Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 119.309
1.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702700

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , beta-Lactamases , Animals , Cats , Dogs , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , Argentina/epidemiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Microbial Sensitivity Tests , Pets , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology
2.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704385

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
3.
BMC Microbiol ; 24(1): 154, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704559

BACKGROUND: Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS: In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS: The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS: The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.


Antifungal Agents , Biofilms , Candida albicans , Candida glabrata , Escherichia coli , Fluconazole , Iridoid Glucosides , Iridoids , Microbial Sensitivity Tests , Biofilms/drug effects , Biofilms/growth & development , Iridoid Glucosides/pharmacology , Candida glabrata/drug effects , Candida glabrata/physiology , Candida glabrata/genetics , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/physiology , Escherichia coli/drug effects , Escherichia coli/genetics , Iridoids/pharmacology , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Fungal , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Scanning
4.
Environ Monit Assess ; 196(6): 534, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727864

Escherichia coli is one of the key bacteria responsible for a variety of diseases in humans and livestock-associated infections around the globe. It is the leading cause of mortality in neonatal and weaned piglets in pig husbandry, causing diarrhea and significant harm to the industry. Furthermore, the frequent and intensive use of antimicrobials for the prevention of diseases, particularly gastrointestinal diseases, may promote the selection of multidrug-resistant (MDR) strains. These resistant genotypes can be transmitted through the excrement of animals, including swine. It is common practice to use porcine manure processed by biodigesters as fertilizer. This study aimed to examine the antimicrobial susceptibility, the presence of virulence genes frequently associated with pathotypes of intestinal pathogenic E. coli (InPEC), and antimicrobial resistance genes (ARGs) of 28 E. coli isolates collected from swine manure fertilizers. In addition, the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) technique was used to investigate the genetic relationship among the strains. Using disk diffusion, the antimicrobial susceptibility profiles of the strains were determined. Using polymerase chain reaction (PCR), 14 distinct virulence genes associated with the most prevalent diarrhea and intestinal pathogenic E. coli (DEC/InPEC) and five ARGs were analyzed. All isolates tested positive for multidrug resistance. There was no detection of any of the 14 virulence genes associated with InPECs, indicating the presence of an avirulent commensal microbiota. Molecular classification by ERIC-PCR revealed that the majority of isolates (27 isolates) coalesced into a larger cluster with a genetic similarity of 47.7%; only one strain did not cluster in this cluster, indicating a high level of genetic diversity among the analyzed isolates. Thus, it is of the utmost importance to conduct epidemiological surveillance of animal breeding facilities in order to determine their microbiota and formulate plans to reduce the use of antimicrobials and improve animal welfare.


Drug Resistance, Multiple, Bacterial , Escherichia coli , Fertilizers , Manure , Animals , Swine , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Manure/microbiology , Brazil , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
5.
Mol Biol Rep ; 51(1): 628, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717629

Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.


Escherichia coli , Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/enzymology , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/genetics , Isopropyl Thiogalactoside/pharmacology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Culture Media
6.
PLoS One ; 19(5): e0301624, 2024.
Article En | MEDLINE | ID: mdl-38713678

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water.


Environmental Monitoring , Escherichia coli , Salmonella typhi , Salmonella typhi/genetics , Salmonella typhi/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Environmental Monitoring/methods , Wastewater/microbiology , Typhoid Fever/microbiology , Typhoid Fever/epidemiology , Typhoid Fever/diagnosis , Typhoid Fever/prevention & control , Humans , Water Microbiology
7.
Biotechnol J ; 19(5): e2300581, 2024 May.
Article En | MEDLINE | ID: mdl-38719587

Human interleukin-3 (IL3) is a multifunctional cytokine essential for both clinical and biomedical research endeavors. However, its production in Escherichia coli has historically been challenging due to its aggregation into inclusion bodies, requiring intricate solubilization and refolding procedures. This study introduces an innovative approach employing two chaperone proteins, maltose binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a'), as N-terminal fusion tags. Histidine tag (H) was added at the beginning of each chaperone protein gene for easy purification. This fusion of chaperone proteins significantly improved IL3 solubility across various E. coli strains and temperature conditions, eliminating the need for laborious refolding procedures. Following expression optimization, H-PDIb'a'-IL3 was purified using two chromatographic methods, and the subsequent removal of the H-PDIb'a' tag yielded high-purity IL3. The identity of the purified protein was confirmed through liquid chromatography coupled with tandem mass spectrometry analysis. Biological activity assays using human erythroleukemia TF-1 cells revealed a unique two-step stimulation pattern for both purified IL3 and the H-PDIb'a'-IL3 fusion protein, underscoring the protein's functional integrity and revealing novel insights into its cellular interactions. This study advances the understanding of IL3 expression and activity while introducing novel considerations for protein fusion strategies.


Escherichia coli , Interleukin-3 , Protein Disulfide-Isomerases , Recombinant Fusion Proteins , Humans , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Interleukin-3/metabolism , Interleukin-3/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Cell Line, Tumor , Solubility
8.
Biotechnol J ; 19(5): e2400023, 2024 May.
Article En | MEDLINE | ID: mdl-38719589

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Anti-Bacterial Agents , Escherichia coli , Light , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Optogenetics/methods , Gene Expression Regulation, Bacterial/drug effects , Ampicillin/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Streptomycin/pharmacology , Blue Light
9.
Biotechnol J ; 19(5): e2300664, 2024 May.
Article En | MEDLINE | ID: mdl-38719620

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Escherichia coli , Hydrogen Peroxide , Sarcosine Oxidase , Hydrogen Peroxide/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Sarcosine Oxidase/metabolism , Sarcosine Oxidase/genetics , Sarcosine Oxidase/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Sarcosine/metabolism , Sarcosine/analogs & derivatives
10.
Appl Microbiol Biotechnol ; 108(1): 326, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717487

Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.


Escherichia coli , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Substrate Specificity , Dipeptidases/metabolism , Dipeptidases/genetics , Dipeptidases/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Molecular Docking Simulation , Multigene Family , Hydrogen-Ion Concentration , Dipeptides/metabolism , Temperature , Kinetics
11.
Parasit Vectors ; 17(1): 206, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715089

BACKGROUND: Opisthorchiasis and cholangiocarcinoma (CCA) continue to be public health concerns in many Southeast Asian countries. Although the prevalence of opisthorchiasis is declining, reported cases tend to have a light-intensity infection. Therefore, early detection by using sensitive methods is necessary. Several sensitive methods have been developed to detect opisthorchiasis. The immunological detection of antigenic proteins has been proposed as a sensitive method for examining opisthorchiasis. METHODS: The Opisthorchis viverrini antigenic proteins, including cathepsin B (OvCB), asparaginyl endopeptidase (OvAEP), and cathepsin F (OvCF), were used to construct multi-antigenic proteins. The protein sequences of OvCB, OvAEP, and OvCF, with a high probability of B cell epitopes, were selected using BepiPred 1.0 and the IEDB Analysis Resource. These protein fragments were combined to form OvCB_OvAEP_OvCF recombinant DNA, which was then used to produce a recombinant protein in Escherichia coli strain BL21(DE3). The potency of the recombinant protein as a diagnostic target for opisthorchiasis was assessed using immunoblotting and compared with that of the gold standard method, the modified formalin-ether concentration technique. RESULTS: The recombinant OvCB_OvAEP_OvCF protein showed strong reactivity with total immunoglobulin G (IgG) antibodies against light-intensity O. viverrini infections in the endemic areas. Consequently, a high sensitivity (100%) for diagnosing opisthorchiasis was reported. However, cross-reactivity with sera from other helminth and protozoan infections (including taeniasis, strongyloidiasis, giardiasis, E. coli infection, enterobiasis, and mixed infection of Echinostome spp. and Taenia spp.) and no reactivity with sera from patients with non-parasitic infections led to a reduced specificity of 78.4%. In addition, the false negative rate (FNR), false positive rate (FPR), positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were 0%, 21.6%, 81.4%, 100%, and 88.9%, respectively. CONCLUSIONS: The high sensitivity of the recombinant OvCB_OvAEP_OvCF protein in detecting opisthorchiasis demonstrates its potential as an opisthorchiasis screening target. Nonetheless, research on reducing cross-reactivity should be undertaken by detecting other antibodies in other sample types, such as saliva, urine, and feces.


Antigens, Helminth , Opisthorchiasis , Opisthorchis , Opisthorchiasis/diagnosis , Opisthorchis/immunology , Opisthorchis/genetics , Animals , Antigens, Helminth/genetics , Antigens, Helminth/immunology , Humans , Antibodies, Helminth/blood , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Sensitivity and Specificity , Helminth Proteins/immunology , Helminth Proteins/genetics , Epitopes/immunology , Epitopes/genetics , Cathepsin B/genetics , Cathepsin B/immunology , Escherichia coli/genetics , Cysteine Endopeptidases
12.
Microb Cell Fact ; 23(1): 130, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711033

BACKGROUND: Cyclic ß-1,2-glucans (CßG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CßG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CßG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CßG. RESULTS: We present the production of CßG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CßG synthesis, transport and succinilation. These strains produce different types of CßG: unsubstituted CßG, anionic CßG and CßG of high size. Unsubstituted CßG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CßG /L in culture medium within 48 h culture. CONCLUSIONS: We have developed a new recombinant bacterial system for the synthesis of cyclic ß-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CßG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CßG availability for further research and the widespread use of these promising molecules across many application fields.


Escherichia coli , beta-Glucans , Escherichia coli/metabolism , Escherichia coli/genetics , beta-Glucans/metabolism
13.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802961

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
14.
Nat Commun ; 15(1): 4537, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806470

The multidrug efflux transporter EmrE from Escherichia coli requires anionic residues in the substrate binding pocket for coupling drug transport with the proton motive force. Here, we show how protonation of a single membrane embedded glutamate residue (Glu14) within the homodimer of EmrE modulates the structure and dynamics in an allosteric manner using NMR spectroscopy. The structure of EmrE in the Glu14 protonated state displays a partially occluded conformation that is inaccessible for drug binding by the presence of aromatic residues in the binding pocket. Deprotonation of a single Glu14 residue in one monomer induces an equilibrium shift toward the open state by altering its side chain position and that of a nearby tryptophan residue. This structural change promotes an open conformation that facilitates drug binding through a conformational selection mechanism and increases the binding affinity by approximately 2000-fold. The prevalence of proton-coupled exchange in efflux systems suggests a mechanism that may be shared in other antiporters where acid/base chemistry modulates access of drugs to the substrate binding pocket.


Antiporters , Escherichia coli Proteins , Escherichia coli , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Antiporters/metabolism , Antiporters/chemistry , Antiporters/genetics , Binding Sites , Protein Binding , Protons , Protein Conformation , Magnetic Resonance Spectroscopy , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Models, Molecular
15.
Sci Rep ; 14(1): 12271, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806637

The impact of recombinant protein production (RPP) on host cells and the metabolic burden associated with it undermine the efficiency of the production system. This study utilized proteomics to investigate the dynamics of parent and recombinant cells induced at different time points for RPP. The results revealed significant changes in both transcriptional and translational machinery that may have impacted the metabolic burden, growth rate of the culture and the RPP. The timing of protein synthesis induction also played a critical role in the fate of the recombinant protein within the host cell, affecting protein and product yield. The study identified significant differences in the expression of proteins involved in fatty acid and lipid biosynthesis pathways between two E. coli host strains (M15 and DH5⍺), with the E. coli M15 strain demonstrating superior expression characteristics for the recombinant protein. Overall, these findings contribute to the knowledge base for rational strain engineering for optimized recombinant protein production.


Escherichia coli , Proteomics , Recombinant Proteins , Escherichia coli/metabolism , Escherichia coli/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Proteomics/methods , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Protein Biosynthesis
16.
Biotechnol J ; 19(5): e2400024, 2024 May.
Article En | MEDLINE | ID: mdl-38797726

The development of RNA interference (RNAi) is crucial for studying plant gene function. Its use, is limited to a few plants with well-established transgenic techniques. Spray-induced gene silencing (SIGS) introduces exogenous double-stranded RNA (dsRNA) into plants by spraying, injection, or irrigation, triggering the RNAi pathway to instantly silence target genes. As is a transient RNAi technology that does not rely on transgenic methods, SIGS has significant potential for studying gene function in plants lacking advanced transgenic technology. In this study, to enhance their stability and delivery efficiency, siRNAs were used as structural motifs to construct RNA nanoparticles (NPs) of four shapes: triangle, square, pentagon, and hexagon. These NPs, when synthesized by Escherichia coli, showed that triangular and square shapes accumulated more efficiently than pentagon and hexagon shapes. Bioassays revealed that RNA squares had the highest RNAi efficiency, followed by RNA triangles, with GFP-dsRNA showing the lowest efficiency at 4 and 7 days post-spray. We further explored the use of RNA squares in inducing transient RNAi in plants that are difficult to transform genetically. The results indicated that Panax notoginseng-derived MYB2 (PnMYB2) and Camellia oleifera-derived GUT (CoGUT) were significantly suppressed in P. notoginseng and C. oleifera, respectively, following the application of PnMYB2- and CoGUT-specific RNA squares. These findings suggest that RNA squares are highly effective in SIGS and can be utilized for gene function research in plants.


Plants, Genetically Modified , RNA Interference , Plants, Genetically Modified/genetics , RNA, Small Interfering/genetics , Nanoparticles/chemistry , RNA, Double-Stranded/genetics , Escherichia coli/genetics , Nicotiana/genetics
17.
Reprod Domest Anim ; 59(5): e14615, 2024 May.
Article En | MEDLINE | ID: mdl-38798181

Present study was designed to evaluate the role of virulence factor genes (papG, cnf1 and hylA) in the pathogenesis of canine pyometra. Antimicrobial susceptibility test and detection of virulence genes were performed Escherichia coli (E. coli) detected in uterine swab samples. Animals were divided into two groups based on the presence (VF+, n:14) or absence (VF-, n:7) of the virulence factor genes papG, cnf1 and hylA. Blood and tissue glutathione peroxidase activity, uterine histopathologic analysis and AQP3, ESR1, PGR, OXTR gene expressions were determined in both groups. Statistical analyses were performed using Stata version 15.1. All E. coli isolates were susceptible to amikacin, whereas resistant to ampicillin, amoxicillin/clavulanic acid and lincomycin. None of the isolates were susceptible to cefotaxime. E. coli isolates had at least one virulence gene. The most prevalent gene was fimH (100%), followed by fyuA (95.8%), usp (83.3%), sfa (75%), cnf1 and hlyA (70.8%) genes. Blood GPx activity was greater in VF+ animals. On the other hand, uterine tissue GPx activity was lower in VF+ group compared to the control group. Expression levels of AQP3 were upregulated more than fivefold in VF-dogs compared to the control group. In addition, AQP3 expression levels were found approximately threefold higher in VF (-) than VF (+) group (p < .05). Varying degree of inflammation noted for all animals with pyometra, but the presence of bacteria noted only in VF+ animals. In conclusion, the presence of virulence factor genes does not play a role in the histopathological degree of inflammation, the presence of bacteria was found to vary. Serum GPx activity increased in VF+ animals. While the hormone receptor expressions were similar, AQP expression was upregulated in the absence of virulence factor genes.


Aquaporin 3 , Dog Diseases , Escherichia coli , Glutathione Peroxidase , Pyometra , Uterus , Virulence Factors , Animals , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Dogs , Pyometra/veterinary , Pyometra/microbiology , Pyometra/pathology , Dog Diseases/microbiology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Escherichia coli/genetics , Escherichia coli/pathogenicity , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Down-Regulation , Microbial Sensitivity Tests/veterinary
18.
Microb Biotechnol ; 17(6): e14474, 2024 Jun.
Article En | MEDLINE | ID: mdl-38808743

Some bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), have an inherent ability to locate solid tumours, making them a versatile platform that can be combined with other tools to improve the tumour diagnosis and treatment. In anti-cancer therapy, bacteria function by carrying drugs directly or expressing exogenous therapeutic genes. The application of bacterial imaging in tumour diagnosis, a novel and promising research area, can indeed provide dynamic and real-time monitoring in both pre-treatment assessment and post-treatment detection. Different imaging techniques, including optical technology, acoustic imaging, magnetic resonance imaging (MRI) and nuclear medicine imaging, allow us to observe and track tumour-associated bacteria. Optical imaging, including bioluminescence and fluorescence, provides high-sensitivity and high-resolution imaging. Acoustic imaging is a real-time and non-invasive imaging technique with good penetration depth and spatial resolution. MRI provides high spatial resolution and radiation-free imaging. Nuclear medicine imaging, including positron emission tomography (PET) and single photon emission computed tomography (SPECT) can provide information on the distribution and dynamics of bacterial population. Moreover, strategies of synthetic biology modification and nanomaterial engineering modification can improve the viability and localization ability of bacteria while maintaining their autonomy and vitality, thus aiding the visualization of gut bacteria. However, there are some challenges, such as the relatively low bacterial abundance and heterogeneously distribution within the tumour, the high dimensionality of spatial datasets and the limitations of imaging labeling tools. In summary, with the continuous development of imaging technology and nanotechnology, it is expected to further make in-depth study on tumour-associated bacteria and develop new bacterial imaging methods for tumour diagnosis.


Neoplasms , Neoplasms/diagnostic imaging , Humans , Escherichia coli/genetics , Bacteria/genetics , Bacteria/isolation & purification , Salmonella typhimurium/genetics , Diagnostic Imaging/methods , Animals , Optical Imaging/methods
19.
World J Microbiol Biotechnol ; 40(7): 219, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809492

Protectins, 10,17-dihydroxydocosahexaenoic acids (10,17-DiHDHAs), are belonged to specialized pro-resolving mediators (SPMs). Protectins are generated by polymorphonuclear leukocytes in humans and resolve inflammation and infection in trace amounts. However, the quantitative production of protectin DX 10-epimer (10-epi-PDX, 10R,17S-4Z,7Z,11E,13Z,15E,19Z-DiHDHA) has been not attempted to date. In this study, 10-epi-PDX was quantitatively produced from docosahexaenoic acid (DHA) by serial whole-cell biotransformation of Escherichia coli expressing arachidonate (ARA) 8R-lipoxygenase (8R-LOX) from the coral Plexaura homomalla and E. coli expressing ARA 15S-LOX from the bacterium Archangium violaceum. The optimal bioconversion conditions to produce 10R-hydroxydocosahexaenoic acid (10R-HDHA) and 10-epi-PDX were pH 8.0, 30 °C, 2.0 mM DHA, and 4.0 g/L cells; and pH 8.5, 20 °C, 1.4 mM 10R-HDHA, and 1.0 g/L cells, respectively. Under these optimized conditions, 2.0 mM (657 mg/L) DHA was converted into 1.2 mM (433 mg/L) 10-epi-PDX via 1.4 mM (482 mg/L) 10R-HDHA by the serial whole-cell biotransformation within 90 min, with a molar conversion of 60% and volumetric productivity of 0.8 mM/h (288 mg/L/h). To the best of our knowledge, this is the first quantitative production of 10-epi-PDX. Our results contribute to the efficient biocatalytic synthesis of SPMs.


Anthozoa , Biotransformation , Docosahexaenoic Acids , Escherichia coli , Docosahexaenoic Acids/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Anthozoa/microbiology , Anthozoa/metabolism , Animals , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate Lipoxygenases/metabolism , Arachidonate Lipoxygenases/genetics , Hydrogen-Ion Concentration
20.
Carbohydr Polym ; 338: 122201, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38763726

Agarans represent a group of galactans extracted from red algae. Funoran and agarose are the two major types and commercially applied polysaccharides of agaran. Although the glycoside hydrolases targeting ß-glycosidic bonds of agaran have been widely investigated, those capable of degrading α-glycosidic bonds of agarose were limited, and the enzyme degrading α-linkages of funoran has not been reported till now. In this study, a GH96 family enzyme BiAF96A_Aq from a marine bacterium Aquimarina sp. AD1 was heterologously expressed in Escherichia coli. BiAF96A_Aq exhibited dual activities towards the characteristic structure of funoran and agarose, underscoring the multifunctionality of GH96 family members. Glycomics and NMR analysis revealed that BiAF96A_Aq hydrolyzed the α-1,3 glycosidic bonds between 3,6-anhydro-α-l-galactopyranose (LA) and ß-d-galactopyranose-6-sulfate (G6S) of funoran, as well as LA and ß-d-galactopyranose (G) of agarose, through an endo-acting manner. The end products of BiAF96A_Aq were majorly composed of disaccharides and tetrasaccharides. The identification of the activity of BiAF96A_Aq on funoran indicated the first discovery of the funoran hydrolase for α-1,3 linkage. Considering the novel catalytic reaction, we proposed to name this activity as "α-funoranase" and recommended the assignment of a dedicated EC number for its classification.


Glycoside Hydrolases , Sepharose , Sepharose/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Hydrolysis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Galactans/chemistry , Galactans/metabolism
...