Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 666
Filter
1.
PLoS One ; 19(7): e0305816, 2024.
Article in English | MEDLINE | ID: mdl-39038020

ABSTRACT

Erythroid cells, serving as progenitors and precursors to erythrocytes responsible for oxygen transport, were shown to exhibit an immunosuppressive and immunoregulatory phenotype. Previous investigations from our research group have revealed an antimicrobial gene expression profile within murine bone marrow erythroid cells which suggested a role for erythroid cells in innate immunity. In the present study, we focused on elucidating the characteristics of human bone marrow erythroid cells through comprehensive analyses, including NanoString gene expression profiling utilizing the Immune Response V2 panel, a BioPlex examination of chemokine and TGF-beta family proteins secretion, and analysis of publicly available single-cell RNA-seq data. Our findings demonstrate that an erythroid cell subpopulation manifests a myeloid-like gene expression signature comprised of antibacterial immunity and neutrophil chemotaxis genes which suggests an involvement of human erythroid cells in the innate immunity. Furthermore, we found that human erythroid cells secreted CCL22, CCL24, CXCL5, CXCL8, and MIF chemokines. The ability of human erythroid cells to express these chemokines might facilitate the restriction of immune cells in the bone marrow under normal conditions or contribute to the ability of erythroid cells to induce local immunosuppression by recruiting immune cells in their immediate vicinity in case of extramedullary hematopoiesis.


Subject(s)
Erythroid Cells , Monocytes , Humans , Monocytes/metabolism , Monocytes/cytology , Monocytes/immunology , Erythroid Cells/metabolism , Erythroid Cells/cytology , Immunity, Innate , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Transcriptome , Gene Expression Profiling , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Myeloid Cells/metabolism , Chemokines/metabolism , Chemokines/genetics , Interleukin-8 , Intramolecular Oxidoreductases
2.
Adv Exp Med Biol ; 1459: 217-242, 2024.
Article in English | MEDLINE | ID: mdl-39017846

ABSTRACT

Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.


Subject(s)
Erythropoiesis , Kruppel-Like Transcription Factors , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Humans , Erythropoiesis/genetics , Animals , Cell Differentiation/genetics , Erythroid Cells/metabolism , Erythroid Cells/cytology , Mutation
3.
Int J Hematol ; 120(2): 157-166, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814500

ABSTRACT

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.


Subject(s)
Cell Differentiation , Erythropoiesis , Hemin , Leukemia, Erythroblastic, Acute , Nuclear Receptor Co-Repressor 1 , Humans , K562 Cells , Erythropoiesis/genetics , Leukemia, Erythroblastic, Acute/pathology , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Erythroblastic, Acute/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Hemin/pharmacology , Erythroid Cells/metabolism , Erythroid Cells/cytology , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Hemoglobins/metabolism , Gene Knockdown Techniques , Intracellular Signaling Peptides and Proteins
4.
Mol Med Rep ; 29(6)2024 06.
Article in English | MEDLINE | ID: mdl-38695236

ABSTRACT

During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP­like cell line HEL western blotting, RT­qPCR, lentivirus­mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation­specific (ETS) transcription factor friend leukemia integration factor 1 (Fli­1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1­mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformation­specific­related gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNA­mediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.


Subject(s)
Cell Differentiation , Erythroid Cells , Megakaryocytes , Humans , Cell Differentiation/genetics , Cell Line , Erythroid Cells/metabolism , Erythroid Cells/cytology , GATA1 Transcription Factor/metabolism , GATA1 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Gene Expression Regulation , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Megakaryocytes/metabolism , Megakaryocytes/cytology , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Transcriptional Regulator ERG/metabolism , Transcriptional Regulator ERG/genetics
5.
STAR Protoc ; 5(2): 103016, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38640065

ABSTRACT

Precise insertion of fluorescent tags by CRISPR-Cas9-mediated homologous recombination (HR) in mammalian genes is a powerful tool allowing to study gene function and protein gene products. Here, we present a protocol for efficient HR-mediated targeted insertion of fluorescent markers in the genome of hard-to-transfect erythroid cell lines MEL (mouse erythroleukemic) and MEDEP (mouse ES cell-derived erythroid progenitor line). We describe steps for plasmid construction, electroporation, amplification, and verification of genome editing. We then detail procedures for isolating positive clones and validating knockin clones. For complete details on the use and execution of this protocol, please refer to Deleuze et al.1.


Subject(s)
CRISPR-Cas Systems , Erythroid Cells , Gene Editing , Gene Knock-In Techniques , CRISPR-Cas Systems/genetics , Animals , Mice , Erythroid Cells/metabolism , Erythroid Cells/cytology , Gene Knock-In Techniques/methods , Gene Editing/methods , Transfection/methods , Cell Line , Homologous Recombination/genetics , Electroporation/methods
6.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Article in English | MEDLINE | ID: mdl-38683131

ABSTRACT

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Erythroid Cells , Hemin , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Proto-Oncogene Proteins c-crk , Humans , 3' Untranslated Regions , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Differentiation/drug effects , Erythroid Cells/metabolism , Erythroid Cells/drug effects , Erythroid Cells/pathology , Erythroid Cells/cytology , Erythropoiesis/genetics , Erythropoiesis/drug effects , Gene Expression Regulation, Leukemic/drug effects , Hemin/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Proto-Oncogene Proteins c-crk/genetics
7.
Exp Hematol ; 135: 104191, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38493949

ABSTRACT

Erythropoiesis in the adult bone marrow relies on mitochondrial membrane transporters to facilitate heme and hemoglobin production. Erythrocytes in the bone marrow are produced although the differentiation of erythroid progenitor cells that originate from hematopoietic stem cells (HSCs). Whether and how mitochondria transporters potentiate HSCs and affect their differentiation toward erythroid lineage remains unclear. Here, we show that the ATP-binding cassette (ABC) transporter 10 (Abcb10), located on the inner mitochondrial membrane, is essential for HSC maintenance and erythroid-lineage differentiation. Induced deletion of Abcb10 in adult mice significantly increased erythroid progenitor cell and decreased HSC number within the bone marrow (BM). Functionally, Abcb10-deficient HSCs exhibited significant decreases in stem cell potential but with a skew toward erythroid-lineage differentiation. Mechanistically, deletion of Abcb10 rendered HSCs with excess mitochondrial iron accumulation and oxidative stress yet without alteration in mitochondrial bioenergetic function. However, impaired hematopoiesis could not be rescued through the in vivo administration of a mitochondrial iron chelator or antioxidant to Abcb10-deficient mice. Abcb10-mediated mitochondrial iron transfer is thus pivotal for the regulation of physiologic HSC potential and erythroid-lineage differentiation.


Subject(s)
ATP-Binding Cassette Transporters , Cell Differentiation , Erythropoiesis , Hematopoietic Stem Cells , Mice, Knockout , Mitochondria , Animals , Mice , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Mitochondria/metabolism , Erythropoiesis/genetics , Iron/metabolism , Erythroid Cells/cytology , Erythroid Cells/metabolism , Oxidative Stress , Erythroid Precursor Cells/metabolism , Erythroid Precursor Cells/cytology , Mice, Inbred C57BL
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(6): 494-500, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35732606

ABSTRACT

Objective To investigate the role of endothelial PAS domain-containing protein 1 (EPAS1) gene encoded hypoxia-inducible factor 2α (HIF-2α) in erythroid differentiation of K562 human erythroleukemia cells under hypoxic conditions. Methods K562 cells were treated with 40 µmol/L of hemin and 0.1 ng/mL of cytarabine for erythroid differentiation. After normoxic and hypoxic(50 mL/L O2) incubation, the ratio of CD235a+CD71+ cells was detected by flow cytometry. The percentage of hemoglobin-positive cells was detected by benzidine staining. The level of cell proliferation was detected by CCK-8 assay. The mRNA and protein levels of EPAS1, insulin receptor substrate 2 (IRS2) and γ-globin were detected by real-time quantitative PCR and Wester blot analysis. Besides, the changes in the erythroid differentiation of K562 cells were evaluated after knockdown of EPAS1. Results Hypoxia promoted the erythroid differentiation of K562 cells and upregulated the expression of EPAS1. After EPAS1 kncokdown, the ratio of CD235a+CD71+ cells and hemoglobin-positive cells decreased, and the expressions of IRS2 and γ-globin declined significantly. Conclusion Hypoxia can significantly up-regulate the expression of EPAS1 in K562 cells and promote the erythroid differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , Cell Hypoxia , Erythroid Cells , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Erythroid Cells/cytology , Hemoglobins , Humans , Insulin Receptor Substrate Proteins/genetics , K562 Cells , gamma-Globins/genetics
9.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163006

ABSTRACT

Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.


Subject(s)
Erythroid Cells/cytology , Gene Editing/methods , MicroRNAs/genetics , Repressor Proteins/genetics , 3' Untranslated Regions , CRISPR-Cas Systems , Cell Line , DNA End-Joining Repair , Erythroid Cells/metabolism , HEK293 Cells , Humans , Proof of Concept Study
10.
Leukemia ; 36(3): 847-855, 2022 03.
Article in English | MEDLINE | ID: mdl-34743190

ABSTRACT

Although a glycosylphosphatidylinositol-anchored protein (GPI-AP) CD109 serves as a TGF-ß co-receptor and inhibits TGF-ß signaling in keratinocytes, the role of CD109 on hematopoietic stem progenitor cells (HSPCs) remains unknown. We studied the effect of CD109 knockout (KO) or knockdown (KD) on TF-1, a myeloid leukemia cell line that expresses CD109, and primary human HSPCs. CD109-KO or KD TF-1 cells underwent erythroid differentiation in the presence of TGF-ß. CD109 was more abundantly expressed in hematopoietic stem cells (HSCs) than in multipotent progenitors and HSPCs of human bone marrow (BM) and cord blood but was not detected in mouse HSCs. Erythroid differentiation was induced by TGF-ß to a greater extent in CD109-KD cord blood or iPS cell-derived megakaryocyte-erythrocyte progenitor cells (MEPs) than in wild-type MEPs. When we analyzed the phenotype of peripheral blood MEPs of patients with paroxysmal nocturnal hemoglobinuria who had both GPI(+) and GPI(-) CD34+ cells, the CD36 expression was more evident in CD109- MEPs than CD109+ MEPs. In summary, CD109 suppresses TGF-ß signaling in HSPCs, and the lack of CD109 may increase the sensitivity of PIGA-mutated HSPCs to TGF-ß, thus leading to the preferential commitment of erythroid progenitor cells to mature red blood cells in immune-mediated BM failure.


Subject(s)
Antigens, CD/metabolism , Erythroid Cells/cytology , Hematopoietic Stem Cells/cytology , Neoplasm Proteins/metabolism , Transforming Growth Factor beta/metabolism , Cell Differentiation , Cell Line , Cells, Cultured , Erythroid Cells/metabolism , Erythropoiesis , GPI-Linked Proteins/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Humans
11.
Blood ; 139(3): 439-451, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34614145

ABSTRACT

The hormone erythroferrone (ERFE) is produced by erythroid cells in response to hemorrhage, hypoxia, or other erythropoietic stimuli, and it suppresses the hepatic production of the iron-regulatory hormone hepcidin, thereby mobilizing iron for erythropoiesis. Suppression of hepcidin by ERFE is believed to be mediated by interference with paracrine bone morphogenetic protein (BMP) signaling that regulates hepcidin transcription in hepatocytes. In anemias with ineffective erythropoiesis, ERFE is pathologically overproduced, but its contribution to the clinical manifestations of these anemias is not well understood. We generated 3 lines of transgenic mice with graded erythroid overexpression of ERFE and found that they developed dose-dependent iron overload, impaired hepatic BMP signaling, and relative hepcidin deficiency. These findings add to the evidence that ERFE is a mediator of iron overload in conditions in which ERFE is overproduced, including anemias with ineffective erythropoiesis. At the highest levels of ERFE overexpression, the mice manifested decreased perinatal survival, impaired growth, small hypofunctional kidneys, decreased gonadal fat depots, and neurobehavioral abnormalities, all consistent with impaired organ-specific BMP signaling during development. Neutralizing excessive ERFE in congenital anemias with ineffective erythropoiesis may not only prevent iron overload but may have additional benefits for growth and development.


Subject(s)
Cytokines/metabolism , Developmental Disabilities/metabolism , Erythroid Cells/metabolism , Iron Overload/metabolism , Muscle Proteins/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Cytokines/genetics , Developmental Disabilities/etiology , Developmental Disabilities/genetics , Erythroid Cells/cytology , Female , Hepcidins/metabolism , Iron Overload/etiology , Iron Overload/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Proteins/genetics , Signal Transduction , Up-Regulation
12.
Nat Commun ; 12(1): 7019, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857757

ABSTRACT

Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Erythroid Cells/metabolism , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Myeloid Progenitor Cells/metabolism , Vesicular Transport Proteins/genetics , Yolk Sac/metabolism , Animals , Cell Differentiation , Embryo, Mammalian , Enhancer of Zeste Homolog 2 Protein/deficiency , Epigenesis, Genetic , Erythroid Cells/cytology , Female , Fetus , Genes, Reporter , Hematopoiesis/genetics , Liver/cytology , Liver/growth & development , Liver/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mouse Embryonic Stem Cells/cytology , Myeloid Progenitor Cells/pathology , Primary Cell Culture , Vesicular Transport Proteins/metabolism , Wnt Signaling Pathway , Yolk Sac/cytology , Yolk Sac/growth & development , Red Fluorescent Protein
13.
Cells ; 10(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34831239

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs, which play an important role in various cellular and developmental processes. The study of miRNAs in erythropoiesis is crucial to uncover the cellular pathways that are modulated during the different stages of erythroid differentiation. Using erythroid cells derived from human CD34+ hematopoietic stem and progenitor cells (HSPCs)and small RNA sequencing, our study unravels the various miRNAs involved in critical cellular pathways in erythroid maturation. We analyzed the occupancy of erythroid transcription factors and chromatin accessibility in the promoter and enhancer regions of the differentially expressed miRNAs to integrate miRNAs in the transcriptional circuitry of erythropoiesis. Analysis of the targets of the differentially expressed miRNAs revealed novel pathways in erythroid differentiation. Finally, we described the application of Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) based editing of miRNAs to study their function in human erythropoiesis.


Subject(s)
Erythropoiesis/genetics , MicroRNAs/genetics , Adult , CRISPR-Cas Systems/genetics , Cell Differentiation/genetics , Cell Line , Chromatin/metabolism , Erythroid Cells/cytology , Erythroid Cells/metabolism , Gene Editing , Gene Expression Profiling , Gene Expression Regulation , Humans , MicroRNAs/metabolism , Signal Transduction , Transcription Factors/metabolism
14.
Int J Mol Sci ; 22(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34768865

ABSTRACT

NKL homeobox genes encode transcription factors that impact normal development and hematopoietic malignancies if deregulated. Recently, we established an NKL-code that describes the physiological expression pattern of eleven NKL homeobox genes in the course of hematopoiesis, allowing evaluation of aberrantly activated NKL genes in leukemia/lymphoma. Here, we identify ectopic expression of NKL homeobox gene NKX2-4 in an erythroblastic acute myeloid leukemia (AML) cell line OCI-M2 and describe investigation of its activating factors and target genes. Comparative expression profiling data of AML cell lines revealed in OCI-M2 an aberrantly activated program for endothelial development including master factor ETV2 and the additional endothelial signature genes HEY1, IRF6, and SOX7. Corresponding siRNA-mediated knockdown experiments showed their role in activating NKX2-4 expression. Furthermore, the ETV2 locus at 19p13 was genomically amplified, possibly underlying its aberrant expression. Target gene analyses of NKX2-4 revealed activated ETV2, HEY1, and SIX5 and suppressed FLI1. Comparative expression profiling analysis of public datasets for AML patients and primary megakaryocyte-erythroid progenitor cells showed conspicuous similarities to NKX2-4 activating factors and the target genes we identified, supporting the clinical relevance of our findings and developmental disturbance by NKX2-4. Finally, identification and target gene analysis of aberrantly expressed NKX2-3 in AML patients and a megakaryoblastic AML cell line ELF-153 showed activation of FLI1, contrasting with OCI-M2. FLI1 encodes a master factor for myelopoiesis, driving megakaryocytic differentiation and suppressing erythroid differentiation, thus representing a basic developmental target of these homeo-oncogenes. Taken together, we have identified aberrantly activated NKL homeobox genes NKX2-3 and NKX2-4 in AML, deregulating genes involved in megakaryocytic and erythroid differentiation processes, and thereby contributing to the formation of specific AML subtypes.


Subject(s)
Erythroid Cells/cytology , Homeodomain Proteins/genetics , Leukemia, Erythroblastic, Acute/genetics , Megakaryocytes/cytology , Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Cycle Proteins/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Endothelium/cytology , Gene Expression Profiling , Gene Expression Regulation/genetics , Humans , Interferon Regulatory Factors/genetics , Leukemia, Erythroblastic, Acute/pathology , RNA Interference , RNA, Small Interfering/genetics , SOXF Transcription Factors/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics
15.
FASEB J ; 35(10): e21915, 2021 10.
Article in English | MEDLINE | ID: mdl-34496088

ABSTRACT

During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.


Subject(s)
Erythroid Cells/metabolism , Erythropoiesis , GATA1 Transcription Factor/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Chromatin Immunoprecipitation , Erythrocytes/cytology , Erythrocytes/metabolism , Erythroid Cells/cytology , Erythropoiesis/genetics , GATA1 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Hypoxia-Inducible Factor 1, alpha Subunit/deficiency , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/deficiency , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Pre-B-Cell Leukemia Transcription Factor 1/deficiency , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Transcription, Genetic , Zebrafish/blood , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
16.
Blood Cells Mol Dis ; 91: 102594, 2021 11.
Article in English | MEDLINE | ID: mdl-34520986

ABSTRACT

Cytokines/chemokines regulate hematopoiesis, most having multiple cell actions. Numerous but not all chemokine family members act as negative regulators of hematopoietic progenitor cell (HPC) proliferation, but very little is known about such effects of the chemokine, CXCL15/Lungkine. We found that CXCL15/Lungkine-/- mice have greatly increased cycling of multi cytokine-stimulated bone marrow and spleen hematopoietic progenitor cells (HPCs: CFU-GM, BFU-E, and CFU-GEMM) and CXCL15 is expressed in many bone marrow progenitor and other cell types. This suggests that CXCL15/Lungkine acts as a negative regulator of the cell cycling of these HPCs in vivo. Recombinant murine CXCL15/Lungkine, decreased numbers of functional HPCs during cytokine-enhanced ex-vivo culture of lineage negative mouse bone marrow cells. Moreover, CXCL15/Lungkine, through S-Phase specific actions, was able to suppress in vitro colony formation of normal wildtype mouse bone marrow CFU-GM, CFU-G, CFU-M, BFU-E, and CFU-GEMM. This clearly identifies the negative regulatory activity of CXCL15/Lungkine on proliferation of multiple types of mouse HPCs.


Subject(s)
Chemokines, CXC/metabolism , Erythroid Cells/cytology , Granulocytes/cytology , Macrophages/cytology , Stem Cells/cytology , Animals , Cell Proliferation , Cells, Cultured , Erythroid Cells/metabolism , Granulocytes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , S Phase Cell Cycle Checkpoints , Stem Cells/metabolism
17.
Sci Rep ; 11(1): 18557, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535703

ABSTRACT

Beta-hemoglobinopathies become prominent after birth due to a switch from γ-globin to the mutated ß-globin. Haploinsufficiency for the erythroid specific indispensable transcription factor Krueppel-like factor 1 (KLF1) is associated with high persistence of fetal hemoglobin (HPFH). The In(Lu) phenotype, characterized by low to undetectable Lutheran blood group expression is caused by mutations within KLF1 gene. Here we screened a blood donor cohort of 55 Lutheran weak or negative donors for KLF1 variants and evaluated their effect on KLF1 target gene expression. To discriminate between weak and negative Lutheran expression, a flow cytometry (FCM) assay was developed to detect Lu antigen expression. The Lu(a-b-) (negative) donor group, showing a significant decreased CD44 (Indian blood group) expression, also showed increased HbF and HbA2 levels, with one individual expressing HbF as high as 5%. KLF1 exons and promoter sequencing revealed variants in 80% of the Lutheran negative donors. Thirteen different variants plus one high frequency SNP (c.304 T > C) were identified of which 6 were novel. In primary erythroblasts, knockdown of endogenous KLF1 resulted in decreased CD44, Lu and increased HbF expression, while KLF1 over-expressing cells were comparable to wild type (WT). In line with the pleiotropic effects of KLF1 during erythropoiesis, distinct KLF1 mutants expressed in erythroblasts display different abilities to rescue CD44 and Lu expression and/or to affect fetal (HbF) or adult (HbA) hemoglobin expression. With this study we identified novel KLF1 variants to be include into blood group typing analysis. In addition, we provide further insights into the regulation of genes by KLF1.


Subject(s)
Cell Adhesion Molecules/genetics , Fetal Hemoglobin/analysis , Kruppel-Like Transcription Factors/genetics , Lutheran Blood-Group System/genetics , gamma-Globins/analysis , Cells, Cultured , Erythroid Cells/cytology , Erythroid Cells/metabolism , Erythropoiesis , Fetal Hemoglobin/genetics , Humans , Mutation , Polymorphism, Single Nucleotide , gamma-Globins/genetics
18.
Nature ; 598(7880): 327-331, 2021 10.
Article in English | MEDLINE | ID: mdl-34588693

ABSTRACT

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow , Down Syndrome/blood , Down Syndrome/immunology , Fetus/cytology , Hematopoiesis , Immune System/cytology , B-Lymphocytes/cytology , Dendritic Cells/cytology , Down Syndrome/metabolism , Down Syndrome/pathology , Endothelial Cells/pathology , Eosinophils/cytology , Erythroid Cells/cytology , Granulocytes/cytology , Humans , Immunity , Myeloid Cells/cytology , Stromal Cells/cytology
19.
Physiol Res ; 70(5): 701-707, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34505521

ABSTRACT

The present nuclear and cell body diameter measurements demonstrated size differences of the approximate cell space estimate occupied by the cell nucleus during the cell differentiation in lymphocytic, granulocytic and erythroid cell lineages. These lineages were used as convenient models because all differentiation steps were easily identified and accessible in diagnostic peripheral blood or bone marrow smears of blood donors (BDs), patients suffering from chronic lymphocytic leukemia (CLL), patients with chronic myeloid leukemia (CML) and refractory anemia (RA) of the myelodysplastic syndrome (MDS). The cell space occupied by the nucleus was constant and did not change during the cell differentiation in the lymphocytic cell lineages of BDs and CLL patients despite the decreased cell size. In contrary, the cell space occupied by the nucleus markedly decreased in differentiating cells of granulocytic and erythroid lineages of patients suffering from CML. In the erythroid cell lineage in patients with RA of MDS the small reduction of the cell space occupied by the nucleus during the differentiation was not significant. The measurements also indicated that in progenitor cells of all studied cell lineages nuclei occupied more than 70 % of the cell space. Thus, the nucleus-cytoplasmic morphological and functional equilibrium appeared to be characteristic for each differentiation step and each specific cell lineage.


Subject(s)
Cell Differentiation , Cell Nucleus , Erythroid Cells/cytology , Granulocytes/cytology , Lymphocytes/cytology , Anemia, Refractory/pathology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
20.
Sci Rep ; 11(1): 17129, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429458

ABSTRACT

Production of red blood cells relies on proper mitochondrial function, both for their increased energy demands during differentiation and for proper heme and iron homeostasis. Mutations in genes regulating mitochondrial function have been reported in patients with anemia, yet their pathophysiological role often remains unclear. PGC1ß is a critical coactivator of mitochondrial biogenesis, with increased expression during terminal erythroid differentiation. The role of PGC1ß has however mainly been studied in skeletal muscle, adipose and hepatic tissues, and its function in erythropoiesis remains largely unknown. Here we show that perturbed PGC1ß expression in human hematopoietic stem/progenitor cells from both bone marrow and cord blood results in impaired formation of early erythroid progenitors and delayed terminal erythroid differentiation in vitro, with accumulations of polychromatic erythroblasts, similar to MDS-related refractory anemia. Reduced levels of PGC1ß resulted in deregulated expression of iron, heme and globin related genes in polychromatic erythroblasts, and reduced hemoglobin content in the more mature bone marrow derived reticulocytes. Furthermore, PGC1ß knock-down resulted in disturbed cell cycle exit with accumulation of erythroblasts in S-phase and enhanced expression of G1-S regulating genes, with smaller reticulocytes as a result. Taken together, we demonstrate that PGC1ß is directly involved in production of hemoglobin and regulation of G1-S transition and is ultimately required for proper terminal erythroid differentiation.


Subject(s)
Erythroid Cells/metabolism , Erythropoiesis , RNA-Binding Proteins/metabolism , Cell Cycle , Cells, Cultured , Erythroid Cells/cytology , Hemoglobins/metabolism , Humans , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL