Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.832
Filter
1.
Front Cell Infect Microbiol ; 14: 1401462, 2024.
Article in English | MEDLINE | ID: mdl-39091675

ABSTRACT

Introduction: Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods: Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion: Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.


Subject(s)
Limosilactobacillus reuteri , Macrophages , Probiotics , Uropathogenic Escherichia coli , Probiotics/pharmacology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/immunology , Limosilactobacillus reuteri/physiology , Animals , Mice , Macrophages/immunology , Macrophages/microbiology , Humans , Urothelium/microbiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/prevention & control , Cell Line , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , RAW 264.7 Cells , Epithelial Cells/microbiology , Chickens , Bacterial Adhesion/drug effects
2.
BMC Public Health ; 24(1): 2041, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080627

ABSTRACT

INTRODUCTION: Exposure to Escherichia coli (E. coli) is a risk factor for diarrhoeal diseases, which pose a significant problem in refugee settlements. Refugee populations are exposed to faecal microorganisms through multiple pathways including sub-optimal sanitary facilities, contaminated drinking water, produce and food, flood water, bathing water, and soil among others. While these pathways are well-documented, specific exposure behaviours remain underexplored. We assessed exposure behaviour to E. coli among households in Imvepi refugee settlement, Uganda, and provided evidence-based recommendations for the design of interventions to reduce excreta-related disease in refugee settlements. METHODS: Guided by the Sanitation Safety Planning approach, we surveyed 426 households in Imvepi refugee settlement, Uganda, using a digitized questionnaire and an observation checklist. We collected data on the background characteristics and exposure behaviour of women and emancipated girls (minors living on their own, having borne a child, married, or pregnant). The outcome variable, E. coli exposure behaviour, was measured using a five-point Likert scale, assessing behaviours that increase the risk of exposure. Data were cleaned in Microsoft Excel and analyzed in Stata version 17. Descriptive statistics were performed to summarize the data. We used modified Poisson regression to determine the factors associated with the outcome. RESULTS: Over 59.4% (253) exhibited high-risk exposure behaviour. Residing in compound homes (Adjusted Prevalence Ratio (APR) = 0.72, 95% Confidence interval (CI): 0.58-0.90), being aged 35-49 years (APR = 0.76, 95% CI: 0.60-0.97), having household heads with post-primary education (APR = 0.54, 95% CI: 0.38-0.77), high knowledge (APR = 0.69, 95% CI: 0.59-0.80), and high-risk perceptions regarding exposure to E. coli (APR = 0.75, 95% CI: 0.64-0.88) were associated with a lower prevalence of high-risk E. coli exposure behaviours. Conversely, having sanitary facilities with excreta overflowing from the squat hole (APR = 1.26, 95% CI: 1.08-1.48) was associated with a higher prevalence of high-risk exposure behaviours. CONCLUSION: The study indicates a substantial prevalence of high-risk E. coli exposure behaviours in the refugee settlement.. There's a need to implement behaviour change interventions targeted at preventing or minimizing exposure, especially among households whose heads have low education attainment, those with young caretakers and those with limited knowledge and low-risk perceptions regarding exposure to E. coli.


Subject(s)
Escherichia coli , Refugees , Humans , Refugees/statistics & numerical data , Refugees/psychology , Female , Uganda/epidemiology , Adult , Escherichia coli/isolation & purification , Male , Young Adult , Adolescent , Middle Aged , Family Characteristics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/prevention & control , Child , Surveys and Questionnaires , Sanitation/standards , Risk Factors , Child, Preschool , Environmental Exposure/adverse effects
3.
Sci Rep ; 14(1): 15387, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965339

ABSTRACT

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Subject(s)
Biofilms , Lactobacillus , Probiotics , Tryptamines , Uropathogenic Escherichia coli , Vagina , Biofilms/drug effects , Biofilms/growth & development , Humans , Tryptamines/pharmacology , Female , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/physiology , Probiotics/pharmacology , Vagina/microbiology , Lactobacillus/drug effects , Lactobacillus/metabolism , Lactobacillus/physiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Adult , Anti-Bacterial Agents/pharmacology
4.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38989625

ABSTRACT

Staphylococcus aureus, Escherichia coli and Mycoplasma bovis are the most commonly isolated mastitis pathogens. The aim of this study was to evaluate the efficacy of a new mixed vaccine against mastitis caused by  Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis. For this purpose, a mixed inactivated vaccine was administered subcutaneously to 24 heifers as one dose (2 mL) on the 45th day before birth and the second dose 21 days later. In 9 heifers, 2 mL of PBS was administered as placebo instead of vaccine. Then, heifers were divided into 3 groups as 7 vaccinated and 3 unvaccinated animals. Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis were administered to the groups through intramammary route. Three vaccinated heifers were considered the common control without bacteria in all groups. The parameters considered to assess the effect of vaccination were clinical findings, bacterial count in milk, somatic cell count, and antibody titers. Clinical signs were observed only in the unvaccinated placebo group. Bacteria count and somatic cell count in milk increased in vaccinated and unvaccinated heifers. However, this increase was less in vaccinated animals and gradually returned to the normal level. In the unvaccinated heifers, it was ever high. Serum antibody titers were measured before and after vaccination. Antibody titers were high in vaccinated heifers after vaccination and were negative in unvaccinated heifers. In conclusion, the mixed vaccine had beneficial effect against Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis mastitis and stimulated the immune response of vaccinated heifers.


Subject(s)
Escherichia coli , Mastitis, Bovine , Mycoplasma Infections , Mycoplasma bovis , Staphylococcal Infections , Staphylococcus aureus , Vaccines, Inactivated , Animals , Cattle , Mycoplasma bovis/immunology , Female , Mastitis, Bovine/prevention & control , Mastitis, Bovine/microbiology , Mastitis, Bovine/immunology , Staphylococcus aureus/immunology , Mycoplasma Infections/veterinary , Mycoplasma Infections/prevention & control , Vaccines, Inactivated/immunology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Infections/immunology
5.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034396

ABSTRACT

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Vaccinology , Humans , Epitopes, T-Lymphocyte/immunology , Vaccinology/methods , Epitopes, B-Lymphocyte/immunology , Vaccines, Combined/immunology , Genomics/methods , Enterohemorrhagic Escherichia coli/immunology , Salmonella/immunology , Animals , Computational Biology/methods , Molecular Docking Simulation , Escherichia coli Vaccines/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/immunology , Salmonella Infections/immunology , Salmonella Infections/prevention & control , Antigens, Bacterial/immunology , Vaccine Development/methods , Bacterial Vaccines/immunology
6.
Open Vet J ; 14(6): 1417-1425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39055761

ABSTRACT

Background: Escherichia coli is one of the serious pathogens causing various infections in the animal field, such as neonatal calf diarrhea, which is responsible for mortality associated with diarrhea during the first days of life. Aim: Current work is aimed at designing an effective and safe multiepitope vaccine candidate against E. coli infection in calves based on the fimbrial protein K99 of Enterotoxigenic E. coli (ETEC) and Immuno-informatics. Methods: A conserved sequence of K99 protein was generated, and then highly antigenic, nonallergic, and overlapped epitopes were used to construct a multiepitope vaccine. Five THL, six MHC II, and four beta cell epitopes were targeted to create the candidate. The candidate vaccine was produced utilizing 15 epitopes and three types of linkers, two types of untranslated region (UTR) human hemoglobin subunit beta (HBB), UTR beta-globin (Rabb), and RpfE protein as an immunomodulation adjuvant. Results: Immuno-informatics analysis of the constructed protein showed that the protein was antigenic (antigenic score of 0.8841), stable, nonallergen, and soluble. Furthermore, the Immuno-informatics and physiochemical analysis of the constructed protein showed a stable, nonallergic, soluble, hydrophilic, and acidic PI (isoelectric point). of 9.34. Docking of the candidate vaccine with the toll-like receptor TLR3 was performed, and results showed a strong interaction between the immune receptor and the vaccine. Finally, the expression efficiency of the construct in E. coli was estimated via computational cloning of the vaccine sequence into Pet28a. Conclusion: Results of immunoinformatics and in silico approaches reveal that the designed vaccine is antigenic, stable, and able to bind to the immune cell receptors. Our results interpret the proposed multiepitope mRNA vaccine as a good preventive option against E. coli infection in calves.


Subject(s)
Cattle Diseases , Computational Biology , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Vaccines , Animals , Cattle , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Cattle Diseases/prevention & control , Cattle Diseases/immunology , Cattle Diseases/microbiology , Epitopes/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Models, Molecular , Immunoinformatics
7.
Gut Microbes ; 16(1): 2359691, 2024.
Article in English | MEDLINE | ID: mdl-38825856

ABSTRACT

The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.


Subject(s)
Escherichia coli Infections , Escherichia coli Vaccines , Extraintestinal Pathogenic Escherichia coli , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli Vaccines/immunology , Extraintestinal Pathogenic Escherichia coli/genetics , Animals
8.
Microb Pathog ; 193: 106744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876321

ABSTRACT

Antibiotic resistance and re-emergence of highly resistant pathogens is a grave concern everywhere and this has consequences for all kinds of human activities. Herein, we showed that N-palmitoylethanolamine-derived cationic lipid (cN16E) had a lower minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative bacteria when it was loaded with Butea monosperma seed lectin (BMSL). The analysis using lectin-FITC conjugate labelling indicated that the improved antibacterial activity of BMSL conjugation was due to bacterial cell surface glycan recognition. Live and dead staining experiments revealed that the BMSL-cN16E conjugate (BcN16E) exerts antibacterial activity by damaging the bacterial membrane. BcN16E antimicrobial activity was demonstrated using an infected zebrafish animal model because humans have 70 % genetic similarity to zebrafish. BcN16E therapeutic potential was established successfully by rescuing fish infected with uropathogenic Escherichia coli (UPEC). Remarkably, the rescued infected fish treated with BcN16E prevented reinfection without further therapy, indicating BcN16E immunomodulatory potential. Thus, the study examined the expression of immune-related genes, including tnfα, ifnγ, il-1ß, il-4, il-10, tlr-2, etc. There was a significant elevation in the expression of all these genes compared to control and fish treated with BMSL or cN16E alone. Interestingly, when the rescued zebrafish were reinfected with the same pathogen, the levels of expression of these genes were many folds higher than seen earlier. Radial immune diffusion analyses (RIA) using zebrafish serum revealed antibody production during the initial infection and treatment. Interestingly, reinfected fish had significant immunoprecipitation in RIA, a feature absent in the groups treated with cN16E, BMSL, and control. These results clearly show that the BcN16E complex not only rescued infected zebrafish but also conferred long-lasting protection in terms of immunomodulation that protects against multiple reinfections. The findings support that BcN16E has immense potential as a novel immunostimulant for various biomedical applications.


Subject(s)
Immunomodulation , Microbial Sensitivity Tests , Zebrafish , Animals , Immunomodulation/drug effects , Disease Models, Animal , Reinfection/prevention & control , Anti-Bacterial Agents/pharmacology , Lipids/blood , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lectins/pharmacology , Cytokines/metabolism , Plant Lectins/pharmacology , Escherichia coli Infections/immunology , Escherichia coli Infections/prevention & control , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology
9.
Poult Sci ; 103(8): 103955, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917608

ABSTRACT

This systematic review aimed at investigating the role that biosecurity can have in preventing or controlling colibacillosis in broiler production. Primary studies with natural or experimental exposure to avian pathogenic Escherichia coli, evaluating any biosecurity measure to prevent or control colibacillosis in broiler chickens with at least one of the following outcomes: feed conversion ratio (FCR), condemnations at slaughter, and mortality due to colibacillosis, were included. A systematic search was carried out in 4 databases according to the Cochrane handbook and reported following the PRISMA 2020 directions. Studies (n = 3,886) were screened in a 2-phase process and data matching the inclusion criteria were extracted. Risk of bias assessment was performed. Four studies reporting biosecurity measures to prevent or control colibacillosis in broiler production were included. In all studies, only disinfection during either the pre-hatching period (n = 3) or the post-hatching period (n = 1) was evaluated as biosecurity measure in broiler production, as well as its effect on FCR (n = 2) and mortality (n = 4) due to colibacillosis. No studies with effects on condemnations at slaughter were found. Due to the heterogeneity of studies in regard to interventions and outcomes, meta-analysis was not carried out. The limited findings of this systematic review do not provide a comprehensive evidence to statistically evaluate the efficacy of biosecurity to prevent or control colibacillosis in broiler production. The scarcity of evidence found suggests that further and deeper investigations on the topic are needed, considering the variety of interventions related to biosecurity.


Subject(s)
Animal Husbandry , Chickens , Escherichia coli Infections , Poultry Diseases , Animals , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Animal Husbandry/methods , Escherichia coli/physiology
10.
NPJ Biofilms Microbiomes ; 10(1): 42, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697985

ABSTRACT

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.


Subject(s)
Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Weaning , Animals , Swine , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Animal Feed , Feces/microbiology
12.
Microbiol Spectr ; 12(6): e0421323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38700324

ABSTRACT

A US collection of invasive Escherichia coli serotype O1 bloodstream infection (BSI) isolates were assessed for genotypic and phenotypic diversity as the basis for designing a broadly protective O-antigen vaccine. Eighty percent of the BSI isolate serotype O1 strains were genotypically ST95 O1:K1:H7. The carbohydrate repeat unit structure of the O1a subtype was conserved in the three strains tested representing core genome multi-locus sequence types (MLST) sequence types ST95, ST38, and ST59. A long-chain O1a CRM197 lattice glycoconjugate antigen was generated using oxidized polysaccharide and reductive amination chemistry. Two ST95 strains were investigated for use in opsonophagocytic assays (OPA) with immune sera from vaccinated animals and in murine lethal challenge models. Both strains were susceptible to OPA killing with O1a glycoconjugate post-immune sera. One of these, a neonatal sepsis strain, was found to be highly lethal in the murine challenge model for which virulence was shown to be dependent on the presence of the K1 capsule. Mice immunized with the O1a glycoconjugate were protected from challenges with this strain or a second, genotypically related, and similarly virulent neonatal isolate. This long-chain O1a CRM197 lattice glycoconjugate shows promise as a component of a multi-valent vaccine to prevent invasive E. coli infections. IMPORTANCE: The Escherichia coli serotype O1 O-antigen serogroup is a common cause of invasive bloodstream infections (BSI) in populations at risk such as newborns and the elderly. Sequencing of US BSI isolates and structural analysis of O polysaccharide antigens purified from strains that are representative of genotypic sub-groups confirmed the relevance of the O1a subtype as a vaccine antigen. O polysaccharide was purified from a strain engineered to produce long-chain O1a O-antigen and was chemically conjugated to CRM197 carrier protein. The resulting glycoconjugate elicited functional antibodies and was protective in mice against lethal challenges with virulent K1-encapsulated O1a isolates.


Subject(s)
Escherichia coli Infections , Escherichia coli , Glycoconjugates , O Antigens , Animals , O Antigens/immunology , O Antigens/genetics , Mice , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Glycoconjugates/immunology , Humans , Serogroup , Escherichia coli Vaccines/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Female , Virulence , Vaccines, Conjugate/immunology , Multilocus Sequence Typing , Disease Models, Animal , Bacteremia/prevention & control , Bacteremia/microbiology , Bacteremia/immunology , Bacterial Proteins
13.
Sci Rep ; 14(1): 11053, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744900

ABSTRACT

This study investigated the influence of polyunsaturated fatty acid composition and vitamin E supplementation on oxidative status and immune responses in weanling piglets pre- and post-E. coli challenge. Suckling piglets (n = 24) were randomly selected from two litters for an oral supplementation (1 mL/day) with fish oil or hemp oil and vitamin E supplementation (60 mg natural vitamin E/mL oil) from day 10 to 28 of age. At day 29 and 30 of age, each piglet was orally inoculated with 6.7 × 108 and 3.96 × 108 CFU of F4 and F18 E. coli, respectively. Blood was sampled from all piglets on day 28 before E. coli challenge and on day 35 of age to investigate immunological and oxidative stress markers in plasma. One week after weaning and exposure to E. coli, a general reduction in the α-tocopherol concentration and activity of GPX1 was obtained. Vitamin E supplementation lowered the extent of lipid peroxidation and improved the antioxidative status and immune responses after E. coli challenge. Hemp oil had the greatest effect on antioxidant enzyme activity. Provision of hemp oil and vitamin E to suckling piglets may reduce the incidence of post-weaning diarrhea.


Subject(s)
Cannabis , Dietary Supplements , Escherichia coli Infections , Escherichia coli , Fish Oils , Oxidation-Reduction , Vitamin E , Animals , Vitamin E/pharmacology , Swine , Fish Oils/pharmacology , Fish Oils/administration & dosage , Cannabis/chemistry , Oxidation-Reduction/drug effects , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress/drug effects , Weaning , Lipid Peroxidation/drug effects , Swine Diseases/microbiology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/drug therapy
14.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38595949

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Subject(s)
Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Enterotoxins , Vaccines, Combined , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/microbiology , Escherichia coli Proteins/genetics , Vaccines, Inactivated , Antibodies, Bacterial , Swine Diseases/microbiology
15.
Nat Commun ; 15(1): 3021, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589401

ABSTRACT

Preterm birth is currently the leading cause of neonatal morbidity and mortality. Genetic, immunological and infectious causes are suspected. Preterm infants have a higher risk of severe bacterial neonatal infections, most of which are caused by Escherichia coli an in particular E. coli K1strains. Women with history of preterm delivery have a high risk of recurrence and therefore constitute a target population for the development of vaccine against E. coli neonatal infections. Here, we characterize the immunological, microbiological and protective properties of a live attenuated vaccine candidate in adult female mice and their pups against after a challenge by K1 and non-K1 strains of E. coli. Our results show that the E. coli K1 E11 ∆aroA vaccine induces strong immunity, driven by polyclonal bactericidal antibodies. In our model of meningitis, mothers immunized prior to mating transfer maternal antibodies to pups, which protect newborn mice against various K1 and non-K1 strains of E. coli. Given the very high mortality rate and the neurological sequalae associated with neonatal E. coli K1 meningitis, our results constitute preclinical proof of concept for the development of a live attenuated vaccine against severe E. coli infections in women at risk of preterm delivery.


Subject(s)
Escherichia coli Infections , Infant, Newborn, Diseases , Meningitis , Premature Birth , Infant , Adult , Infant, Newborn , Female , Animals , Mice , Humans , Escherichia coli/genetics , Vaccines, Attenuated , Premature Birth/prevention & control , Infant, Premature , Escherichia coli Infections/prevention & control , Infant, Newborn, Diseases/etiology , Antibodies , Meningitis/etiology
16.
J Agric Food Chem ; 72(18): 10328-10338, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651941

ABSTRACT

This work seeks to generate new knowledge about the mechanisms underlying the protective effects of cranberry against urinary tract infections (UTI). Using Caco-2 cells grown in Transwell inserts as an intestinal barrier model, we found that a cranberry-derived digestive fluid (containing 135 ± 5 mg of phenolic compounds/L) increased transepithelial electrical resistance with respect to control (ΔTEER = 54.5 Ω cm2) and decreased FITC-dextran paracellular transport by about 30%, which was related to the upregulation of the gene expression of tight junction (TJ) proteins (i.e., occludin, zonula occludens-1 [ZO-1], and claudin-2) (∼3-4-fold change with respect to control for claudin-2 and ∼2-3-fold for occludin and ZO-1). Similar protective effects, albeit to a lesser extent, were observed when Caco-2 cells were previously infected with uropathogenic Escherichia coli (UPEC). In a urinary barrier model comprising T24 cells grown in Transwell inserts and either noninfected or UPEC-infected, treatments with the cranberry-derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and phenylacetic acid (PAA) (250 µM) also promoted favorable changes in barrier integrity and permeability. In this line, incubation of noninfected T24 cells with these metabolites induced positive regulatory effects on claudin-2 and ZO-1 expression (∼3.5- and ∼2-fold change with respect to control for DOPAC and ∼1.5- and >2-fold change with respect to control for PAA, respectively). Overall, these results suggest that the protective action of cranberry polyphenols against UTI might involve molecular mechanisms related to the integrity and functionality of the urothelium and intestinal epithelium.


Subject(s)
Plant Extracts , Polyphenols , Urinary Tract Infections , Vaccinium macrocarpon , Vaccinium macrocarpon/chemistry , Humans , Urinary Tract Infections/prevention & control , Urinary Tract Infections/microbiology , Polyphenols/pharmacology , Polyphenols/chemistry , Polyphenols/metabolism , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Occludin/genetics , Occludin/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Tight Junctions/metabolism , Tight Junctions/drug effects , Fruit/chemistry , Intestines/drug effects , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology
17.
Infect Immun ; 92(5): e0044023, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38591882

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Extraintestinal Pathogenic Escherichia coli , Hemolysin Proteins , Animals , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Mice , Hemolysin Proteins/immunology , Hemolysin Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Female , Virulence Factors/genetics , Virulence Factors/immunology , Type V Secretion Systems/immunology , Type V Secretion Systems/genetics , Disease Models, Animal , Humans
18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38629856

ABSTRACT

Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.


Infection caused by the bacterium known as enterotoxigenic Escherichia coli (ETEC) is a common disruptor of weaned pigs' health, leading to economic losses for the producers. To determine if nutritional supplementation could help protect against these losses, weaned pigs were assigned to one of three treatments: 1) uninfected and fed a standard nursery pig diet, 2) infected with ETEC and fed the same standard diet, or 3) infected with ETEC and fed the standard diet supplemented with a combination of butyric, caprylic, and capric fatty acid monoglycerides. Growth performance was tracked throughout the 17-d study and health outcomes were measured at the peak and resolution of ETEC infection. At the peak-infection time point, pigs that were infected with ETEC had lower fecal moisture content, greater fecal bacterial concentrations, and elevated body temperatures compared with uninfected pigs. Additionally, infection reduced expression of genes related to inflammation, angiogenesis, and the intestinal barrier during the peak-infection period. Overall, all significant changes were the result of the ETEC infection, and there were no meaningful differences observed between the different treatments.


Subject(s)
Animal Feed , Dietary Supplements , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Monoglycerides , Swine Diseases , Animals , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Enterotoxigenic Escherichia coli/physiology , Male , Female , Animal Feed/analysis , Diet/veterinary , Intestines/microbiology , Diarrhea/veterinary , Diarrhea/microbiology , Feces/microbiology , Weaning
19.
Nutrients ; 16(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674854

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a commonly encountered foodborne pathogen that can cause hemorrhagic enteritis and lead to hemolytic uremic syndrome (HUS) in severe cases. Bifidobacterium is a beneficial bacterium that naturally exists in the human gut and plays a vital role in maintaining a healthy balance in the gut microbiota. This study investigated the protective effects of B. longum K5 in a mouse model of EHEC O157:H7 infection. The results indicated that pretreatment with B. longum K5 mitigated the clinical symptoms of EHEC O157:H7 infection and attenuated the increase in myeloperoxidase (MPO) activity in the colon of the mice. In comparison to the model group, elevated serum D-lactic acid concentrations and diamine oxidase (DAO) levels were prevented in the K5-EHEC group of mice. The reduced mRNA expression of tight junction proteins (ZO-1, Occludin, and Claudin-1) and mucin MUC2, as well as the elevated expression of virulence factors Stx1A and Stx2A, was alleviated in the colon of both the K5-PBS and K5-EHEC groups. Additionally, the increase in the inflammatory cytokine levels of TNF-α and IL-1ß was inhibited and the production of IL-4 and IL-10 was promoted in the K5-EHEC group compared with the model group. B. longum K5 significantly prevented the reduction in the abundance and diversity of mouse gut microorganisms induced by EHEC O157:H7 infection, including blocking the decrease in the relative abundance of Roseburia, Lactobacillus, and Oscillibacter. Meanwhile, the intervention with B. longum K5 promoted the production of acetic acid and butyric acid in the gut. This study provides insights into the use of B. longum K5 for developing probiotic formulations to prevent intestinal diseases caused by pathogenic bacterial infections.


Subject(s)
Bifidobacterium longum , Colon , Escherichia coli Infections , Escherichia coli O157 , Gastrointestinal Microbiome , Probiotics , Animals , Mice , Probiotics/pharmacology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Colon/microbiology , Colon/metabolism , Disease Models, Animal , Mucin-2/metabolism , Cytokines/metabolism , Peroxidase/metabolism , Amine Oxidase (Copper-Containing)/metabolism
20.
Vaccine ; 42(10): 2707-2715, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38503663

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is primarily responsible for causing septicemia, pneumonitis, peritonitis, swollen head syndrome, and salpingitis in poultry, leading to significant losses in the poultry sector, particularly within the broiler industry. The removal of the lpxL and lpxM genes led to an eightfold decrease in the endotoxin levels of wild APEC strains. In this study, mutant strains of lpxL/lpxM and their O1, O2, and O78 wild-type strains were developed for an inactivated vaccine (referred to as the mutant vaccine and the wild-type vaccine, respectively), and the safety and effectiveness of these two prototype vaccines were assessed in white Leghorn chickens. Findings indicated that chickens immunized with the mutant vaccine showed a return of appetite sooner post-immunization and experienced earlier disappearance of nodules at the injection site compared to those immunized with the wild-type vaccine. Pathological examinations revealed that lesions were still present in the liver, lung, and injection site in chickens vaccinated with the wild-type vaccine 14 days post-vaccination (dpv), whereas no lesions were found in chickens vaccinated with the mutant vaccine at 14 dpv. There were no significant differences in antibody levels on the challenge day or in mortality or lesion scores between challenged birds immunized with either the mutant vaccine or the wild-type vaccine at the same dose. In this study, the safety of a single dose or overdose of the mutant vaccine and its efficacy at one dose were evaluated in broilers, and the results showed that the mutant vaccine had no adverse effects on or protected vaccinated broilers from challenge with the APEC O1, O2, or O78 strains. These results demonstrated that the mutant polyvalent inactivated vaccine is a competitive candidate against APEC O1, O2, and O78 infection compared to the wild-type vaccine.


Subject(s)
Escherichia coli Infections , Escherichia coli Vaccines , Poultry Diseases , Animals , Escherichia coli/genetics , Chickens , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Vaccines, Inactivated/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL