Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.656
Filter
1.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965964

ABSTRACT

BACKGROUND: Streptococcus agalactiae (GBS) and Escherichia coli (E. coli) are the main pathogenic bacteria in neonatal sepsis. Therefore, the clinical characteristics, nonspecific indicators, and drug susceptibilities of these two bacteria were studied. METHODS: In total, 81 and 80 children with sepsis caused by GBS and E. coli infection, respectively, admitted to the neonatal department of our hospital between May 2012 and July 2023, were selected, and the clinical characteris-tics of the two groups were analyzed. Nonspecific indicators and drug sensitivity test results were analyzed retrospectively. RESULTS: Birth weight, tachypnea, groan, tachycardia or bradycardia, and the incidence of complications, such as pneumonia, respiratory failure, and purulent meningitis, were higher in the GBS group than in the E. coli group. The children were born prematurely, and the mother had a premature rupture of membranes. The incidence of jaundice, abdominal distension, atypical clinical manifestations, and complications of necrotizing enterocolitis was lower than of the E. coli group, and the differences were statistically significant (p < 0.05). The WBC, NE#, NE#/LY#, hs-CRP, and PCT of the GBS group were higher than those of the E. coli group, whereas the MPV, D-D, and FDP levels were lower than those in the E. coli group. The differences were all statistically significant (p < 0.05). The 81-bead GBS had high resistance rates against tetracycline (95%), erythromycin (48.8%), and clindamycin (40%), and no strains resistant to vancomycin, linezolid, penicillin, or ampicillin appeared, whereas 80 strains of E. coli were more resistant to penicillin and third-generation cephalosporins, with the higher resistance rates to ampicillin (68.30%), trimethoprim/sulfamethoxazole (53.6%), and ciprofloxacin (42.90%). Resistance rates to carbapenems and aminoglycosides were extremely low. CONCLUSIONS: Both GBS and E. coli neonatal sepsis have specific clinical characteristics, especially in terms of clinical manifestations, complications, non-specific indicators, and drug resistance. Early identification is important for clinical diagnosis and treatment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Neonatal Sepsis , Streptococcal Infections , Streptococcus agalactiae , Humans , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/isolation & purification , Neonatal Sepsis/microbiology , Neonatal Sepsis/diagnosis , Neonatal Sepsis/drug therapy , Neonatal Sepsis/epidemiology , Infant, Newborn , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Female , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Streptococcal Infections/drug therapy , Streptococcal Infections/diagnosis , Retrospective Studies , Male , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/diagnosis , Escherichia coli Infections/drug therapy , Microbial Sensitivity Tests , Drug Resistance, Bacterial
2.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(7): 969-976, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-39004969

ABSTRACT

Objective: To understand the infection status, epidemiological characteristics and drug resistance of Diarrheagenic Escherichia coli (DEC) in Shanghai and provide evidence for the disease surveillance. Methods: The epidemiological data of diarrhea cases in Shanghai from 2016 to 2022 were collected from Shanghai Diarrhea Comprehensive Surveillance System, and stool samples were collected from the cases for DEC detection. The drug resistance data was obtained from Chinese Pathogen Identification Network. Statistical analysis was conducted by using χ2 and fisher test. Results: In 24 883 diarrhea cases detected during 2016-2022, the DEC positive rate was 9.13% (2 271/24 883), the single DEC positive rate was 8.83% (2 197/24 883) and the mixed DEC positive rate was 0.30% (74/24 883). The main type of DEC was Enterotoxigenic Escherichia coli (ETEC) [4.33% (1 077/24 883)]. The DEC positive rate was highest in people aged ≤5 years 18.48% (22/119). The annual peak of DEC positive rate was observed during July - September [5.91% (1 470/24 883)]. The DEC positive rate were 9.47% (554/5 847) and 9.02% (1 717/19 036) in urban area and in suburbs, respectively, Enteroaggregative Escherichia coli (EAEC) [3.98% (233/5 847)] and ETEC [4.56% (868/19 036)] were mainly detected. From 2016 to 2019, the DEC positive rate was 9.42% (1 821/19 330), while it was 8.10% (450/5 553) from 2020 to 2022, the main DEC types were ETEC (4.87%, 941/19 330) and EAEC (4.70%, 261/5 553). The multi-drug resistance rate was 40.21% (618/1 537). The top three antibiotics with high drug resistance rates were ampicillin [64.74% (995/1 537)], nalidixic acid [58.49% (899/1 537)] and tetracycline [45.09% (693/1 537)]. Conclusions: Compared with 2016- 2019, a decrease in DEC detection rate was observed during 2020-2022, and the main type of DEC detected shifted from ETEC to EAEC. The prevalence of multi-drug resistance was severe. Therefore, it is necessary to further strengthen the surveillance for DEC drug resistance and standardize the use of clinical antibiotics.


Subject(s)
Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Humans , Diarrhea/microbiology , Diarrhea/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , China/epidemiology , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Feces/microbiology , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Drug Resistance, Bacterial , Child, Preschool , Child , Infant , Adolescent , Adult
3.
BMC Womens Health ; 24(1): 383, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961459

ABSTRACT

BACKGROUND: The role of bacterial contamination in the development and progression of endometriosis lesions is currently a hot topic for gynecologists. In this study, we decided to compare the endometrial cultures of women affected by endometriosis with those of non-endometriotic women, focusing on specific microbial pathogens. MATERIAL AND METHOD: In this cross-sectional case-control study, 30 women with endometriosis in stages 4 of the disease whose endometriosis was confirmed based on clinical, ultrasound, and histopathological findings, and 30 women without endometriosis who were candidates for surgery due to benign uterine diseases with regular menstrual cycle, underwent endometrial biopsy with Novak Kort in sterile conditions before starting their operation, and the results of their endometrial culture were analyzed and compared. RESULTS: Results of the study indicate that there were no significant differences in terms of age, BMI, smoking, education level, place of residency, use of the intrauterine device, or vaginal douche, and age of menarche between the case and control groups. The only demographic difference observed was in parity, where the control group had a significantly higher parity than the case group (P = 0.001). Out of the 60 cultures, only 15 samples were positive in the endometriosis group, and E. coli was the most prevalent species, with 10 (33.3%) samples testing positive for it. Klebsiella spp. and Enterobacteria spp. were also detected in 3 (10.0%) and 2 (6.7%) samples, respectively. The comparison between the two groups showed that only E. coli had a significant association with the presence of endometriosis (P = 0.001). There was no significant relationship between the location of endometriosis in the pelvic cavity and culture results. It was observed that parity among the E. coli negative group was significantly higher compared to the E. coli positive group (P < 0.001). CONCLUSION: Based on The high occurrence of E. coli in women with endometriosis, along with its potential involvement in the progression and/or recurrence of this condition, the researchers propose that treating women with endometriosis and recurrent IVF failure, as well as those with endometriosis recurrence after surgical treatment, with suitable antibiotics and repeated culture until the culture becomes negative, could be beneficial.


Subject(s)
Endometriosis , Escherichia coli Infections , Escherichia coli , Humans , Female , Endometriosis/microbiology , Endometriosis/complications , Case-Control Studies , Iran/epidemiology , Adult , Escherichia coli/isolation & purification , Cross-Sectional Studies , Escherichia coli Infections/epidemiology , Escherichia coli Infections/complications , Escherichia coli Infections/microbiology , Endometrium/microbiology , Endometrium/pathology , Klebsiella/isolation & purification
4.
Vet Med Sci ; 10(4): e1472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031748

ABSTRACT

BACKGROUND: The escalation of antimicrobial resistance (AMR) in recent years has been of major public health concern globally. Escherichia coli are amongst the bacteria that have been targeted for AMR surveillance due to their ability to cause infection in both animals and humans. Their propensity to produce extended spectrum beta-lactamases further complicates the choices of treatment regimens. OBJECTIVES: To investigate the prevalence of antimicrobial-resistance in E. coli strains isolated from faecal samples of dogs and cats from selected veterinary surgeries and animal shelters from Harare, Zimbabwe. MATERIALS AND METHODS: A cross-sectional study was carried out to select animals by a systematic random procedure. Faecal samples were collected for culture and isolation of E. coli. Their susceptibility to antimicrobial drugs was assessed using the disc diffusion method. RESULTS: A total of 95% (133/140) of the samples from cats (n = 40) and dogs (n = 93) yielded E. coli. Resistance was recorded for ampicillin (45.9%), trimethoprim-sulphamethoxazole (44.4%), nalidixic acid (29.3%), ceftazidime (15.8%) and azithromycin (12.8%), but not for gentamicin and imipenem. A total of 18% of the isolates were multi-drug-resistant where resistance to nalidixic acid, ampicillin and trimethoprim-sulphamethoxazole predominated. CONCLUSION: We observed relatively high AMR of E. coli strains against ampicillin. The isolation of multi-drug-resistant strains of E. coli may signal the dissemination of resistance genes in the ecosystem of these bacteria which may have a public health impact.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli , Feces , Dogs , Animals , Cats , Zimbabwe/epidemiology , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/genetics , Feces/microbiology , Cat Diseases/microbiology , Cat Diseases/epidemiology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Prevalence
5.
BMC Microbiol ; 24(1): 250, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978012

ABSTRACT

BACKGROUND: ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS: Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS: The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The ß-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION: We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Hospitals, Teaching , Phylogeny , beta-Lactamases , Humans , Ghana/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/classification , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , Plasmids/genetics , Microbial Sensitivity Tests , Genome, Bacterial/genetics , Genomics , Virulence Factors/genetics , Male , Female , Adult
6.
PLoS One ; 19(7): e0302521, 2024.
Article in English | MEDLINE | ID: mdl-38980845

ABSTRACT

Antibiotic exposure is associated with resistant bacterial colonization, but this relationship can be obscured in community settings owing to horizontal bacterial transmission and broad distributions. Locality-level exposure estimates considering inhabitants' length of stay, exposure history, and exposure conditions of areas nearby could clarify these relationships. We used prescription data filled during 2010-2015 for 23 antibiotic types for members of georeferenced households in a population-based infectious disease surveillance platform. For each antibiotic and locality, we generated exposure estimates, expressed in defined daily doses (DDD) per 1000 inhabitant days of observation (IDO). We also estimated relevant environmental parameters, such as the distance of each locality to water, sanitation, and other amenities. We used data on ampicillin, ceftazidime, and trimethoprim-and-sulfamethoxazole resistant Escherichia coli colonization from stool cultures of asymptomatic individuals in randomly selected households. We tested exposure-colonization associations using permutation analysis of variance and logistic generalized linear mixed-effect models. Overall, exposure was highest for trimethoprim-sulfamethoxazole (1.8 DDD per 1000 IDO), followed by amoxicillin (0.7 DDD per 1000 IDO). Of 1,386 unique household samples from 195 locations tested between September 2015 and January 2016, 90%, 85% and 4% were colonized with E. coli resistant to trimethoprim and sulfamethoxazole, ampicillin, and ceftazidime, respectively. Ceftazidime-resistant E. coli colonization was common in areas with increased trimethoprim-sulfamethoxazole, cloxacillin, and erythromycin exposure. No association with any of the physical environmental variables was observed. We did not detect relationships between distribution patterns of ampicillin or trimethoprim-and-sulfamethoxazole resistant E. coli colonization and the risk factors assessed. Appropriate temporal and spatial scaling of raw antibiotic exposure data to account for evolution and ecological contexts of antibiotic resistance could clarify exposure-colonization relationships in community settings and inform community stewardship program.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Female , Male , Adult , Child , Adolescent , Child, Preschool , Middle Aged , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Ceftazidime/pharmacology , Drug Resistance, Bacterial/drug effects , Young Adult , Ampicillin/pharmacology , Infant
7.
Vet Med Sci ; 10(4): e1546, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016692

ABSTRACT

BACKGROUND: This study focuses on the AMR profiles in E. coli isolated from captive mammals at EcoZoo San Martín, Baños de Agua Santa, Ecuador, highlighting the role of wildlife as reservoirs of resistant bacteria. AIMS: The aim of this research is to investigate the antimicrobial resistance profiles of E. coli strains isolated from various species of captive mammals, emphasizing the potential zoonotic risks and the necessity for integrated AMR management strategies. MATERIALS & METHODS: A total of 189 fecal samples were collected from 70 mammals across 27 species. These samples were screened for E. coli, resulting in 90 identified strains. The resistance profiles of these strains to 16 antibiotics, including 10 ß-lactams and 6 non-ß-lactams, were determined using the disk diffusion method. Additionally, the presence of Extended-Spectrum Beta-Lactamase (ESBL) genes and other resistance genes was analyzed using PCR. RESULTS: Significant resistance was observed, with 52.22% of isolates resistant to ampicillin, 42.22% to ceftriaxone and cefuroxime, and 27.78% identified as ESBL-producing E. coli. Multiresistance (resistance to more than three antibiotic groups) was found in 35.56% of isolates. Carnivorous and omnivorous animals, particularly those with prior antibiotic treatments, were more likely to harbor resistant strains. DISCUSSION: These findings underscore the role of captive mammals as indicators of environmental AMR. The high prevalence of resistant E. coli in these animals suggests that zoos could be significant reservoirs for the spread of antibiotic-resistant bacteria. The results align with other studies showing that diet and antibiotic treatment history influence resistance profiles. CONCLUSION: The study highlights the need for an integrated approach involving veterinary care, habitat management, and public awareness to prevent captive wildlife from becoming reservoirs of antibiotic-resistant bacteria. Improved waste management practices and responsible antibiotic use are crucial to mitigate the risks of AMR in zoo environments and reduce zoonotic threats.


Subject(s)
Animals, Zoo , Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Mammals , Animals , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Ecuador/epidemiology , Mammals/microbiology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Feces/microbiology
8.
Antimicrob Resist Infect Control ; 13(1): 72, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971782

ABSTRACT

BACKGROUND: Before the COVID-19 pandemic there has been a constant increase in antimicrobial resistance (AMR) of Escherichia coli, the most common cause of urinary tract infections and bloodstream infections. The aim of this study was to investigate the impact of the COVID-19 pandemic on extended-spectrum ß-lactamase (ESBL) production in urine and blood E. coli isolates in Finland to improve our understanding on the source attribution of this major multidrug-resistant pathogen. METHODS: Susceptibility test results of 564,233 urine (88.3% from females) and 23,860 blood E. coli isolates (58.8% from females) were obtained from the nationwide surveillance database of Finnish clinical microbiology laboratories. Susceptibility testing was performed according to EUCAST guidelines. We compared ESBL-producing E. coli proportions and incidence before (2018-2019), during (2020-2021), and after (2022) the pandemic and stratified these by age groups and sex. RESULTS: The annual number of urine E. coli isolates tested for antimicrobial susceptibility decreased 23.3% during 2018-2022 whereas the number of blood E. coli isolates increased 1.1%. The annual proportion of ESBL-producing E. coli in urine E. coli isolates decreased 28.7% among males, from 6.9% (average during 2018-2019) to 4.9% in 2022, and 28.7% among females, from 3.0 to 2.1%. In blood E. coli isolates, the proportion decreased 32.9% among males, from 9.3 to 6.2%, and 26.6% among females, from 6.2 to 4.6%. A significant decreasing trend was also observed in most age groups, but risk remained highest among persons aged ≥ 60 years. CONCLUSIONS: The reduction in the proportions of ESBL-producing E. coli was comprehensive, covering both specimen types, both sexes, and all age groups, showing that the continuously increasing trends could be reversed. Decrease in international travel and antimicrobial use were likely behind this reduction, suggesting that informing travellers about the risk of multidrug-resistant bacteria, hygiene measures, and appropriate antimicrobial use is crucial in prevention. Evaluation of infection control measures in healthcare settings could be beneficial, especially in long-term care.


Subject(s)
COVID-19 , Escherichia coli Infections , Escherichia coli , Urinary Tract Infections , beta-Lactamases , Humans , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Finland/epidemiology , COVID-19/epidemiology , Female , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Male , Urinary Tract Infections/microbiology , Urinary Tract Infections/epidemiology , Middle Aged , beta-Lactamases/metabolism , beta-Lactamases/biosynthesis , Aged , Adult , Adolescent , Young Adult , Child , Infant , Child, Preschool , Aged, 80 and over , Microbial Sensitivity Tests , SARS-CoV-2 , Infant, Newborn , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/epidemiology , Bacteremia/microbiology , Drug Resistance, Multiple, Bacterial , Pandemics
9.
Ann Afr Med ; 23(2): 132-139, 2024 Apr 01.
Article in French, English | MEDLINE | ID: mdl-39028160

ABSTRACT

BACKGROUND: Diarrheagenic Escherichiacoli (DEC) infections constitute the leading causes of morbidity and mortality among children in Sub-Saharan Africa. However, little has so far been done to properly reveal the pathogenic endowments of DEC in these populations. AIMS AND OBJECTIVES: We evaluated 4 DEC strains among children under 5 years. MATERIALS AND METHODS: A cross-sectional study design was employed among 384 positive cases. RESULTS: There was a significant decline in infections associated with DEC as the children grew older (χ2[12] = 87.366: P = [0.000]. A total of 56 (14.6%) cases were 0-12 months, 168 (43.8%) were 13-24 months, 88 (22.9%) were 25-36 months, 40 (10.4%) were 37-48 months, and 32 (8.3%) were 49-60 months. A total of 248 (64.6%) male subjects exhibited more susceptibility to DEC infections than their female counterparts (n = 136 [35.4%]) (χ2[3] =13.313: P = [0.004]. Subjects from urban areas (n = 248 [64.6%]), significantly bored the brunt of infections than those from rural areas (n = 136 [35.4%]) (χ2[3] = 35.147: P = [0.000]. The prevalence of DEC appeared significantly higher during rainy seasons (n = 269 [70.1%]). CONCLUSION: Young age, male gender, crowding, and rainy season play a central role in the transmission of DEC pathotypes.


Résumé Contexte:Les infections à Escherichia coli entéropathogène (DEC) constituent les principales causes de morbidité et de mortalité chez les enfants en Afrique subsaharienne. Cependant, jusqu'à présent, peu de choses ont été faites pour révéler correctement les caractéristiques pathogènes de DEC dans ces populations.Objectifs:Nous avons évalué 4 souches de DEC chez les enfants de moins de 5 ans.Matériel et méthodes:Un plan d'étude transversal a été utilisé parmi 384 cas positifs.Résultats:Il y a eu une diminution significative des infections associées à DEC à mesure que les enfants grandissaient (χ2 [12] = 87,366 : P = [0,000]). Un total de 56 (14,6 %) cas avaient entre 0 et 12 mois, 168 (43,8 %) avaient entre 13 et 24 mois, 88 (22,9 %) avaient entre 25 et 36 mois, 40 (10,4 %) avaient entre 37 et 48 mois, et 32 (8,3 %) avaient entre 49 et 60 mois. Un total de 248 (64,6 %) sujets masculins ont montré une plus grande susceptibilité aux infections à DEC que leurs homologues féminins (n = 136 [35,4 %]) (χ2 [3] = 13,313 : P = [0,004]). Les sujets des zones urbaines (n = 248 [64,6 %]) ont significativement supporté le fardeau des infections par rapport à ceux des zones rurales (n = 136 [35,4 %]) (χ2 [3] = 35,147 : P = [0,000]). La prévalence de DEC semblait significativement plus élevée pendant la saison des pluies (n = 269 [70,1 %]).Conclusion:L'âge jeune, le sexe masculin, la surpopulation et la saison des pluies jouent un rôle central dans la transmission des pathotypes de DEC.


Subject(s)
Diarrhea , Escherichia coli Infections , Humans , Male , Female , Cross-Sectional Studies , Infant , Child, Preschool , Diarrhea/epidemiology , Diarrhea/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/transmission , Prevalence , Infant, Newborn , Escherichia coli/isolation & purification , Urban Population , Socioeconomic Factors , Rural Population , Age Distribution , Risk Factors , Sex Distribution , Seasons , Feces/microbiology
10.
Acta Vet Scand ; 66(1): 34, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020377

ABSTRACT

Monitoring the use of antimicrobials and the emergence of resistance in animals and people is important for the control of antimicrobial resistance, and for establishing sustainable and effective disease management practices. In this study, we used Enterococcus spp. and Escherichia coli as indicator species to investigate antimicrobial susceptibility patterns and how these change over time, on ten Swedish pig farms. Indoor environmental sock sampling was performed once a month during the entire production cycle of one batch of pigs on each farm, resulting in 60 samples collected in total. Selective culture for E. coli and Enterococcus spp. resulted in 122 isolates of E. coli, 74 isolates of E. faecium, but no isolates of E. faecalis. Microdilution was used to determine minimum inhibitory concentrations for twelve antimicrobial substances in E. coli and fifteen substances in E. faecium. The overall prevalence of resistance was low. Among the E. coli isolates, the proportions non-wild type (resistant, NWT) isolates were as follows: azithromycin and amikacin 1% (n = 1), trimethoprim and sulfamethoxazole 2% (n = 3), ampicillin 6% (n = 7) and tetracycline 9% (n = 11). Among the E. faecium isolates, the NWT proportions were: teicoplanin, linezolid and gentamicin 1% (n = 1), daptomycin 3% (n = 2), erythromycin 26% (n = 19), tetracycline 27% (n = 20), quinupristin/dalfopristin 58% (n = 42). The resistance patterns differed between the farms, likely due to different antimicrobial use, biosecurity measures and source of the animals. The NWT prevalence among E. coli decreased over time, whereas no similar trend could be observed in E. faecium. The results of the current study illustrate the complex factors affecting the antimicrobial resistance patterns observed on each farm, indicating that specific practices and risk factors have an impact on the prevalence and type of antimicrobial resistance. Further studies of the farm environments in combination with antimicrobial use and other risk factor data are needed to elucidate the multifaceted drivers of antimicrobial resistance development on livestock farms.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecium , Escherichia coli , Microbial Sensitivity Tests , Swine Diseases , Animals , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Swine , Anti-Bacterial Agents/pharmacology , Sweden/epidemiology , Microbial Sensitivity Tests/veterinary , Swine Diseases/microbiology , Swine Diseases/epidemiology , Farms , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Prevalence , Animal Husbandry/methods
11.
J Clin Lab Anal ; 38(10): e25081, 2024 May.
Article in English | MEDLINE | ID: mdl-38884333

ABSTRACT

BACKGROUND: The global spread of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) poses a significant concern. Acquisition of antimicrobial resistance genes leads to resistance against several antibiotics, limiting treatment options. We aimed to study ESBL-producing and CRE transmission in clinical settings. METHODS: From clinical samples, 227 ESBL-producing and CRE isolates were obtained. The isolates were cultured on bacterial media and confirmed by VITEK 2. Antibiograms were tested against several antibiotics using VITEK 2. The acquired resistance genes were identified by PCR. RESULTS: Of the 227 clinical isolates, 145 (63.8%) were Klebsiella pneumoniae and 82 (36.1%) were Escherichia coli; 76 (33.4%) isolates were detected in urine, 57 (25.1%) in pus swabs, and 53 (23.3%) in blood samples. A total of 58 (70.7%) ESBL-producing E. coli were resistant to beta-lactams, except for carbapenems, and 17.2% were amikacin-resistant; 29.2% of E. coli isolates were resistant to carbapenems. A total of 106 (73.1%) ESBL-producing K. pneumoniae were resistant to all beta-lactams, except for carbapenems, and 66.9% to ciprofloxacin; 38 (26.2%) K. pneumoniae were resistant to carbapenems. Colistin emerged as the most effective antibiotic against both bacterial types. Twelve (20.6%) E. coli isolates were positive for blaCTX-M, 11 (18.9%) for blaTEM, and 8 (33.3%) for blaNDM. Forty-six (52.3%) K. pneumoniae isolates had blaCTX-M, 27 (18.6%) blaTEM, and 26 (68.4%) blaNDM. CONCLUSION: This study found a high prevalence of drug-resistant ESBL-producing and CRE, highlighting the need for targeted antibiotic use to combat resistance.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Humans , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/isolation & purification , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Female , Male , Middle Aged , Adult , Aged , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Adolescent , Young Adult , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Child , Child, Preschool , Drug Resistance, Bacterial/genetics
12.
Microbiol Spectr ; 12(7): e0341523, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864635

ABSTRACT

Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.


Subject(s)
Escherichia coli Infections , Escherichia coli , Phylogeny , Poultry , Urinary Tract Infections , Whole Genome Sequencing , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Humans , Child , Poultry/microbiology , Adolescent , Child, Preschool , Infant , Male , Female , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/classification , Escherichia coli/pathogenicity , Multilocus Sequence Typing , Genome, Bacterial
14.
J Infect Dev Ctries ; 18(5): 761-769, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865401

ABSTRACT

BACKGROUND: Uropathogenic Escherichia coli (UPEC) isolates, have a wide variety of virulence factors to promote colonization and survival in the urinary tract. This study aimed to evaluate adhesin genes, biofilm formation ability, antibiotic resistance profiles of UPEC strains, and the related risk factors in patients with UTIs caused by drug-resistant UPEC. METHODOLOGY: A total of 105 UPEC isolates were evaluated for biofilm formation using 96-well microtiter plates, the presence of adhesin genes by PCR assay and the antimicrobial susceptibility pattern using the disk diffusion method. Demographic and clinical characteristics of patients were investigated to identify predisposing factors for drug-resistant isolates. RESULTS: Out of 105 UPEC isolates, 84.8% were positive for biofilm formation. Biofilm-producing isolates exhibited a significantly higher prevalence of fimH, kpsMTII, csgA, afa/draBC, and pap adhesin genes compared to non-biofilm-producing strains (p < 0.05). The results also revealed that 52.4% of the isolates were ESBL-producing, and 84.8% were multidrug-resistant (MDR). Further analysis of antibiotic susceptibility among ESBL-producing strains showed the highest resistance rates to ampicillin, ciprofloxacin, and trimethoprim-sulfamethoxazole. Conversely, the highest susceptibility, in addition to carbapenems, was observed for fosfomycin, amikacin, cefoxitin, and nitrofurantoin. We identified hypertension as a potential risk factor for infection with ESBL-producing UPEC strains. CONCLUSIONS: Our results revealed a significant rate of drug resistance among UPEC isolates obtained from UTIs in our region. This underscores the importance of monitoring the empirical use of antibiotics and identifying specific risk factors in our geographical area to guide the selection of appropriate empirical treatment for UTIs.


Subject(s)
Biofilms , Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Iran/epidemiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Urinary Tract Infections/microbiology , Urinary Tract Infections/epidemiology , Female , Risk Factors , Male , Biofilms/growth & development , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Adult , Middle Aged , Aged , Young Adult , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Virulence Factors/genetics , Adhesins, Escherichia coli/genetics , Adolescent , Child , Adhesins, Bacterial/genetics , Aged, 80 and over , Drug Resistance, Multiple, Bacterial/genetics , Polymerase Chain Reaction , Child, Preschool
15.
PLoS One ; 19(6): e0304599, 2024.
Article in English | MEDLINE | ID: mdl-38829840

ABSTRACT

Extended-spectrum beta-lactamase (ESBL) Escherichia coli (E. coli) is an emerging pathogen of high concern given its resistance to extended-spectrum cephalosporins. Broiler chicken, which is the number one consumed meat in the United States and worldwide, can be a reservoir of ESBL E. coli. Backyard poultry ownership is on the rise in the United States, yet there is little research investigating prevalence of ESBL E. coli in this setting. This study aims to identify the prevalence and antimicrobial resistance profiles (phenotypically and genotypically) of ESBL E. coli in some backyard and commercial broiler farms in the U.S. For this study ten backyard and ten commercial farms were visited at three time-points across flock production. Fecal (n = 10), litter/compost (n = 5), soil (n = 5), and swabs of feeders and waterers (n = 6) were collected at each visit and processed for E. coli. Assessment of ESBL phenotype was determined through using disk diffusion with 3rd generation cephalosporins, cefotaxime and ceftazidime, and that with clavulanic acid. Broth microdilution and whole genome sequencing were used to investigate both phenotypic and genotypic resistance profiles, respectively. ESBL E. coli was more prevalent in backyard farms with 12.95% of samples testing positive whereas 0.77% of commercial farm samples were positive. All isolates contained a blaCTX-M gene, the dominant variant being blaCTX-M-1, and its presence was entirely due to plasmids. Our study confirms concerns of growing resistance to fourth generation cephalosporin, cefepime, as roughly half (51.4%) of all isolates were found to be susceptible dose-dependent and few were resistant. Resistance to non-beta lactams, gentamicin and ciprofloxacin, was also detected in our samples. Our study identifies prevalence of blaCTX-M type ESBL E. coli in U.S. backyard broiler farms, emphasizing the need for interventions for food and production safety.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Plasmids , beta-Lactamases , Animals , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Chickens/microbiology , United States/epidemiology , Plasmids/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Prevalence , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Microbial Sensitivity Tests , Feces/microbiology , Escherichia coli Proteins/genetics , Farms
16.
J Vet Sci ; 25(3): e44, 2024 May.
Article in English | MEDLINE | ID: mdl-38834513

ABSTRACT

IMPORTANCE: The emergence and rapid increase in the incidence of multidrug-resistant (MDR) bacteria in pig farms has become a serious concern and reduced the choice of effective antibiotics. OBJECTIVE: This study analyzed the phylogenetics and diversity of antibiotic resistance genes (ARGs) and molecularly identified the source of ARGs in antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia. METHODS: Forty-four antibiotic-resistant E. coli isolates from fecal samples from 44 pig farms in Banten Province, Indonesia, were used as samples. The samples were categorized into 14 clusters. Sequencing was performed using the Oxford Nanopore Technologies MinION platform, with barcoding before sequencing with Nanopore Rapid sequencing gDNA-barcoding (SQK-RBK110.96) according to manufacturing procedures. ARG detection was conducted using ResFinder, and the plasmid replicon was determined using PlasmidFinder. RESULTS: Three phylogenetic leaves of E. coli were identified in the pig farming cluster in Banten Province. The E. coli isolates exhibited potential resistance to nine classes of antibiotics. Fifty-one ARGs were identified across all isolates, with each cluster carrying a minimum of 10 ARGs. The ant(3'')-Ia and qnrS1 genes were present in all isolates. ARGs in the E. coli pig farming cluster originated mainly from plasmids, accounting for an average of 89.4%. CONCLUSIONS AND RELEVANCE: The elevated potential for MDR events, coupled with the dominance of ARGs originating from plasmids, increases the risk of ARG spread among bacterial populations in animals, humans, and the environment.


Subject(s)
Escherichia coli Infections , Escherichia coli , Swine Diseases , Whole Genome Sequencing , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Swine , Indonesia/epidemiology , Swine Diseases/microbiology , Swine Diseases/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Whole Genome Sequencing/veterinary , Phylogeny , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
18.
Ann Clin Microbiol Antimicrob ; 23(1): 58, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907245

ABSTRACT

BACKGROUND: Escherichia. coli is the most frequent host for New Delhi metallo-ß-lactamase (NDM) which hydrolyzes almost all ß-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. OBJECTIVE: This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. METHODS: Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. RESULTS: Until March 2023, 1,774 out of 33,055 isolates collected during 2003-2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. CONCLUSIONS: The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health.


Subject(s)
Escherichia coli Infections , Escherichia coli , Genome, Bacterial , Plasmids , beta-Lactamases , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , beta-Lactamases/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Plasmids/genetics , Humans , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Genomics , Virulence Factors/genetics , Virulence/genetics , Global Health
19.
Nat Commun ; 15(1): 5196, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890378

ABSTRACT

Multi-drug resistant (MDR) E. coli constitute a major public health burden globally, reaching the highest prevalence in the global south yet frequently flowing with travellers to other regions. However, our comprehension of the entire genetic diversity of E. coli colonising local populations remains limited. We quantified this diversity, its associated antimicrobial resistance (AMR), and assessed the impact of antibiotic use by recruiting 494 outpatients and 423 community dwellers in the Punjab province, Pakistan. Rectal swab and stool samples were cultured on CLED agar and DNA extracted from plate sweeps was sequenced en masse to capture both the genetic and AMR diversity of E. coli. We assembled 5,247 E. coli genomes from 1,411 samples, displaying marked genetic diversity in gut colonisation. Compared with high income countries, the Punjabi population generally showed a markedly different distribution of genetic lineages and AMR determinants, while use of antibiotics elevated the prevalence of well-known globally circulating MDR clinical strains. These findings implicate that longitudinal multi-regional genomics-based surveillance of both colonisation and infections is a prerequisite for developing mechanistic understanding of the interplay between ecology and evolution in the maintenance and dissemination of (MDR) E. coli.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , High-Throughput Nucleotide Sequencing , Pakistan/epidemiology , Humans , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Feces/microbiology , Female , Male , Genome, Bacterial/genetics , Adult , Genetic Variation , Middle Aged , Young Adult , Phylogeny , Adolescent , Child
20.
Int J Food Microbiol ; 421: 110790, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878707

ABSTRACT

The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3″)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Sus scrofa , Animals , Italy , Sus scrofa/microbiology , Swine , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Anti-Bacterial Agents/pharmacology , Escherichia/genetics , Escherichia/isolation & purification , Escherichia/drug effects , Escherichia/pathogenicity , Swine Diseases/microbiology , Swine Diseases/epidemiology , Microbial Sensitivity Tests , Virulence/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL