Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.986
Filter
1.
Clin Nucl Med ; 49(8): e392-e393, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38967509

ABSTRACT

ABSTRACT: Metastatic insulinomas can cause recurrent hypoglycemia requiring continuous IV glucose infusion. Various medical and chemotherapeutic treatment options are used to reduce the patient's risk of death due to hypoglycemia. Treatment-resistant hepatic metastatic insulinomas may benefit clinically from 90Y transarterial radioembolization therapy. In this case, we present a case of liver metastatic insulinoma that achieved clinical improvement after 2 cycles of 90Y microspheres transarterial radioembolization, and the presence of active metastases was demonstrated with 68Ga-NODAGA-exendin-4 PET/CT imaging.


Subject(s)
Embolization, Therapeutic , Exenatide , Gallium Radioisotopes , Hypoglycemia , Insulinoma , Positron Emission Tomography Computed Tomography , Yttrium Radioisotopes , Humans , Insulinoma/diagnostic imaging , Yttrium Radioisotopes/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Acetates , Liver Neoplasms/secondary , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Male , Neoplasm Metastasis , Middle Aged
2.
Sci Rep ; 14(1): 13726, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877189

ABSTRACT

Glucagon-like peptide 1 receptor (GLP-1R) agonist is an emerging anti-diabetic medication whose effects on the risk and progression of cholangiocarcinoma (CCA) are controversial. This study aimed to elucidate the roles of GLP-1R and its agonists on intrahepatic CCA (iCCA) progression. Expressions of GLP-1R in iCCA tissues investigated by immunohistochemistry showed that GLP-1R expressions were significantly associated with poor histological grading (P = 0.027). iCCA cell lines, KKU-055 and KKU-213A, were treated with exendin-4 and liraglutide, GLP-1R agonists, and their effects on proliferation and migration were assessed. Exendin-4 and liraglutide did not affect CCA cell proliferation in vitro, but liraglutide significantly suppressed the migration of CCA cells, partly by inhibiting epithelial-mesenchymal transition. In contrast, liraglutide significantly reduced CCA tumor volumes and weights in xenografted mice (P = 0.046). GLP-1R appeared downregulated when CCA cells were treated with liraglutide in vitro and in vivo. In addition, liraglutide treatment significantly suppressed Akt and STAT3 signaling in CCA cells, by reducing their phosphorylation levels. These results suggested that liraglutide potentially slows down CCA progression, and further clinical investigation would benefit the treatment of CCA with diabetes mellitus.


Subject(s)
Bile Duct Neoplasms , Cell Movement , Cell Proliferation , Cholangiocarcinoma , Epithelial-Mesenchymal Transition , Glucagon-Like Peptide-1 Receptor , Liraglutide , Xenograft Model Antitumor Assays , Liraglutide/pharmacology , Liraglutide/therapeutic use , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Humans , Animals , Cell Line, Tumor , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , Male , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Cell Movement/drug effects , Female , Disease Progression , Middle Aged , Signal Transduction/drug effects , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , STAT3 Transcription Factor/metabolism , Exenatide/pharmacology , Exenatide/therapeutic use , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism
3.
Diabetes ; 73(7): 1027-1031, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38900951

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor involved in the regulation of blood glucose levels and food intake. Stabilized agonists targeting GLP-1R are used in the treatment of type 2 diabetes and have recently become a breakthrough obesity therapy. Here, we revisit a classic article in Diabetes by Thorens et al. that described the cloning, sequencing, and functional expression of the human GLP-1R. The article also demonstrated that exendin4(1-39) was a full agonist of the human GLP-1R whereas exendin4(9-39) was a full antagonist. We discuss how the knowledge imparted by these studies has gone on to inform multiple strands of GLP-1R biology over the past three decades, including pharmacology, signaling, human genetics, structural biology, and chemical biology.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Exenatide/therapeutic use , Exenatide/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Animals , Peptides/therapeutic use
4.
Inflamm Res ; 73(7): 1185-1201, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38748233

ABSTRACT

OBJECTIVE: Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS: 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1ß and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS: At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1ß and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS: Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.


Subject(s)
Diabetes Mellitus, Experimental , Exenatide , Nod1 Signaling Adaptor Protein , Pseudomonas Infections , Pseudomonas aeruginosa , Rats, Sprague-Dawley , Animals , Exenatide/pharmacology , Exenatide/therapeutic use , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Male , Pseudomonas Infections/drug therapy , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Cytokines/metabolism , Receptors, G-Protein-Coupled/metabolism , NF-kappa B/metabolism , Lung/pathology , Lung/drug effects , Lung/microbiology , Cell Line , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Rats , Lipopolysaccharides , Peptides/pharmacology , Peptides/therapeutic use
5.
Am J Physiol Cell Physiol ; 327(1): C74-C96, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38738303

ABSTRACT

Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic ß cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Incretins , Mice, Inbred C57BL , Obesity , Animals , Obesity/metabolism , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , Male , Incretins/pharmacology , Incretins/metabolism , Protein Transport/drug effects , Glycemic Control/methods , Mice, Obese , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Humans , Diet, High-Fat/adverse effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Insulin/metabolism , Exenatide/pharmacology , Signal Transduction/drug effects , Cyclic AMP/metabolism
6.
Eur J Pharm Biopharm ; 200: 114339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789061

ABSTRACT

Peptides, despite their therapeutic potential, face challenges with undesirable pharmacokinetic (PK) properties and biodistribution, including poor oral absorption and cellular uptake, and short plasma elimination half-lives. Lipidation of peptides is a common strategy to improve their physicochemical and PK properties, making them viable drug candidates. For example, the plasma half-life of peptides has been extended via conjugation to lipids that are proposed to promote binding to serum albumin and thus protect against rapid clearance. Recent work has shown that lipid conjugation to oligodeoxynucleotides, polymers and small molecule drugs results in association not only with albumin, but also with lipoproteins, resulting in half-life prolongation and transport from administration sites via the lymphatics. Enhancing delivery into the lymph increases the efficacy of vaccines and therapeutics with lymphatic targets such as immunotherapies. In this study, the plasma PK, lymphatic uptake, and bioavailability of the glucagon-like peptide-1 (GLP-1) receptor agonist peptides, liraglutide (lipidated) and exenatide (non-lipidated), were investigated following subcutaneous (SC) administration to rats. As expected, liraglutide displayed an apparent prolonged plasma half-life (9.1 versus 1 h), delayed peak plasma concentrations and lower bioavailability (∼10 % versus ∼100 %) compared to exenatide after SC administration. The lymphatic uptake of both peptides was relatively low (<0.5 % of the dose) although lymph to plasma concentration ratios were greater than one for several early timepoints suggesting some direct uptake into lymph. The low lymphatic uptake may be due to the nature of the conjugated lipid (a single-chain C16 palmitic acid in liraglutide) but suggests that other peptides with similar lipid conjugations may also have relatively modest lymphatic uptake. If delivery to the lymph is desired, conjugation to more lipophilic moieties with higher albumin and/or lipoprotein binding efficiencies, such as diacylglycerols, may be appropriate.


Subject(s)
Exenatide , Liraglutide , Peptides , Rats, Sprague-Dawley , Animals , Exenatide/pharmacokinetics , Exenatide/administration & dosage , Exenatide/pharmacology , Liraglutide/pharmacology , Liraglutide/pharmacokinetics , Liraglutide/administration & dosage , Rats , Male , Peptides/pharmacokinetics , Peptides/administration & dosage , Lipids/chemistry , Half-Life , Venoms/pharmacokinetics , Venoms/administration & dosage , Biological Availability , Tissue Distribution , Injections, Subcutaneous , Lymph/metabolism , Lymph/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide 1/pharmacokinetics , Glucagon-Like Peptide 1/metabolism , Lymphatic System/metabolism , Lymphatic System/drug effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology
7.
Med Oncol ; 41(6): 138, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705935

ABSTRACT

Breast cancer (BC) is associated with type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide (GLP)-1 regulates post-prandial insulin secretion, satiety, and gastric emptying. Several GLP-1 analogs have been FDA-approved for the treatment of T2DM and obesity. Moreover, GLP-1 regulates various metabolic activities across different tissues by activating metabolic signaling pathways like adenosine monophosphate (AMP) activated protein kinase (AMPK), and AKT. Rewiring metabolic pathways is a recognized hallmark of cancer, regulated by several cancer-related pathways, including AKT and AMPK. As GLP-1 regulates AKT and AMPK, we hypothesized that it alters BC cells' metabolism, thus inhibiting proliferation. The effect of the GLP-1 analogs exendin-4 (Ex4) and liraglutide on viability, AMPK signaling and metabolism of BC cell lines were assessed. Viability of BC cells was evaluated using colony formation and MTT/XTT assays. Activation of AMPK and related signaling effects were evaluated using western blot. Metabolism effects were measured for glucose, lactate and ATP. Exendin-4 and liraglutide activated AMPK in a cAMP-dependent manner. Blocking Ex4-induced activation of AMPK by inhibition of AMPK restored cell viability. Interestingly, Ex4 and liraglutide reduced the levels of glycolytic metabolites and decreased ATP production, suggesting that GLP-1 analogs impair glycolysis. Notably, inhibiting AMPK reversed the decline in ATP levels, highlighting the role of AMPK in this process. These results establish a novel signaling pathway for GLP-1 in BC cells through cAMP and AMPK modulation affecting proliferation and metabolism. This study suggests that GLP-1 analogs should be considered for diabetic patients with BC.


Subject(s)
Breast Neoplasms , Exenatide , Glucagon-Like Peptide 1 , Liraglutide , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Exenatide/pharmacology , Female , Liraglutide/pharmacology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/analogs & derivatives , Cell Line, Tumor , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Cell Survival/drug effects , Warburg Effect, Oncologic/drug effects , Cell Proliferation/drug effects , Venoms/pharmacology , Adenylate Kinase/metabolism , Peptides/pharmacology
8.
EMBO Mol Med ; 16(6): 1284-1309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783166

ABSTRACT

Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.


Subject(s)
Animals, Newborn , Disease Models, Animal , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice , Signal Transduction/drug effects , Exenatide/pharmacology , Exenatide/therapeutic use , Hypoglycemic Agents/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Peptides/pharmacology , Peptides/therapeutic use
9.
Mol Med ; 30(1): 58, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720283

ABSTRACT

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Subject(s)
AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
10.
Sci Rep ; 14(1): 11402, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762561

ABSTRACT

Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.


Subject(s)
Clozapine , Dependovirus , Eating , Hypothalamic Area, Lateral , Proof of Concept Study , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Rats , Eating/drug effects , Hypothalamic Area, Lateral/drug effects , Dependovirus/genetics , Male , Exenatide/pharmacology , Humans
11.
BMC Vet Res ; 20(1): 211, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762728

ABSTRACT

Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.


Subject(s)
Exenatide , Animals , Exenatide/administration & dosage , Exenatide/pharmacokinetics , Exenatide/pharmacology , Cats , Male , Female , Drug Delivery Systems/veterinary , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Body Weight , Drug Liberation , Drug Implants , Eating/drug effects , Venoms/administration & dosage , Venoms/pharmacokinetics , Glucagon-Like Peptide-1 Receptor/agonists
12.
FASEB J ; 38(10): e23684, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38795334

ABSTRACT

Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and ß-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.


Subject(s)
Adipocytes , Adiponectin , Cathepsin K , Cell Differentiation , Dipeptidyl Peptidase 4 , Glucagon-Like Peptide 1 , Mice, Knockout , Animals , Mice , Adiponectin/metabolism , Glucagon-Like Peptide 1/metabolism , Adipocytes/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Male , Mice, Inbred C57BL , Stress, Psychological/metabolism , 3T3-L1 Cells , Exenatide/pharmacology , PPAR gamma/metabolism , Adipogenesis
13.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627765

ABSTRACT

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Subject(s)
Cytochromes c , Exenatide , Glucagon-Like Peptide-1 Receptor Agonists , Mitochondrial Diseases , Cytochromes c/therapeutic use , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Exenatide/therapeutic use , Parkinson Disease/drug therapy , Disease Models, Animal
14.
J Pharm Pharmacol ; 76(7): 861-872, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38652540

ABSTRACT

OBJECTIVES: Dopamine and related receptors are evidenced in pancreatic endocrine tissue, but the impact on islet ß-cell stimulus-secretion as well as (patho)physiological role are unclear. METHODS: The present study has evaluated islet cell signalling pathways and biological effects of dopamine, as well as alterations of islet dopamine in rodent models of diabetes of different aetiology. KEY FINDINGS: The dopamine precursor l-DOPA partially impaired glucose tolerance in mice and attenuated glucose-, exendin-4, and alanine-induced insulin secretion. The latter effect was echoed by the attenuation of glucose-induced [Ca2+]i dynamics and elevation of ATP levels in individual mouse islet cells. l-DOPA significantly decreased ß-cell proliferation rates, acting predominantly via the D2 receptor, which was most abundant at the mRNA level. The administration of streptozotocin (STZ) or high-fat diet (HFD) in mice significantly elevated numbers of dopamine-positive islet cells, with HFD also increasing colocalization of dopamine with insulin. At the same time, colocalization of dopamine with glucagon was increased in STZ-treated and pregnant mice, but unaffected by HFD. CONCLUSION: These findings highlight a role for dopamine receptor signalling in islet cell biology adaptations to various forms of metabolic stress.


Subject(s)
Diet, High-Fat , Dopamine , Insulin , Signal Transduction , Animals , Dopamine/metabolism , Mice , Signal Transduction/drug effects , Female , Male , Insulin/metabolism , Stress, Physiological , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Levodopa/pharmacology , Diabetes Mellitus, Experimental/metabolism , Mice, Inbred C57BL , Receptors, Dopamine D2/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Pregnancy , Cell Proliferation/drug effects , Adaptation, Physiological , Streptozocin , Exenatide/pharmacology , Glucagon/metabolism , Glucose/metabolism , Insulin Secretion/drug effects
15.
J Biol Chem ; 300(5): 107294, 2024 May.
Article in English | MEDLINE | ID: mdl-38636665

ABSTRACT

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Subject(s)
Action Potentials , Atrial Fibrillation , Exenatide , Kv1.5 Potassium Channel , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Voltage-Gated Sodium Channel Blockers , Animals , Humans , Male , Rats , Action Potentials/drug effects , Atrial Fibrillation/drug therapy , Atrial Fibrillation/metabolism , Exenatide/pharmacology , Exenatide/therapeutic use , HEK293 Cells , Kv1.5 Potassium Channel/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Rats, Sprague-Dawley , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use
16.
Diabetes Res Clin Pract ; 212: 111685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670496

ABSTRACT

AIMS: To examine whether the cardiovascular effects of glucagon-like peptide-1 (GLP-1) receptor agonists are attenuated by concurrent sulfonylurea (SU) therapy in a post-hoc analysis of the Exenatide Study of Cardiovascular Event Lowering (EXSCEL). METHODS: We investigated whether SUs, as a class or by specific type, modulated the effects of once-weekly exenatide (EQW) on EXSCEL cardiovascular outcomes in intent-to-treat analyses of all trial participants, categorized as SU users or nonusers. Marginal structural models were used to evaluate whether there were differential EQW effects by SU category on major adverse cardiovascular events (MACE), depending on duration of SU use (6, 12, and 18 months). EQW-by-SU type interaction p-values and hazard ratios (95 % CIs) for EQW versus placebo for each baseline SU type (glibenclamide, gliclazide, glimepiride, other SUs) were calculated. RESULTS: Neither SU use nor baseline SU type modified the effect of EQW on time to MACE (pinteraction = 0.88 and 0.78, respectively), nor did individual SU types, including glibenclamide (a systemically wide-acting SU). CONCLUSIONS: SUs did not modulate the effect of EQW on cardiovascular outcomes, suggesting that SU treatment choices need not be altered to optimize the cardiovascular effects of GLP-1 receptor agonists in people with type 2 diabetes.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Exenatide , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Sulfonylurea Compounds , Humans , Sulfonylurea Compounds/therapeutic use , Hypoglycemic Agents/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Male , Female , Middle Aged , Diabetes Mellitus, Type 2/drug therapy , Exenatide/therapeutic use , Aged , Peptides/therapeutic use , Glucagon-Like Peptide-1 Receptor Agonists
17.
Diabetes Obes Metab ; 26(7): 2925-2932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38650544

ABSTRACT

AIM: To determine if the dispensing of glucagon-like peptide (GLP)-1 receptor agonists is associated with increased dispensing of antidepressants. MATERIALS AND METHODS: We used cross-sectional, case-control and retrospective cohort study designs to examine the association between dispensed GLP-1 receptor agonists and antidepressants between 2012 and 2022 in the 10% random sample of the Australian Pharmaceutical Benefits Scheme (PBS) data. PBS-listed GLP-1 receptor agonists, exenatide, dulaglutide and semaglutide were the exposures. Outcomes were the odds ratio [ORs; 99% confidence interval (CI)] and hazard ratio (99% CI) of being dispensed any antidepressant. Analyses were adjusted for demographic measures and the dispensing of medicines to manage cardiovascular diseases or anxiety/insomnia. Statistical tests were two-sided at the 1% level of significance. RESULTS: In total, 358 075 of 1 746 391 individuals were dispensed antidepressants, and 8495 of the 24 783 dispensed a GLP-1 receptor agonist were also dispensed an antidepressant in 2022 (OR 1.44; 99% CI 1.38-1.50); 24 103 of the 1 746 391 participants had been dispensed a GLP-1 receptor agonist between 2012 and 2021, and of these 8083 were dispensed antidepressants in 2022 (OR 1.52; 99% CI 1.46-1.59). The 2012 cohort included 1 213 316 individuals who had not been dispensed antidepressants that year. The hazard ratio of being dispensed an antidepressant between 2013 and 2022 following the dispensing of a GLP-1 receptor agonist was 1.19 (99% CI 1.12-1.27). Additional analyses restricting the time of exposure confirmed these associations for all PBS-listed GLP-1 receptor agonists. CONCLUSIONS: Individuals exposed to GLP-1 receptor agonists are at greater risk of being dispensed antidepressants. The possible impact of GLP-1 receptor agonists on the mood of consumers requires ongoing vigilance and further research.


Subject(s)
Antidepressive Agents , Exenatide , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptides , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Male , Female , Cross-Sectional Studies , Antidepressive Agents/therapeutic use , Middle Aged , Case-Control Studies , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/adverse effects , Glucagon-Like Peptides/analogs & derivatives , Retrospective Studies , Exenatide/therapeutic use , Australia/epidemiology , Aged , Longitudinal Studies , Immunoglobulin Fc Fragments/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Adult , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor Agonists
18.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599494

ABSTRACT

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Subject(s)
Action Potentials , Dopaminergic Neurons , Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Mice, Inbred C57BL , Substantia Nigra , Animals , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Exenatide/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Action Potentials/drug effects , Action Potentials/physiology , Mice , Venoms/pharmacology , Peptides/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Peptide Fragments/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism
19.
JAAPA ; 37(5): 12-14, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662894

ABSTRACT

ABSTRACT: Glucagon-like peptide 1 agonists (GLP1s) and the novel glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 agonist are effective drugs for reducing A1C and weight in patients with type 2 diabetes. However, clinicians may find it difficult to discern which drug to prescribe in specific clinical scenarios. This article discusses evidence-based clinical use of these drugs.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Hypoglycemic Agents , Weight Loss , Humans , Diabetes Mellitus, Type 2/drug therapy , Weight Loss/drug effects , Glucagon-Like Peptide 1/agonists , Hypoglycemic Agents/therapeutic use , Liraglutide/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Gastric Inhibitory Polypeptide/agonists , Exenatide/therapeutic use , Exenatide/administration & dosage , Peptides/therapeutic use , Glycated Hemoglobin , Glucagon-Like Peptide-1 Receptor/agonists
20.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477664

ABSTRACT

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Insulin-Secreting Cells , Animals , Mice , Insulin Secretion , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Exenatide/pharmacology , Glucose Intolerance/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Obesity/metabolism , Glucose/metabolism , Mice, Knockout , Prostaglandins/metabolism , Prostaglandins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...