Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Handb Clin Neurol ; 203: 123-133, 2024.
Article in English | MEDLINE | ID: mdl-39174244

ABSTRACT

The primary episodic ataxias (EAs) are a group of autosomal-dominant disorders characterized by transient recurrent incoordination and truncal instability, often triggered by physical exertion or emotional stress and variably associated with progressive baseline ataxia. There are now nine designated subtypes EA1-9 (OMIM) and late onset cerebellar ataxia with episodic features as newly designated SCA27B, based largely on genetic loci. Mutations have been identified in multiple individuals and families in 4 of the 9 EA subtypes, mostly with the onset before adulthood. This chapter focuses on the clinical assessment and management of EA, genetic diagnosis, and neurophysiologic consequences of the causative mutations in the best characterized EA syndromes: EA1 caused by mutations in KCNA1 encoding a neuronal voltage-gated potassium channel, EA2 caused by mutations in CACNA1A encoding a neuronal voltage-gated calcium channel, EA6 caused by mutations in SLC1A3 encoding a glutamate transporter that is also an anion channel, and SCA27B with late onset episodic ataxia caused by an intronic trinucleotide repeat in FGF14 encoding fibroblast growth factor 14 important in regulating the distribution of voltage-gated sodium channels in the cerebellar Purkinje and granule cells. The study of EA has illuminated previously unrecognized but important roles of ion channels and transporters in brain function with shared mechanisms underlying cerebellar ataxia, migraine, and epilepsy.


Subject(s)
Ataxia , Mutation , Humans , Ataxia/genetics , Ataxia/diagnosis , Mutation/genetics , Fibroblast Growth Factors/genetics , Kv1.1 Potassium Channel/genetics , Calcium Channels/genetics , Excitatory Amino Acid Transporter 1
2.
Biochim Biophys Acta Gen Subj ; 1868(10): 130675, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059510

ABSTRACT

BACKGROUND: We investigated the unknown mechanisms of osimertinib-resistant EGFR-mutant lung cancer. METHODS: An osimertinib-resistant cell line (PC-9/OsmR2) was established through continuous exposure to osimertinib using an EGFR exon 19 deletion (19Del) lung adenocarcinoma cell line (PC-9). EGFR 19Del (M1), L858R/T790M/C797S (M6), and L858R/C797S (M8) expression vectors were introduced into Ba/F3 cells. A second osimertinib-resistant line (M1/OsmR) was established through continuous exposure to osimertinib using M1 cells. RESULTS: SLC1A3 had the highest mRNA expression level in PC-9/OsmR2 compared to PC-9 cells by microarray analysis and SLC1A3 was increased by flow cytometry. In PC-9/OsmR2 cells, osimertinib sensitivity was significantly increased in combination with siSLC1A3. Because SLC1A3 functions in glutamic acid transport, osimertinib with a glutaminase inhibitor (CB-839) or an SLC1A3 inhibitor (TFB-TBOA) increased the sensitivity. Also, CB-839 plus TFB-TBOA without osimertinib resulted in greater susceptibility than did CB-839 or TFB-TBOA plus osimertinib. Comprehensive metabolome analysis showed that the M1/OsmR cells had significantly more glutamine and glutamic acid than M1 cells. CB-839 plus osimertinib exerted a synergistic effect on M6 cells and an additive effect on M8 cells. CONCLUSION: Targeting glutaminase and glutamic acid may overcome the osimertinib-resistant EGFR-mutant lung cancer.


Subject(s)
Acrylamides , Aniline Compounds , Drug Resistance, Neoplasm , ErbB Receptors , Glutaminase , Lung Neoplasms , Mutation , Humans , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Glutaminase/genetics , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Benzeneacetamides/pharmacology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Animals , Indoles , Pyrimidines , Thiadiazoles
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1079-1087, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977337

ABSTRACT

OBJECTIVE: To investigate the protective effect of exogenous leptin against focal cerebral ischemia-reperfusion (I/R) injury in mice and explore the underlying mechanism. METHODS: A total of 100 C57BL/6 mice were randomly divided into 5 groups, including a sham-operated group, cerebral I/R model group, and 3 leptin treatment groups with intraperitoneal injections of 0.5, 1.0 or 2.0 leptin immediately after occlusion of the internal carotid artery. At 24 h after reperfusion, neurological function scores of the mice were assessed, and TTC staining was used to determine the area of cerebral infarction. The pathological changes in the cortical brain tissue of the mice were observed using HE staining, and degenerative damage of the cortical neurons were assessed with Fluoro-Jade C staining. The expression of glial fibrillary acidic protein in cortical brain tissues was detected using immunohistochemistry and Western blotting. In another 45 C57BL/6 mice with sham operation, I/R modeling, or leptin (1 mg/kg) treatment, glutamic acid in the cortical brain tissue was detected using glutamate assay, and cortical glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) protein expressions were detected using immunohistochemistry. RESULTS: Compared with the I/R model mice, the leptin-treated mice had significantly lower neurological deficit scores, smaller cerebral infarct area, milder pathologies in the cortical brain tissue, and lessened cortical neuronal damage with normal morphology and less excessive proliferation of the astrocytes. Leptin treatment significantly up-regulated the expressions of GLT-1 and GLAST and lowered the content of glutamic acid in the brain tissue of the I/R mice. CONCLUSION: Exogenous leptin has obvious neuroprotective effect against cerebral I/R injury in mice, mediated probably by controlling excessive astrocyte proliferation and up-regulating cortical GLT-1 and GLAST expressions to reduce glutamate-mediated excitotoxic injury of the astrocytes.


Subject(s)
Astrocytes , Brain Ischemia , Excitatory Amino Acid Transporter 1 , Excitatory Amino Acid Transporter 2 , Glutamic Acid , Leptin , Mice, Inbred C57BL , Reperfusion Injury , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Leptin/metabolism , Mice , Reperfusion Injury/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Brain Ischemia/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Glial Fibrillary Acidic Protein/metabolism , Up-Regulation , Male , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neurons/metabolism
4.
Genes (Basel) ; 15(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927733

ABSTRACT

Dysfunction in ion channels or processes involved in maintaining ionic homeostasis is thought to lower the threshold for cortical spreading depression (CSD), and plays a role in susceptibility to associated neurological disorders, including pathogenesis of a migraine. Rare pathogenic variants in specific ion channels have been implicated in monogenic migraine subtypes. In this study, we further examined the channelopathic nature of a migraine through the analysis of common genetic variants in three selected ion channel or transporter genes: SLC4A4, SLC1A3, and CHRNA4. Using the Agena MassARRAY platform, 28 single-nucleotide polymorphisms (SNPs) across the three candidate genes were genotyped in a case-control cohort comprised of 182 migraine cases and 179 matched controls. Initial results identified significant associations between migraine and rs3776578 (p = 0.04) and rs16903247 (p = 0.05) genotypes within the SLC1A3 gene, which encodes the EAAT1 glutamate transporter. These SNPs were subsequently genotyped in an independent cohort of 258 migraine cases and 290 controls using a high-resolution melt assay, and association testing supported the replication of initial findings-rs3776578 (p = 0.0041) and rs16903247 (p = 0.0127). The polymorphisms are in linkage disequilibrium and localise within a putative intronic enhancer region of SLC1A3. The minor alleles of both SNPs show a protective effect on migraine risk, which may be conferred via influencing the expression of SLC1A3.


Subject(s)
Excitatory Amino Acid Transporter 1 , Genetic Predisposition to Disease , Migraine Disorders , Polymorphism, Single Nucleotide , Humans , Migraine Disorders/genetics , Female , Male , Excitatory Amino Acid Transporter 1/genetics , Adult , Case-Control Studies , Middle Aged , Genetic Association Studies
5.
Fly (Austin) ; 18(1): 2368336, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38884422

ABSTRACT

The Drosophila melanogaster brain is a complex organ with various cell types, orchestrating the development, physiology, and behaviors of the fly. While each cell type in Drosophila brain is known to express a unique gene set, their complete genetic profile is still unknown. Advances in the RNA sequencing techniques at single-cell resolution facilitate identifying novel cell type markers and/or re-examining the specificity of the available ones. In this study, exploiting a single-cell RNA sequencing data of Drosophila optic lobe, we categorized the cells based on their expression pattern for known markers, then the genes with enriched expression in astrocytes were identified. CG11000 was identified as a gene with a comparable expression profile to the Eaat1 gene, an astrocyte marker, in every individual cell inside the Drosophila optic lobe and midbrain, as well as in the entire Drosophila brain throughout its development. Consistent with our bioinformatics data, immunostaining of the brains dissected from transgenic adult flies showed co-expression of CG11000 with Eaat1 in a set of single cells corresponding to the astrocytes in the Drosophila brain. Physiologically, inhibiting CG11000 through RNA interference disrupted the normal development of male D. melanogaster, while having no impact on females. Expression suppression of CG11000 in adult flies led to decreased locomotion activity and also shortened lifespan specifically in astrocytes, indicating the gene's significance in astrocytes. We designated this gene as 'deathstar' due to its crucial role in maintaining the star-like shape of glial cells, astrocytes, throughout their development into adult stage.


Subject(s)
Astrocytes , Drosophila Proteins , Drosophila melanogaster , Locomotion , Longevity , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Astrocytes/metabolism , Astrocytes/cytology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Longevity/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/genetics , Male , Female , Brain/metabolism , Brain/cytology , Brain/growth & development
6.
Horm Behav ; 162: 105548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636205

ABSTRACT

Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.


Subject(s)
Anxiety , Congenital Hypothyroidism , Excitatory Amino Acid Transporter 2 , Hippocampus , Rats, Wistar , Animals , Male , Hippocampus/metabolism , Anxiety/metabolism , Anxiety/etiology , Rats , Female , Congenital Hypothyroidism/metabolism , Pregnancy , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Thyroid Hormones/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 3/metabolism , Excitatory Amino Acid Transporter 3/genetics , Behavior, Animal/physiology , Propylthiouracil , Amino Acid Transport System X-AG/metabolism , Amino Acid Transport System X-AG/genetics , Prenatal Exposure Delayed Effects/metabolism
7.
J Biol Chem ; 300(6): 107299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641063

ABSTRACT

ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Cell Survival , Glutamine , Minor Histocompatibility Antigens , Neoplasm Proteins , Oxidative Stress , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Glutamine/metabolism , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/genetics , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Reactive Oxygen Species/metabolism , Amino Acid Transport System ASC
8.
Neurosci Lett ; 825: 137711, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38432356

ABSTRACT

The gut microbiota is associated with memory; however, the relationship between dysbiosis-induced memory deficits and hippocampal glutamatergic neurons remains unclear. In our study, a mouse dysbiosis model showed impaired memory-related behavior in the passive avoidance test; decreased expression levels of glutaminase, excitatory amino acid transporter (EAAT)1, EAAT2, vesicular glutamate transporter 2, synaptophysin, brain-derived neurotrophic factor, doublecortin, neuronal nuclear protein, glial fibrillary acidic protein, and S100ß; and decreased phosphorylation of N-methyl-D-aspartate receptor subunit 1, calmodulin-dependent protein kinase II, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 1, and cAMP response element-binding protein in the hippocampus. This suggests that dysbiosis-induced memory dysfunction is associated with the hippocampal glutamatergic nervous system.


Subject(s)
Anti-Bacterial Agents , Dysbiosis , Mice , Animals , Dysbiosis/metabolism , Hippocampus/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Excitatory Amino Acid Transporter 1/metabolism
9.
J Ethnopharmacol ; 325: 117857, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38350506

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Zhichan decoction (BSZCF) is derived from Liuwei Dihuang Pill, a famous Chinese herbal formula recorded in the book Key to Therapeutics of Children's Diseases. It has been widely used as a basic prescription for nourishing and tonifying the liver and kidneys to treat Parkinson's disease (PD), but its mechanism remains to be explored. AIM OF THE STUDY: BSZCF, a Chinese herbal formula comprising five herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea oppositifolia L., Cornus officinalis Siebold & Zucc., Fallopia multiflora (Thunb.) Haraldson and Cistanche tubulosa (Schenk) Wight, is used clinically to treat PD. In vivo and in vitro experiments were designed to elucidate the mechanism of BSZCF in the protection of dopamine (DA) neurons and the treatment of PD. The toxicity of excitatory amino acids (EAA) may be attenuated by inhibiting the transcription factor Yin Yang 1 (YY1) and up-regulating the expression of excitatory amino acid transporter 1 (EAAT1). MATERIALS AND METHODS: IN VIVO: After 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was intraperitoneally injected into specific pathogen free (SPF) C57BL/6J mice, model mice were intragastrically given adamantane hydrochloride tablets (AHT) or different doses of BSZCF for 14 days. Both open field and pole-climbing tests were conducted to assess behavioral changes. In vitro: 1-Methyl-4-phe-nylpyridiniumiodide (MPP+)-injured human neuroblastoma cells (SH-SY5Y) were utilized to construct PD cell models. Primary astrocytes were transfected with EAAT1 and YY1 lentiviruses for EAAT1 gene knockout and YY1 gene knockout astrocytes, respectively. The high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of BSZCF was performed to control the quality of blood drugs. The optimal concentration and time of PD cell models treated by BSZCF were determined by the use of Cell Counting Kit-8 (CCK8). Enzyme-linked immunosorbent assay (ELISA) was used for measuring glutamate (Glu) in the peripheral blood and cells of each group. Western blotting (WB) and real-time quantitative polymerase chain reaction (qPCR) were used to detect tyrosine hydroxylase (TH), dopamine transporters (DAT), EAAT1 and YY1 protein and mRNA. After the blockade of EAAT1, immunofluorescence (IF) assay was used to detect the TH protein in each group. RESULTS: In vivo research showed that BSZCF improved the behavioral symptoms of PD mice, and reduced the death of DA neurons and the level of Glu. The mechanism may be related to the decrease of YY1 expression and the increase of EAAT1 levels. In vitro experiments showed that the anti-excitatory amino acid toxicity of BSZCF was achieved by inhibiting YY1 expression and regulating EAAT1. CONCLUSIONS: By inhibiting YY1 to increase the expression of EAAT1 and attenuating the toxicity of Glu, BSZCF exerts the effect of protecting DA neurons and treating PD-like symptoms in mice.


Subject(s)
Neuroblastoma , Parkinson Disease , Child , Humans , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Dopamine , Mice, Inbred C57BL , Excitatory Amino Acids/therapeutic use , Disease Models, Animal , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/therapeutic use
10.
Science ; 383(6683): eade8064, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38330107

ABSTRACT

Penile erection is mediated by the corpora cavernosa, a trabecular-like vascular bed that enlarges upon vasodilation, but its regulation is not completely understood. Here, we show that perivascular fibroblasts in the corpora cavernosa support vasodilation by reducing norepinephrine availability. The effect on penile blood flow depends on the number of fibroblasts, which is regulated by erectile activity. Erection dynamically alters the positional arrangement of fibroblasts, temporarily down-regulating Notch signaling. Inhibition of Notch increases fibroblast numbers and consequently raises penile blood flow. Continuous Notch activation lowers fibroblast numbers and reduces penile blood perfusion. Recurrent erections stimulate fibroblast proliferation and limit vasoconstriction, whereas aging reduces the number of fibroblasts and lowers penile blood flow. Our findings reveal adaptive, erectile activity-dependent modulation of penile blood flow by fibroblasts.


Subject(s)
Excitatory Amino Acid Transporter 1 , Fibroblasts , Penile Erection , Penis , Receptors, Notch , Animals , Male , Mice , Blood Circulation , Excitatory Amino Acid Transporter 1/metabolism , Fibroblasts/metabolism , Fibroblasts/physiology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Penile Erection/physiology , Penis/blood supply , Penis/physiology , Receptors, Notch/metabolism , Signal Transduction , Vasoconstriction , Vasodilation
11.
Science ; 383(6683): 588-589, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38330119
12.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334617

ABSTRACT

We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.


Subject(s)
Nanotubes, Carbon , Mice , Animals , Humans , Astrocytes/metabolism , Cytokines/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism
13.
Neurochem Int ; 173: 105658, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135159

ABSTRACT

The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.


Subject(s)
Glutamate Plasma Membrane Transport Proteins , Ischemic Preconditioning , Humans , Glutamate Plasma Membrane Transport Proteins/metabolism , Glutamic Acid/toxicity , Glutamic Acid/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 3/metabolism , Excitatory Amino Acids , Ischemia
14.
Acta Physiologica Sinica ; (6): 287-293, 2002.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-279296

ABSTRACT

To study the relationship between tau hyperphosphorylation and the function of glutamate transporter okadaic acid (OA), a protein phosphatase inhibitor, 20 ng in a 0.5 microl volume, was injected into the frontal cortex of rat brain and immunostaining was used to observe the phosphorylation of tau protein and the expression of excitatory amino acid transporter 1 (EAAT1) in the brain following the injection. The results showed that (1) the neurons in the center of the injection region displayed cytoplasmic shrinkage, swelling, nuclear pyknosis, and dislocation at the early stage, and necrosis appeared 3 d after the injection. However, most neurons in the peri-injected areas showed normal morphological characters with immuno positive reaction for AT8, a tau phosphorylated marker; (2) morphological analysis showed that tau hyperphosphorylation caused by OA treatment was mainly observed in the axons and dendrites of neuronal cells at 6 h in the cell body at 1 d, which brought about dystrophic neurites and neurofibrillary tangle (NFT)-like pathological changes; (3) the induction of glutamate transporter EAAT1 was observed in the involved areas corresponding to that with AT8 immunopositive staining, and the number of EAAT1-positive staining cells markedly increased at 12 h (P<0.01), peaked at 1 d (P<0.001), then decreased at 3 d following the injection. Combined with a confocal laser scanning microscopic analysis, double fluorescent immunostaining showed that EAAT1 positive staining appeared in neurons as well as astrocytes in the peri-injected areas of the frontal cortex. These results demonstrate that OA increases glutamate transporter EAAT1 expression in neurons while it induces tau hyperphosphorylation. However, the mechanism and significance of the induction of glutamate transporter EAAT1 expression remain to be further elucidated.


Subject(s)
Animals , Rats , Astrocytes , Metabolism , Axons , Metabolism , Brain , Cell Biology , Dendrites , Metabolism , Excitatory Amino Acid Transporter 1 , Metabolism , Neurofibrillary Tangles , Pathology , Neurons , Metabolism , Okadaic Acid , Pharmacology , Phosphorylation , tau Proteins , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL