol Drugs Drug Resist ; 25: 100536, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663046

ABSTRACT

Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit ß-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.


Subject(s)
Antimalarials , Plasmodium falciparum , Pyridines , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Humans , Pyridines/pharmacology , Pyridines/chemistry , Amides/pharmacology , Cell Line , Inhibitory Concentration 50 , Drug Resistance , Drug Discovery , Erythrocytes/drug effects , Erythrocytes/parasitology , Thioamides/pharmacology , Thioamides/chemistry , Parasitic Sensitivity Tests
9.
Toxicon ; 208: 47-52, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35074306

ABSTRACT

Malaria is a parasitic infectious disease caused by Plasmodium sp, which was responsible for about 409 thousand deaths only in 2019. The clinical manifestations in patients with malaria, which may include fever and anemia and that can occasionally lead to the death of the host, are mainly associated to the asexual blood stage of parasite. The discovery of novel compounds active against stages of the intraerythrocytic cell cycle has been the focus of many researches seeking for alternatives to the control of malaria. The antimalarial effect of a native cationic polypeptide from the venom of a South American rattlesnake named crotamine, with ability of targeting and disrupting the acidic compartments of Plasmodium falciparum parasite, was previously described by us. Herein, we extended our previous studies by investigating the internalization and trafficking of crotamine in P. falciparum-infected erythrocytes at different blood-stages of parasites and periods of incubation. In addition, the effects of several pharmacological inhibitors in the uptake of this snake polypeptide with cell-penetrating properties were also assessed, showing that crotamine internalization was dependent on ATP generated via glycolytic pathway. We show here that crotamine uptake is blocked by the glycolysis inhibitor 2-deoxy-D-glucose, and the most efficient internalization is observed at trophozoite stage of parasite after at least 30 min of incubation. The present data provide important insights into biochemical pathway and cellular features determined by the parasite cycle, which may be underlying the internalization and effects of cationic antimalarials as crotamine.


Subject(s)
Crotalid Venoms/chemistry , Erythrocytes , Peptides , Plasmodium falciparum , Animals , Crotalus , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Peptides/pharmacology , South America
10.
Biomed Pharmacother ; 145: 112438, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34861632

ABSTRACT

The aim of this work was to investigate the in vitro cytotoxic effect of previously developed nanocapsules, nanoemulsion, and microemulsion based on bullfrog oil (BFO) against human melanoma cells (A2058). The nanosystems were produced as described in previous studies and characterized according to droplet/particle distribution and zeta potential. The biocompatibility was evaluated by the determination of the hemolytic potential against human erythrocytes. The cytotoxicity assessment was based on MTT and cell death assays, determination of Reactive Oxygen Species (ROS) levels, and cell uptake. The nanosystems were successfully reproduced and showed hemolytic potential smaller than 10% at all oil concentrations (50 and 100 µg.mL-1) (p < 0.05). The MTT assay revealed that the nanosystems decreased the mitochondrial activity up to 92 ± 2% (p < 0.05). The study showed that the free BFO induced cell apoptosis, while all the nanostructured systems caused cell death by necrosis associated with a ROS overproduction. This can be related to the increased ability of the nanostructured systems to deliver the BFO across all cellular compartments (membrane, cytoplasm, and nucleus). Finally, these results elucidate the in vitro BFO nanosystems cytotoxic effect against human melanoma cells (A2058), revealing the emulsified ones as the most cytotoxic systems. Overall, the findings suggest that the safety and antineoplastic activity of these systems can be further investigated by in vivo studies.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Nanostructures , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Emulsions , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Humans , Melanoma/pathology , Mitochondria/metabolism , Nanocapsules , Oils/isolation & purification , Oils/pharmacology , Oils/toxicity , Particle Size , Rana catesbeiana/metabolism , Reactive Oxygen Species/metabolism , Skin Neoplasms/pathology
11.
Toxicol In Vitro ; 79: 105294, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34896601

ABSTRACT

4-hydroxy-2-nonenal (HNE) is a reactive aldehyde produced by cells under conditions of oxidative stress, which has been shown to react with proteins and phosphatidylethanolamine in biological membranes. Using electron paramagnetic resonance (EPR) spectroscopy of a spin label it was demonstrated that 2 h of treatment with HNE causes membrane rigidity in promastigotes of Leishmania (L.) amazonensis, J774.A1 macrophages and erythrocytes. Remarkable fluidity-reducing effects on the parasite membrane were observed at HNE concentrations approximately 4-fold lower than in the case of erythrocyte and macrophage membranes. Autofluorescence of the parasites in PBS suspension (1 × 107 cell/mL) with excitation at 354 nm showed a linear increase of intensity in the range of 400 to 600 nm over 3 h after treatment with 30 µM HNE. Parasite ghosts prepared after this period of HNE treatment showed a high degree of membrane rigidity. Bovine serum albumin (BSA) in PBS treated with HNE for 2 h showed an increase in molecular dynamics and suffered a decrease in its ability to bind a lipid probe. In addition, the antiproliferative activity of L. amazonensis promastigotes, macrophage cytotoxicity and hemolytic potential were assessed for HNE. An IC50 of 24 µM was found, which was a concentration > 10 times lower than the cytotoxic and hemolytic concentrations of HNE. These results indicate that the action of HNE has high selectivity indices for the parasite as opposed to the macrophage and erythrocyte.


Subject(s)
Aldehydes/pharmacology , Erythrocytes/drug effects , Leishmania/drug effects , Macrophages/drug effects , Aldehydes/toxicity , Animals , Cell Line , Cell Membrane/drug effects , Electron Spin Resonance Spectroscopy , Humans , Membrane Fluidity/drug effects , Mice , Serum Albumin, Bovine/drug effects
12.
Biomed Res Int ; 2021: 9694508, 2021.
Article in English | MEDLINE | ID: mdl-34527745

ABSTRACT

Malaria is a life-threatening disease caused by Plasmodium and represents one of the main public health problems in the world. Among alterations associated with the disease, we highlight the hepatic impairment resulting from the generation of oxidative stress. Studies demonstrate that liver injuries caused by Plasmodium infection are associated with unbalance of the antioxidant system in hepatocytes, although little is known about the role of antioxidant molecules such as glutathione and vitamin C in the evolution of the disease and in the liver injury. To evaluate disease complications, murine models emerge as a valuable tool due to their similarities between the infectious species for human and mice. Herein, the aim of this study is to evaluate the effect of antioxidants glutathione and vitamin C on the evolution of murine malaria and in the liver damage caused by Plasmodium berghei ANKA infection. Mice were inoculated with parasitized erythrocytes and treated with glutathione and vitamin C, separately, both at 8 mg/kg during 7 consecutive days. Our data showed that during Plasmodium infection, treatment with glutathione promoted significant decrease in the survival of infected mice, accelerating the disease severity. However, treatment with vitamin C promoted an improvement in the clinical outcomes and prolonged the survival curve of infected animals. We also showed that glutathione promoted increase in the parasitemia rate of Plasmodium-infected animals, although treatment with vitamin C has induced significant decrease in parasitemia rates. Furthermore, histological analysis and enzyme biochemical measurement showed that treatment with glutathione exacerbates liver damage while treatment with vitamin C mitigates the hepatic injury induced by the infection. In summary, the current study provided evidences that antioxidant molecules could differently modulate the outcome of malaria disease; while glutathione aggravated the disease outcome and liver injury, the treatment with vitamin C protects the liver from damage and the evolution of the condition.


Subject(s)
Antioxidants/pharmacology , Liver Diseases, Parasitic/drug therapy , Malaria/drug therapy , Animals , Ascorbic Acid/pharmacology , Disease Models, Animal , Erythrocytes/drug effects , Female , Glutathione/pharmacology , Hepatocytes/pathology , Liver/injuries , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Plasmodium berghei , Vitamins/pharmacology
13.
Life Sci ; 285: 119949, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34543640

ABSTRACT

AIMS: Swietenia macrophylla have been considered for the treatment of various diseases, including anticancer activity. This study aimed to investigate the anticancer activity of S. macrophylla leaves extract and its isolated compound towards human colorectal cancer cell line. MAIN METHODS: Hexanic extract of S. macrophylla leaves demonstrated relevant cytotoxicity only against colon cancer cell line HCT116. KEY FINDINGS: Our results showed significant DNA damage and apoptosis after treatment with the hexanic extract of S. macrophylla. Moreover, no toxicity was noticed for the animal model. The isolated compound limonoid L1 showed potent cytotoxicity against cancer cell lines with IC50 at 55.87 µg mL-1. Limonoid L1 did not trigger any cell membrane rupture in the mice erythrocytes suggesting no toxicity. The antiproliferative effect of L1 was confirmed in colorectal cancer cells by clonogenic assay, inducing G2/M arrest, apoptosis, and DNA damage in cancer-type cells. SIGNIFICANCE: L1 reduced BCL2 and increased ATM, CHK2, TP53, ARF, CDK1, CDKN1A, and CASP3 in the colorectal cancer cell line. These findings suggest that limonoid L1 isolated from S. macrophylla can be a promising anticancer agent in managing colorectal cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/pathology , DNA Damage , Limonins/pharmacology , Meliaceae/chemistry , Animals , Colorectal Neoplasms/metabolism , Erythrocytes/drug effects , Female , G2 Phase Cell Cycle Checkpoints/drug effects , HCT116 Cells , Hemolysis , Humans , Limonins/isolation & purification , Limonins/therapeutic use , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
Bioorg Med Chem Lett ; 49: 128289, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34311084

ABSTRACT

Leishmaniasis is an infectious disease with several limitations regarding treatment schemes. This work reports the anti-Leishmania activity of spiroacridine compounds against the promastigote (IC50 = 1.1 to 6.0 µg / mL) and amastigote forms of the best compounds (EC50 = 4.9 and 0.9 µg / mL) inLeishmania (L.) infantumand proposes an in-silico study with possible selective therapeutic targets for L. infantum. The substituted dimethyl-amine compound (AMTAC 11) showed the best leishmanicidal activity in vitro, and was found to interact with TryRandLdTopoI. comparisons with standard inhibitors were performed, and its main interactions were elucidated. Based on the biological assessment and the structure-activity relationship study, the spiroacridine compounds appear to be promisinganti-leishmaniachemotherapeutic agents to be explored.


Subject(s)
Acridines/pharmacology , Spiro Compounds/pharmacology , Trypanocidal Agents/pharmacology , Acridines/chemical synthesis , Acridines/metabolism , Acridines/toxicity , DNA Topoisomerases, Type I/metabolism , Erythrocytes/drug effects , Leishmania infantum/drug effects , Ligands , Molecular Docking Simulation , Molecular Structure , NADH, NADPH Oxidoreductases/metabolism , Parasitic Sensitivity Tests , Protein Binding , Protozoan Proteins/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/metabolism , Spiro Compounds/toxicity , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/toxicity
15.
Biomolecules ; 11(4)2021 04 08.
Article in English | MEDLINE | ID: mdl-33917850

ABSTRACT

In a large variety of organisms, antimicrobial peptides (AMPs) are primary defenses against pathogens. BP100 (KKLFKKILKYL-NH2), a short, synthetic, cationic AMP, is active against bacteria and displays low toxicity towards eukaryotic cells. BP100 acquires a α-helical conformation upon interaction with membranes and increases membrane permeability. Despite the volume of information available, the action mechanism of BP100, the selectivity of its biological effects, and possible applications are far from consensual. Our group synthesized a fluorescent BP100 analogue containing naphthalimide linked to its N-terminal end, NAPHT-BP100 (Naphthalimide-AAKKLFKKILKYL-NH2). The fluorescence properties of naphthalimides, especially their spectral sensitivity to microenvironment changes, are well established, and their biological activities against transformed cells and bacteria are known. Naphthalimide derived compounds are known to interact with DNA disturbing related processes as replication and transcription, and used as anticancer agents due to this property. A wide variety of techniques were used to demonstrate that NAPHT-BP100 bound to and permeabilized zwitterionic POPC and negatively charged POPC:POPG liposomes and, upon interaction, acquired a α-helical structure. Membrane surface high peptide/lipid ratios triggered complete permeabilization of the liposomes in a detergent-like manner. Membrane disruption was driven by charge neutralization, lipid aggregation, and bilayer destabilization. NAPHT-BP100 also interacted with double-stranded DNA, indicating that this peptide could also affect other cellular processes besides causing membrane destabilization. NAPHT-BP100 showed increased antibacterial and hemolytic activities, compared to BP100, and may constitute an efficient antimicrobial agent for dermatological use. By conjugating BP100 and naphthalimide DNA binding properties, NAPHT-BP100 bound to a large extent to the bacterial membrane and could more efficiently destabilize it. We also speculate that peptide could enter the bacteria cell and interact with its DNA in the cytoplasm.


Subject(s)
Anti-Infective Agents/chemistry , Liposomes/chemistry , Naphthalimides/chemistry , Oligopeptides/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Circular Dichroism , DNA/chemistry , DNA/metabolism , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , Escherichia coli/drug effects , Hemolysis/drug effects , Humans , Liposomes/metabolism , Microbial Sensitivity Tests , Oligopeptides/chemical synthesis , Permeability/drug effects , Protein Conformation, alpha-Helical , Spectrometry, Fluorescence , Staphylococcus aureus/drug effects , Thermodynamics
16.
Toxicol In Vitro ; 74: 105158, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33823240

ABSTRACT

BACKGROUND: Leishmaniasis is a parasitosis with a wide incidence in developing countries. The drugs which are indicated for the treatment of this infection usually are able to promote high toxicity. PURPOSE: A combination of limonene and carvacrol, monoterpenes present in plants with antiparasitic activity may constitute an alternative for the treatment of these diseases. METHODS: In this study, the antileishmania activity against Leishmania major, cytotoxicity tests, assessment of synergism, parasite membrane damage tests as well as molecular docking and immunomodulatory activity of limonene-carvacrol (Lim-Car) combination were evaluated. RESULTS: The Lim-Car combination (5:0; 1:1; 1:4; 2:3; 3:2; 4:1 and 0:5) showed potential antileishmania activity, with mean inhibitory concentration (IC50) ranging from 5.8 to 19.0 µg.mL-1. They demonstrated mean cytotoxic concentration (CC50) ranging from 94.1 to 176.0 µg.mL-1, and did not show significant hemolytic effect. In the investigation of synergistic interaction, the 4:1 Lim-Car combination showed better fractional inhibitory concentration (FIC) index as well as better activity on amastigotes and IS. The samples caused considerable damage to the parasite membrane this monoterpene activity seems to be more related to Trypanothione Reductase (TryR) enzyme interaction, demonstrated in the molecular docking assay. In addition, the 4:1 Lim-Car combination stimulated macrophage activation, and showed at was the best association, with reduction of infection and infectivity of parasitized macrophages. CONCLUSION: The 4:1 Lim-Car combination appears to be a promising candidate as a monotherapeutic antileishmania agent.


Subject(s)
Antiprotozoal Agents/toxicity , Cymenes/toxicity , Immunologic Factors/toxicity , Leishmania major/drug effects , Limonene/toxicity , Animals , Cell Survival/drug effects , DNA-Directed DNA Polymerase/metabolism , Drug Combinations , Drug Synergism , Erythrocytes/drug effects , Hemolysis/drug effects , Lysosomes/drug effects , Macrophages/drug effects , Macrophages/parasitology , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Sheep
17.
Bioorg Chem ; 109: 104709, 2021 04.
Article in English | MEDLINE | ID: mdl-33636439

ABSTRACT

The sickle cell disease (SCD) has a genetic cause, characterized by a replacement of glutamic acid to valine in the ß-chain of hemoglobin. The disease has no effective treatment so far, and patients suffer a range from acute to chronic complications that include chronic hemolytic anemia, vaso-occlusive ischemia, pain, acute thoracic syndrome, cerebrovascular accident, nephropathy, osteonecrosis and reduced lifetime. The oxidation in certain regions of the hemoglobin favors the reactive oxygen species (ROS) formation, which is the cause of many clinical manifestations. Antioxidants have been studied to reduce the hemoglobin ROS levels, and in this sense, we have searched for new antioxidants glucal-based triazoles compounds with anti-sickling activity. Thirty analogues were synthetized and tested in in vitro antioxidant assays. Two of them were selected based in their effects and concentration-response activity and conducted to in cell assays. Both molecules did not cause any hemolysis and could reduce the red blood cell damage caused by hydrogen peroxide, in a model of oxidative stress induction that mimics the SCD. Moreover, one molecule (termed 11m), besides reducing the hemolysis, was able to prevent the cell damage caused by the hydrogen peroxide. Later on, by in silico pharmacokinetics analysis, we could see that 11m has appropriated proprieties for druggability and the probable mechanism of action is the binding to Peroxiredoxin-5, an antioxidant enzyme that reduces the hydrogen peroxide levels, verified after molecular docking assays. Thus, starting from 30 glucal-based triazoles molecules in a structure-activity relationship, we could select one with antioxidant proprieties that could act on RBC to reduce the oxidative stress, being useful for the treatment of SCD.


Subject(s)
Anemia, Sickle Cell/drug therapy , Antioxidants/pharmacology , Calcium Gluconate/chemistry , Erythrocytes/drug effects , Triazoles/pharmacology , Antioxidants/chemistry , Drug Discovery , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Oxidative Stress/drug effects , Structure-Activity Relationship , Triazoles/chemistry
18.
Int J Biol Macromol ; 172: 133-142, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33450338

ABSTRACT

Ursolic acid (UA) is a naturally occurring triterpene that has been investigated for its antitumor activity. However, its lipophilic character hinders its oral bioavailability, and therapeutic application. To overcome these limitations, chitosan (CS) modified poly (lactic acid) (PLA) nanoparticles containing UA were developed, characterized, and had their oral bioavailability assessed. The nanoparticles were prepared by emulsion-solvent evaporation technique and presented a mean diameter of 330 nm, zeta potential of +28 mV, spherical shape and 90% encapsulation efficiency. The analysis of XRD and DSC demonstrated that the nanoencapsulation process induced to UA amorphization. The in vitro release assay demonstrated that 53% of UA was released by diffusion after 144 h, following a second-order release kinetics. In simulated gastrointestinal fluids and mucin interaction tests, CS played an important role in stability and mucoadhesiveness improvement of PLA nanoparticles, respectively. In the presence of erythrocytes, nanoparticles proved their hemocompatibility. In tumor cells, nanoparticles presented lower cytotoxicity than free UA, due to slow UA release. After a single oral dose in rats, CS modified PLA nanoparticles increased the UA absorption, reduced its clearance and elimination, resulting in increased bioavailability. The results show the potential application of these nanoparticles for UA oral delivery for cancer therapy.


Subject(s)
Chitosan/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Triterpenes/chemistry , Triterpenes/metabolism , Animals , Biological Availability , Cell Line, Tumor , Emulsions/chemistry , Erythrocytes/drug effects , Humans , Male , Rats , Rats, Wistar , Solvents/chemistry , Ursolic Acid
19.
Toxicon ; 191: 1-8, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33347860

ABSTRACT

The Loxosceles genus belongs to the Sicariidae family and it comprises species whose venom can cause accidents with potentially fatal consequences. We have previously shown that SMase D is the enzyme responsible for the main pathological effects of Loxosceles venom. Despite the severity of accidents with Loxosceles, few species are considered to be of medical importance. Little is known about the venom of non-synanthropic species that live in natural environments. To contribute to a better understanding about the venom's toxicity of Loxosceles genus, the aim of this study was to (i) characterize the toxic properties of Loxosceles amazonica from two different localities and a recent described cave species Loxosceles willianilsoni and (ii) compare these venoms with that from Loxosceles laeta, which is among the most toxic ones. We show here that both L. amazonica venoms (from the two studied locations) and L. willianilsoni presented SMase D activity similar to that exhibited by L. laeta venom. Although L. amazonica and L. willianilsoni venoms were able to induce complement dependent human erythrocytes lysis, they were not able to induce cell death of human keratinocytes, as promoted by L. laeta venom, in the concentrations tested. These results indicate that other species of Loxosceles, in addition to those classified as medically important, have toxic potential to cause accidents in humans, despite interspecific variations that denote possible less toxicity.


Subject(s)
Phosphoric Diester Hydrolases/toxicity , Spider Venoms/toxicity , Animals , Erythrocytes/drug effects , Humans , Keratinocytes , Spider Bites
20.
Arterioscler Thromb Vasc Biol ; 41(2): 769-782, 2021 02.
Article in English | MEDLINE | ID: mdl-33267657

ABSTRACT

OBJECTIVE: Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results: Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD. CONCLUSIONS: Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.


Subject(s)
Anemia, Sickle Cell/drug therapy , Enzyme Inhibitors/pharmacology , Erythrocytes/drug effects , Febuxostat/pharmacology , Hemodynamics/drug effects , Hemolysis/drug effects , Pulmonary Artery/drug effects , Xanthine Oxidase/antagonists & inhibitors , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/enzymology , Anemia, Sickle Cell/physiopathology , Animals , Disease Models, Animal , Erythrocytes/enzymology , Liver/enzymology , Male , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Artery/enzymology , Pulmonary Artery/physiopathology , Ventricular Function/drug effects , Xanthine Oxidase/genetics , Xanthine Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL