Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Exp Cell Res ; 442(1): 114211, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39147261

ABSTRACT

Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via ß-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/ß-catenin signaling pathway. In contrast, endothelial cell-derived exosomes facilitated mature osteoblast differentiation by reprogramming the TGFB1 gene family and osteogenic transcription factors osterix (SP7) and RUNX2. Notably, VSMCs express significant levels of tetraspanins (CD9, CD63, and CD81) and drive the intracellular trafficking of exosomes with a lower membrane zeta potential than those from other cells. Additionally, the high ATP content within these exosomes supports mineralization mechanisms, as ATP is a substrate for alkaline phosphatase. Osteocyte function was further validated by RNA sequencing, revealing activity in genes related to intermittent mineralization and sonic hedgehog signaling, alongside a significant increase in TNFSF11 levels. Our findings unveil a novel role of VSMCs in promoting osteoblast-to-osteocyte transition, thus offering new insights into bone biology and homeostasis, as well as in bone-related diseases. Clinically, these insights could pave the way for innovative therapeutic strategies targeting VSMC-derived exosome pathways to treat bone-related disorders such as osteoporosis. By manipulating these signaling pathways, it may be possible to enhance bone regeneration and improve skeletal health in patients with compromised bone structure and function.


Subject(s)
Exosomes , Muscle, Smooth, Vascular , Osteoblasts , Osteocytes , Osteogenesis , beta Catenin , Osteoblasts/metabolism , Osteoblasts/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Exosomes/metabolism , Animals , beta Catenin/metabolism , beta Catenin/genetics , Osteocytes/metabolism , Osteocytes/cytology , Mice , Osteogenesis/genetics , Osteogenesis/physiology , Myocytes, Smooth Muscle/metabolism , Cell Differentiation , Humans , Wnt Signaling Pathway , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Signal Transduction , Mice, Inbred C57BL
2.
Rev. obstet. ginecol. Venezuela ; 84(3): 279-288, Ago. 2024. ilus, tab, graf
Article in Spanish | LILACS, LIVECS | ID: biblio-1570300

ABSTRACT

Objetivo: Evaluar el efecto de los exosomas como tratamiento alternativo en la restauración del síndrome genitourinario de la menopausia en pacientes que acuden a una consulta ginecológica, en Valencia, Estado Carabobo, en el período junio - agosto de 2023. Métodos: Estudio prospectivo, descriptivo, exploratorio, incluyó tres casos de mujeres con diagnóstico de síndrome genitourinario de la menopausia. Se evaluó la respuesta en cuanto a los síntomas, examen clínico según el índice de salud vaginal, la satisfacción con el tratamiento y la tolerabilidad. Se aplicó el tratamiento con exosomas: 2 cc con técnica de punto a punto en todas las paredes vaginales y 1 cc en el vestíbulo, en 3 sesiones, con intervalo de 15 días. Resultados: La edad de las pacientes estuvo entre 53 y 56 años, con un promedio de tiempo de menopausia de 6,6 años. Previo al tratamiento, había un nivel alto de irritación vaginal (100 %), dolor en el introito (100 %), sequedad vaginal, dispareunia, hipersensibilidad y las no relaciones sexuales (66,67 %). Postratamiento predominó la ausencia de los síntomas: sequedad vaginal, dispareunia, hipersensibilidad y dolor en introito (100 %); irritación vaginal y no relaciones sexuales (66,67 %) (p = 0,0001). La mediana del índice de salud vaginal previa fue 13 (10 ­ 13) y posterior fue 18 (17 ­ 20) (p = 0,0476). La satisfacción y tolerabilidad fue de 66,67 %. Una paciente refirió dolor leve. Conclusión: La terapia con exosomas es eficaz para reducir los síntomas y signos del síndrome genitourinario de la menopausia, y bien tolerado(AU)


Objective: To evaluate the effect of exosomes as an alternative treatment in the restoration of genitourinary syndrome of menopause in patients attending a gynecological consultation in Valencia, Carabobo State, in the period June - August 2023. Methods: A prospective, descriptive, exploratory study included three cases of women diagnosed with genitourinary syndrome of menopause. Response was assessed in terms of symptoms, clinical examination according to vaginal health index, satisfaction with treatment and tolerability. Treatment with exosomes was applied: 2 cc with point-to-point technique on all vaginal walls and 1 cc in the vestibule, in 3 sessions, with an interval of 15 days. Results: The age of the patients was between 53 and 56 years, with a mean menopause time of 6.6 years. Prior to treatment, there was a high level of vaginal irritation (100%), pain in the introitus (100%), vaginal dryness, dyspareunia, hypersensitivity and non-sexual intercourse (66.67%). Post-treatment, the absence of symptoms predominated: vaginal dryness, dyspareunia, hypersensitivity and pain in the introitus (100%); vaginal irritation and no sexual intercourse (66.67%) (p = 0.0001). The median index of previous vaginal health was 13 (10 ­ 13) and subsequent was 18 (17 ­ 20) (p = 0.0476). Satisfaction and tolerability was 66.67%. One patient reported mild pain. Conclusion: Exosome therapy is effective in reducing the symptoms and signs of genitourinary syndrome of menopause, and well tolerated(AU)


Subject(s)
Humans , Female , Adult , Middle Aged , Complementary Therapies , Menopause , Hormone Replacement Therapy , Exosomes , Perimenopause , Estrogens , Hyaluronic Acid
3.
Clinics (Sao Paulo) ; 79: 100441, 2024.
Article in English | MEDLINE | ID: mdl-38976936

ABSTRACT

OBJECTIVE: This study aimed to identify differentially expressed microRNAs (miRNAs) in exosomes derived from the blood plasma of Rheumatoid Arthritis (RA) patients and explore their clinical significance and biological roles. METHODS: Illumina high-throughput sequencing was employed to measure miRNA expression levels in plasma exosomes, followed by validation using qRT-PCR. The correlation between exosomal miRNAs and disease activity was systematically analyzed. Additionally, the pathogenic effects of RA exosomes were investigated through bioinformatics analysis and in vitro experiments. RESULTS: Significantly reduced levels of exosomal miR-144-3p and miR-30b-5p were observed in RA patients, which were negatively correlated with DAS28 scores and anti-CCP antibody levels. ROC curve analysis showed that miR-144-3p and miR-30b-5p in plasma exosomes could effectively distinguish RA patients from healthy controls, with AUC values of 0.725 and 0.773, respectively. Combining bioinformatics analysis and in vitro experiments, it was demonstrated that plasma exosomes contribute to ongoing autoantibody production in RA by promoting B-cell differentiation and antibody production. CONCLUSION: The present study indicates that plasma exosomes from RA patients may be potentially pathogenic. Exosomal miR-144-3p and miR-30b-5p exhibit significant decreases in RA patients and are associated with disease activity, suggesting their potential as valuable biomarkers for RA.


Subject(s)
Arthritis, Rheumatoid , B-Lymphocytes , Exosomes , MicroRNAs , Humans , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , MicroRNAs/blood , Female , Male , Middle Aged , B-Lymphocytes/immunology , Case-Control Studies , Adult , Biomarkers/blood , ROC Curve , Real-Time Polymerase Chain Reaction
4.
Biotechnol Lett ; 46(5): 907-924, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38900338

ABSTRACT

Mesenchymal stem/stromal cells (MSC) play a pivotal role in regenerative therapies. Recent studies show that factors secreted by MSC can replicate their biological activity, driving the emergence of cell-free therapy, likely to surpass stem cell therapy. Patents are an objective measure of R&D and innovation activities, and patent mapping allows us to verify the state of the art and technology, anticipate trends, and identify emerging lines of research. This review performed a search on Derwent World Patents Index™ and retrieved 269 patent families related to the MSC-derived cell-free products. Analysis reveals an exponential increase in patents from the mid-2010s, primarily focusing on exosomes. The patent's contents offer a great diversity of applications and associated technologies by using the products as medicinal agents or drug delivery systems. Nevertheless, numerous application branches remain unexplored, suggesting vast potential for cell-free technologies alone or combined with other approaches.


Subject(s)
Mesenchymal Stem Cells , Patents as Topic , Mesenchymal Stem Cells/cytology , Humans , Exosomes , Cell-Free System , Regenerative Medicine/methods , Animals
5.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791505

ABSTRACT

In contrast to the hypothesis that aging results from cell-autonomous deterioration processes, the programmed longevity theory proposes that aging arises from a partial inactivation of a "longevity program" aimed at maintaining youthfulness in organisms. Supporting this hypothesis, age-related changes in organisms can be reversed by factors circulating in young blood. Concordantly, the endocrine secretion of exosomal microRNAs (miRNAs) by hypothalamic neural stem cells (htNSCs) regulates the aging rate by enhancing physiological fitness in young animals. However, the specific molecular mechanisms through which hypothalamic-derived miRNAs exert their anti-aging effects remain unexplored. Using experimentally validated miRNA-target gene interactions and single-cell transcriptomic data of brain cells during aging and heterochronic parabiosis, we identify the main pathways controlled by these miRNAs and the cell-type-specific gene networks that are altered due to age-related loss of htNSCs and the subsequent decline in specific miRNA levels in the cerebrospinal fluid (CSF). Our bioinformatics analysis suggests that these miRNAs modulate pathways associated with senescence and cellular stress response, targeting crucial genes such as Cdkn2a, Rps27, and Txnip. The oligodendrocyte lineage appears to be the most responsive to age-dependent loss of exosomal miRNA, leading to significant derepression of several miRNA target genes. Furthermore, heterochronic parabiosis can reverse age-related upregulation of specific miRNA-targeted genes, predominantly in brain endothelial cells, including senescence promoting genes such as Cdkn1a and Btg2. Our findings support the presence of an anti-senescence mechanism triggered by the endocrine secretion of htNSC-derived exosomal miRNAs, which is associated with a youthful transcriptional signature.


Subject(s)
Aging , Exosomes , Hypothalamus , MicroRNAs , Neural Stem Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Hypothalamus/metabolism , Aging/genetics , Aging/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Gene Regulatory Networks , Cellular Senescence/genetics , Brain/metabolism , Mice , Parabiosis , Oligodendroglia/metabolism , Transcriptome , Gene Expression Regulation , Gene Expression Profiling
6.
Biol Res ; 57(1): 28, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750549

ABSTRACT

BACKGROUND: The activated microglia have been reported as pillar factors in neuropathic pain (NP) pathology, but the molecules driving pain-inducible microglial activation require further exploration. In this study, we investigated the effect of dorsal root ganglion (DRG)-derived exosomes (Exo) on microglial activation and the related mechanism. METHODS: A mouse model of NP was generated by spinal nerve ligation (SNL), and DRG-derived Exo were extracted. The effects of DRG-Exo on NP and microglial activation in SNL mice were evaluated using behavioral tests, HE staining, immunofluorescence, and western blot. Next, the differentially enriched microRNAs (miRNAs) in DRG-Exo-treated microglia were analyzed using microarrays. RT-qPCR, RNA pull-down, dual-luciferase reporter assay, and immunofluorescence were conducted to verify the binding relation between miR-16-5p and HECTD1. Finally, the effects of ubiquitination modification of HSP90 by HECTD1 on NP progression and microglial activation were investigated by Co-IP, western blot, immunofluorescence assays, and rescue experiments. RESULTS: DRG-Exo aggravated NP resulting from SNL in mice, promoted the activation of microglia in DRG, and increased neuroinflammation. miR-16-5p knockdown in DRG-Exo alleviated the stimulating effects of DRG-Exo on NP and microglial activation. DRG-Exo regulated the ubiquitination of HSP90 through the interaction between miR-16-5p and HECTD1. Ubiquitination alteration of HSP90 was involved in microglial activation during NP. CONCLUSIONS: miR-16-5p shuttled by DRG-Exo regulated the ubiquitination of HSP90 by interacting with HECTD1, thereby contributing to the microglial activation in NP.


Subject(s)
Exosomes , Ganglia, Spinal , HSP90 Heat-Shock Proteins , MicroRNAs , Microglia , Neuralgia , Animals , Male , Mice , Disease Models, Animal , Exosomes/metabolism , Ganglia, Spinal/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mice, Inbred C57BL , Microglia/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Neuralgia/metabolism , Neuralgia/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
7.
Clin Transl Oncol ; 26(9): 2166-2171, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38602645

ABSTRACT

Breast cancer is one of the most prevalent malignancies affecting women globally and poses a significant public health challenge. Early clinical detection plays a pivotal role in providing optimal treatment opportunities and favorable prognoses, crucial for reducing breast cancer mortality and enhancing patients' quality of life. Therefore, the timely identification and diagnosis of breast cancer are imperative. Conventional tumor markers, such as carcinoembryonic antigen (CEA) and carbohydrate antigen 15-3 (CA15-3), serve as reliable methods for actively monitoring disease progression and have become a routine auxiliary diagnostic approach in clinical settings. However, these biomarkers exhibit limitations in sensitivity and specificity, particularly in the early screening and diagnosis of tumors, often yielding results inconsistent with clinical manifestations. In recent years, research has increasingly focused on exosomes released by tumor cells as potential new biomarkers for early stage breast cancer screening. Exosomes carry various components, including tumor-derived proteins, nucleic acids, and lipids. This paper delves into the specific utilization of serum exosomal microRNA-21 (miR-21) as a biomarker for early detection and diagnosis of breast cancer, evaluating its efficacy within this framework.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Early Detection of Cancer , Exosomes , MicroRNAs , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Breast Neoplasms/genetics , Female , MicroRNAs/blood , Biomarkers, Tumor/blood , Early Detection of Cancer/methods
8.
Geroscience ; 46(6): 5891-5909, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38499957

ABSTRACT

The decline in the ovarian reserve leads to menopause and reduced serum estrogens. MicroRNAs are small non-coding RNAs, which can regulate gene expression and be secreted by cells and trafficked in serum via exosomes. Serum miRNAs regulate tissue function and disease development. Therefore, the aim of this study was to identify miRNA profiles in serum exosomes of mice induced to estropause and treated with 17ß-estradiol (E2). Female mice were divided into three groups including control (CTL), injected with 4-Vinylcyclohexene diepoxide (VCD), and injected with VCD plus E2 (VCD + E2). Estropause was confirmed by acyclicity and a significant reduction in the number of ovarian follicles (p < 0.05). Body mass gain during estropause was higher in VCD and VCD + E2 compared to CTL females (p = 0.02). Sequencing of miRNAs was performed from exosomes extracted from serum, and 402 miRNAs were detected. Eight miRNAs were differentially regulated between CTL and VCD groups, seven miRNAs regulated between CTL and VCD + E2 groups, and ten miRNAs regulated between VCD and VCD + E2 groups. Only miR-200a-3p and miR-200b-3p were up-regulated in both serum exosomes and ovarian tissue in both VCD groups, suggesting that these exosomal miRNAs could be associated with ovarian activity. In the hepatic tissue, only miR-370-3p (p = 0.02) was up-regulated in the VCD + E2 group, as observed in serum. Our results suggest that VCD-induced estropause and E2 replacement have an impact on the profile of serum exosomal miRNAs. The miR-200 family was increased in serum exosomes and ovarian tissue and may be a candidate biomarker of ovarian function.


Subject(s)
Estradiol , Exosomes , MicroRNAs , Animals , Female , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/blood , MicroRNAs/genetics , Mice , Estradiol/pharmacology , Estradiol/blood , Cyclohexenes/pharmacology , Vinyl Compounds , Menopause , Ovarian Reserve/drug effects , Estrogens/pharmacology , Estrogen Replacement Therapy
9.
Clin Transl Oncol ; 26(8): 1921-1933, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38485857

ABSTRACT

BACKGROUND: Studies have shown that many exosomal microRNAs (miRNAs) can be used as non-invasive biomarkers of lung cancer, but their diagnostic and prognostic values need to be further clarified. METHODS: We conducted a systematic literature search in Web of Science, PubMed, and ScienceDirect databases, obtained relevant articles and extracted data, and used statistical methods and statistical software to comprehensively evaluate the diagnostic and prognostic value of exosomal miRNAs in lung cancer. REGISTRATION NUMBER: PROSPERO CRD42023447398. RESULTS: In terms of diagnosis, two exosomal miRNAs (miR-486-5p and miR-451a) were reported with the highest frequency in lung cancer patients, both of which had good diagnostic value. Compared with the control group, the pooled sensitivities of miR-486-5p and miR-451a were 0.80 (95% CI: 0.73-0.86) and 0.76 (95% CI: 0.60-0.87), specificities: 0.93 (95% CI: 0.63-0.99) and 0.85 (95% CI: 0.72-0.92), and AUCs: 0.85 (95% CI: 0.81-0.88) and 0.88 (95% CI: 0.84-0.90), for the respective miRNAs. For prognosis, in lung cancer patients with abnormally expressed exosomal miRNAs, miR-1290 was associated with PFS outcome; miR-382, miR-1246, miR-23b-3p, miR-21-5p, and miR-10b-5p were associated with OS outcome; miR-21 and miR-4257 were associated with DFS outcome; miR-125a-3p and miR-625-5p were associated with PFS and OS outcomes; miR-216b and miR-451a were associated with OS and DFS outcomes. CONCLUSIONS: Exosomal miRNAs are valuable biomarkers in lung cancer patients. Exosomal miR-486-5p and miR-451a can be used as new diagnostic biomarkers for lung cancer. Dysregulated exosomal miRNAs could serve as indicators of survival outcomes in lung cancer patients.


Subject(s)
Biomarkers, Tumor , Exosomes , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/mortality , Lung Neoplasms/pathology , MicroRNAs/genetics , Exosomes/genetics , Exosomes/metabolism , Prognosis , Biomarkers, Tumor/genetics
10.
Clin Transl Oncol ; 26(8): 1988-1997, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502292

ABSTRACT

BACKGROUND: tRF-RNA-a representative of non-coding RNA (ncRNA)-is a precursor or fragment of mature tRNA and plays a crucial regulatory role in the occurrence and development of cancer. There is currently little research on tRF-RNA as a diagnostic marker in cancer, especially for NSCLC from serum exosomes. METHOD: Serum exosomes were successfully extracted from serum; their physical morphology was captured by transmission electron microscopy (TEM); appropriate particle size detection was performed using qNano; surface labeling was verified through western blotting. Serum exosomes i-tRF-AspGTC and tRF-1-SerCGA were selected through gene microarray, and qPCR was used to validate their significance in 242 patients and 201 healthy individuals. The area under the curve (AUC) was used to evaluate the diagnostic indicators of non-small cell lung cancer (NSCLC). RESULT: Compared with 201 healthy individuals, i-tRF-AspGTC and tRF-1-SerCGA were significantly downregulated in 242 NSCLC patients and 95 early-stage patients. For tRF-AspGTC and tRF-1-SerCGA, the predictive diagnostic efficiency rates of AUC were 0.690 and 0.680, respectively, whereas the early diagnostic efficiency rates were 0.656 and 0.688, respectively. The result of combined diagnosis with CEA and CYFRA21-1 was 0.928, and the early diagnostic efficiency was 0.843, which is a very high biological predictive factor for NSCLC. CONCLUSION: The expression of serum exosomes i-tRF-AspGTC and tRF-1-SerCGA was significantly downregulated in NSCLC patients. These exosomes could be used as predictive indicators for diagnosis or early diagnosis of NSCLC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/metabolism , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Male , Female , Middle Aged , Biomarkers, Tumor/blood , Case-Control Studies , Aged , Adult , Prognosis
11.
Biosens Bioelectron ; 255: 116211, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537428

ABSTRACT

Exosomes are nanovesicles present in all the biological fluids, making them attractive as non-invasive biomarkers for diseases like cancer, among many others. However, exosomes are complex to separate and detect, requiring comprehensive molecular characterization for their routine use in diagnostics. This study explores the use of peptides as cost-effective and stable alternatives to antibodies for exosome binding. To achieve that, phage display technology was employed to select peptides with high specificity for target molecules in exosomes. Specifically, a selected peptide was evaluated for its ability to selectively bind breast cancer-derived exosomes. Proteomic analysis identified 38 protein candidates targeted by the peptide on exosome membranes. The binding of the peptide to breast cancer-derived exosomes was successfully demonstrated by flow cytometry and magneto-actuated immunoassays. Furthermore, an electrochemical biosensor was also tested for breast cancer-derived exosome detection and quantification. The peptide demonstrated effective binding to exosomes from aggressive cancer cell lines, offering promising results in terms of specificity and recovery. This research shows potential for developing rapid, accessible diagnostic tools for breast cancer, especially in low-resource healthcare settings.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Exosomes , Humans , Female , Breast Neoplasms/diagnosis , Exosomes/chemistry , Biomarkers, Tumor/analysis , Proteomics , Peptides/metabolism
12.
Adv Exp Med Biol ; 1443: 257-267, 2024.
Article in English | MEDLINE | ID: mdl-38409426

ABSTRACT

Protein aggregation is a common mechanism in multiple neurodegenerative and heart diseases and the accumulation of proteins in aggregates is toxic to cells, causing injury and death. The degree of protein aggregation directly correlates with the severity of the disease. Misfolded proteins present thermodynamic barriers that culminate in the loss of structure and function and the exposure of hydrophobic residues. The exposure of hydrophobic residues is the driving force behind protein aggregation, as it reduces surface free energy and increases the propensity for the formation of large insoluble aggregates. Exploring the protein content of aggregates is fundamental to understanding their formation mechanism and pathophysiological effects. We demonstrate here a method for isolating aggregated protein content in human plasma and mouse brain samples. The samples were characterized by mass spectrometry analysis, transmission electron microscopy, and western blotting. We report the identification of proteins associated with neurodegenerative diseases in the isolated pellets. The western blotting analyses of the isolated pellet showed the positivity for CD89 and CD63, consolidated markers of exosomes, confirming the presence of exosomes within the pellet but not in the supernatant in human plasma. Notably, the concomitant isolation of exosomes together with the protein aggregates was feasible starting from 200 µL of human plasma. Moreover, the presented methodology separated albumin from the aggregated pellet, allowing identification of larger diversity of proteins through mass spectrometry analysis.


Subject(s)
Exosomes , Neurodegenerative Diseases , Mice , Animals , Humans , Protein Aggregates , Proteins/metabolism , Neurodegenerative Diseases/metabolism , Microscopy, Electron, Transmission , Exosomes/metabolism , Mass Spectrometry
13.
Clin Transl Oncol ; 26(6): 1497-1507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38227115

ABSTRACT

BACKGROUND: In view of discordance consisting in different reports, a meta-analysis was conducted to comprehensively evaluate the diagnostic efficacy of exosomal noncoding RNAs (ncRNAs) in blood and urine in the detection of bladder cancer. METHODS: Eligible studies were acquired by systematic retrieval through PubMed, Cochrane Library, and Embase. The pooled diagnostic efficacy was appraised by reckoning the area under the summary receiver operating characteristic (SROC) curve. The latent sources of heterogeneity were probed by subgroup analyses and meta-regression. STATA 12.0, Meta-DiSc 1.4, and RevMan 5.3 were applied to carry out all statistical analyses and plots. RESULTS: A total of 46 studies from 15 articles comprising 2622 controls and 3015 bladder cancer patients were included in our meta-analysis. Exosomal ncRNAs in blood and urine represented relatively satisfactory diagnostic efficacy in detecting bladder cancer, with a pooled sensitivity of 0.75, a specificity of 0.79, and an area under the SROC curve (AUC) of 0.84. Exosomal microRNAs (miRNAs) exhibited better diagnostic value with a pooled AUC of 0.91 than that of exosomal long noncoding RNAs (lncRNAs). To some extent, the heterogeneity among studies was induced by exosomal ncRNA types (miRNA or lncRNA), exosomal ncRNA profiling (single- or multiple-ncRNA), sample size, specimen types, and ethnicity. CONCLUSION: Exosomal ncRNAs in blood and urine may play a vital role in diagnosing bladder cancer as prospective noninvasive biomarkers; nonetheless, their clinical performance needs to be confirmed by further massive proactive researches.


Subject(s)
Biomarkers, Tumor , Exosomes , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/blood , Urinary Bladder Neoplasms/urine , Humans , Exosomes/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/urine , RNA, Long Noncoding/genetics , RNA, Long Noncoding/urine , RNA, Long Noncoding/blood , RNA, Untranslated/genetics , RNA, Untranslated/blood , RNA, Untranslated/urine , MicroRNAs/urine , MicroRNAs/blood , MicroRNAs/genetics , ROC Curve
14.
Biol Res ; 57(1): 3, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217055

ABSTRACT

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Subject(s)
Exosomes , Neomycin , Neomycin/toxicity , Neomycin/metabolism , Exosomes/metabolism , Hair Cells, Auditory , Autophagy/physiology
15.
Braz J Otorhinolaryngol ; 90(1): 101343, 2024.
Article in English | MEDLINE | ID: mdl-37925811

ABSTRACT

OBJECTIVES: Nasopharyngeal Carcinoma (NPC) is a common malignant tumor of nasopharyngeal mucosal epithelium in clinical practice. Radiotherapy and chemotherapy are the main treatment methods at present, but the therapeutic effect is still unsatisfactory. Studies have shown that exosomes and microRNAs (miRNAs) play an important role in the development of cancer. Therefore, this study aimed to investigate the effects of NPC derived exosomes on NPC and their molecular mechanisms. METHODS: Serum was collected from healthy subjects, Epstein-Barr Virus (EBV) infected patients and NPC patients (n = 9 group) and exosomes were extracted separately. High-throughput sequencing of exosomes was performed to screen differentially expressed miRNAs. The function of the screened miRNA was identified by treating NPC cells with exosomes. The target gene of miRNA was identified using the dual-luciferase assay. Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) was used to determine the levels of miR-99a-5p and Bromodomain Adjacent Tozinc finger domain protein 2A (BAZ2A). Cell Counting Kit-8 assay, flow cytometry, and wound healing assay were utilized to detect cell viability, cell cycle and apoptosis, and migration ability. The protein levels were evaluated by Western blot. RESULTS: MiR-99a-5p was identified as the most significant differentially expressed miRNA in exosomes (p < 0.05). The proliferation and migration of NPC cells were extremely facilitated by exosomes, accompanied by the suppressed apoptosis, upregulated BAZ2A, Monocyte Chemotactic Protein-1 (MCP1), and Vascular Endothelial Growth Factor A (VEGFA), and downregulation of Interleukin (IL)-1ß and Nuclear Transcription Factor-κB (NF-κB) (p < 0.05). BAZ2A was a target gene of miR-99a-5p. Furthermore, the regulatory effect of exosomes on the proliferation, migration, and apoptosis was significantly abolished by overexpression of miR-99a-5p or downregulation of BAZ2A (p < 0.05). CONCLUSION: NPC derived exosomes facilitated the proliferation and migration of NPC through regulating the miR-99a-5p/BAZ2A axis.


Subject(s)
Epstein-Barr Virus Infections , Exosomes , MicroRNAs , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , Epstein-Barr Virus Infections/genetics , Cell Line, Tumor , Cell Proliferation , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Bromodomain Containing Proteins , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism
16.
Biol. Res ; 57: 3-3, 2024. ilus, graf, tab
Article in English | LILACS | ID: biblio-1550058

ABSTRACT

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Subject(s)
Neomycin/metabolism , Neomycin/toxicity , Exosomes/metabolism , Autophagy/physiology , Hair Cells, Auditory
17.
Braz. j. biol ; 84: e250556, 2024. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1360208

ABSTRACT

Exosomes are 30-120nm bio particles transferred from donor to recipient cells leading to modification in their regulatory mechanisms depending upon the coded message in the form of loaded biomolecule. Cancer cells derived exosomes the true representatives of the parent cells have been found to modify the tumor surrounding/distinct regions and participate in metastasis, angiogenesis and immune suppression. Tis study was aimed to study the effects of tumor mice derived exosomes on the normal mice spleen isolated T cells by using co-culture experiments and flow cytometer analysis. We mainly focused on some of the T cells population and cytokines including IFN-γ, FOXP3+ regulatory T (Treg) cells and KI67 (proliferation marker). Overall results indicated random changes in different set of experiments, where the cancer derived exosomes reduced the IFN-γ expression in both CD4 and CD8 T cells, similarly the Treg cells were also found decreased in the presence of cancer exosomes. No significant changes were observed on the Ki67 marker expression. Such studies are helpful in understanding the role of cancer exosomes in immune cells suppression in tumor microenvironment. Cancer exosomes will need to be validated in vivo and in vitro on a molecular scale in detail for clinical applications.


Os exossomos são biopartículas de 30-120 nm transferidas de células doadoras para células receptoras, levando à modificação em seus mecanismos reguladores, dependendo da mensagem codificada na forma de biomolécula carregada. Verificou-se que exossomos derivados de células cancerosas ­ os verdadeiros representantes das células-mãe ­ modificam as regiões circundantes / distintas do tumor e participam da metástase, angiogênese e imunossupressão. Este estudo teve como objetivo estudar os efeitos de exossomos derivados de camundongos com tumor nas células T isoladas de baço de camundongos normais, usando experimentos de cocultura e análise de citômetro de fluxo. Concentrou-se, principalmente, em algumas populações de células T e citocinas, incluindo IFN-γ, células T reguladoras FOXP3 + (Treg) e KI67 (marcador de proliferação). Os resultados gerais indicaram mudanças aleatórias em diferentes conjuntos de experimentos, em que os exossomos derivados de câncer reduziram a expressão de IFN-γ em células T CD4 e CD8, da mesma forma que as células Treg também foram encontradas diminuídas na presença de exossomos de câncer. Nenhuma mudança significativa foi observada na expressão do marcador Ki67. Esses dados são úteis para a compreensão do papel dos exossomos do câncer na supressão de células do sistema imunológico no microambiente tumoral. Exossomos de câncer precisarão ser validados in vivo e in vitro em escala molecular com detalhes para aplicações clínicas.


Subject(s)
Animals , Mice , Exosomes , Tumor Microenvironment , Immune System , Neoplasm Metastasis , Neoplasms
18.
Math Biosci Eng ; 20(11): 19504-19526, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38052612

ABSTRACT

The aim of this work is to estimate the effect of Imatinib, exosomes, and Imatinib-exosomes mixture in chronic myeloid leukemia (CML). For this purpose, mathematical models based on Gompertzian and logistic growth differential equations were proposed. The models contained parameters representing the effects of the three components on CML proliferation. Parameters estimation was performed under the Bayesian statistical approach. Experimental data reported in the literature were used, corresponding to four trials of a human leukemia xenograft in BALB/c female rats over a period of forty days. The models were fitted to the following growth dynamics: normal tumor growth, growth with exosomes, growth with Imatinib, and growth with exosomes-Imatinib mixture. For the proposed logistic growth model, it was determined that when using Imatinib treatment the growth rate is 0.93 (95% CrI: 84.33-99.64) slower and reduces the tumor volume to approximately 10% (95% CrI : 8.67-10.81). In the presence of exosome treatment, the growth rate is 0.83 (95% CrI: 1.52-16.59) faster and the tumor volume is expanded by 40% (95% CrI: 25.36-57.28). Finally, in the presence of Imatinib-exosomes mixture treatment, the growth rate is 0.82 (95% CrI: 76.87-88.51) slower and the tumor volume is reduced by 95% (95% CrI: 86.76-99.85). It is concluded that the presence of exosomes partially inactivates the effect of the Imatinib drug on tumor growth in a mouse xenograft model.


Subject(s)
Antineoplastic Agents , Exosomes , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Female , Mice , Rats , Animals , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Bayes Theorem , Heterografts , Exosomes/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Disease Models, Animal , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
19.
Toxins (Basel) ; 15(11)2023 10 25.
Article in English | MEDLINE | ID: mdl-37999488

ABSTRACT

L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 µg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.


Subject(s)
Exosomes , L-Amino Acid Oxidase , Humans , L-Amino Acid Oxidase/pharmacology , L-Amino Acid Oxidase/metabolism , Neutrophils , Exosomes/metabolism , Hydrogen Peroxide/pharmacology , Proteomics , Snake Venoms
20.
Biomolecules ; 13(11)2023 10 25.
Article in English | MEDLINE | ID: mdl-38002256

ABSTRACT

The high mortality from lung cancer is mainly attributed to the presence of metastases at the time of diagnosis. Despite being the leading cause of lung cancer death, the underlying molecular mechanisms driving metastasis progression are still not fully understood. Recent studies suggest that tumor cell exosomes play a significant role in tumor progression through intercellular communication between tumor cells, the microenvironment, and distant organs. Furthermore, evidence shows that exosomes release biologically active components to distant sites and organs, which direct metastasis by preparing metastatic pre-niche and stimulating tumorigenesis. As a result, identifying the active components of exosome cargo has become a critical area of research in recent years. Among these components are microRNAs, which are associated with tumor progression and metastasis in lung cancer. Although research into exosome-derived microRNA (exosomal miRNAs) is still in its early stages, it holds promise as a potential target for lung cancer therapy. Understanding how exosomal microRNAs promote metastasis will provide evidence for developing new targeted treatments. This review summarizes current research on exosomal miRNAs' role in metastasis progression mechanisms, focusing on lung cancer.


Subject(s)
Exosomes , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Lung Neoplasms/genetics , Exosomes/genetics , Cell Communication , Cell Transformation, Neoplastic , Neoplasm Metastasis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL