Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 780
Filter
1.
Front Immunol ; 15: 1429442, 2024.
Article in English | MEDLINE | ID: mdl-39040099

ABSTRACT

Introduction: Allergic rhinitis (AR) is an upper airway inflammatory disease of the nasal mucosa. Conventional treatments such as symptomatic pharmacotherapy and allergen-specific immunotherapy have considerable limitations and drawbacks. As an emerging therapy with regenerative potential and immunomodulatory effect, mesenchymal stem cell-derived exosomes (MSC-Exos) have recently been trialed for the treatment of various inflammatory and autoimmune diseases. Methods: In order to achieve sustained and protected release of MSC-Exos for intranasal administration, we fabricated Poly(lactic-co-glycolic acid) (PLGA) micro and nanoparticles-encapsulated MSC-Exos (PLGA-Exos) using mechanical double emulsion for local treatment of AR. Preclinical in vivo imaging, ELISA, qPCR, flow cytometry, immunohistochemical staining, and multiomics sequencing were used for phenotypic and mechanistic evaluation of the therapeutic effect of PLGA-Exos in vitro and in vivo. Results: The results showed that our PLGA platform could efficiently encapsulate and release the exosomes in a sustained manner. At protein level, PLGA-Exos treatment upregulated IL-2, IL-10 and IFN-γ, and downregulated IL-4, IL-17 and antigen-specific IgE in ovalbumin (OVA)-induced AR mice. At cellular level, exosomes treatment reduced Th2 cells, increased Tregs, and reestablished Th1/Th2 balance. At tissue level, PLGA-Exos significantly attenuated the infiltration of immune cells (e.g., eosinophils and goblet cells) in nasal mucosa. Finally, multiomics analysis discovered several signaling cascades, e.g., peroxisome proliferator-activated receptor (PPAR) pathway and glycolysis pathway, that might mechanistically support the immunomodulatory effect of PLGA-Exos. Discussion: For the first time, we present a biomaterial-facilitated local delivery system for stem cell-derived exosomes as a novel and promising strategy for AR treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Polylactic Acid-Polyglycolic Acid Copolymer , Rhinitis, Allergic , Exosomes/immunology , Exosomes/metabolism , Animals , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Immunomodulation , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Administration, Intranasal
2.
Front Immunol ; 15: 1424081, 2024.
Article in English | MEDLINE | ID: mdl-39040108

ABSTRACT

Exosomes are found in various tissues of the body and carry abundant contents including nucleic acids, proteins, and metabolites, which continuously flow between cells of various tissues and mediate important intercellular communication. In addition, exosomes from different cellular sources possess different physiopathological immunomodulatory effects, which are closely related to the immune regeneration of normal or abnormal organs and tissues. Here, we focus on the mechanistic interactions between exosomes and the human immune system, introduce the immuno-regenerative therapeutic potential of exosomes in common clinical immune-related diseases, such as infectious diseases, autoimmune diseases, and tumors, and reveal the safety and efficacy of exosomes as a novel cell-free immune regenerative therapy.


Subject(s)
Exosomes , Immunotherapy , Exosomes/immunology , Exosomes/metabolism , Humans , Immunotherapy/methods , Animals , Neoplasms/therapy , Neoplasms/immunology , Cell Communication/immunology , Immunomodulation , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology
3.
J Extracell Vesicles ; 13(7): e12490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39051742

ABSTRACT

Extracellular vesicles (EVs) are emerging as promising carriers for the delivery of therapeutic biologics. Genetic engineering represents a robust strategy for loading proteins of interest into EVs. Identification of EV-enriched proteins facilitates protein cargo loading efficiency. Many EV-enriched proteins are sorted into EVs via an endosomal sorting complex required for transport (ESCRT)-dependent pathway. In parallel, viruses hijack this EV biosynthesis machinery via conserved late domain motifs to promote egress from host cells. Inspired by the similarity of biogenesis between EVs and viruses, we developed a synthetic, Late domain-based EV scaffold protein that enables the display of a set of single chain variable fragments (scFvs) on the EV surface. We named this scaffold the Late domain-based exosomal antibody surface display platform (LEAP). We applied the LEAP scaffold to reprogramme HEK293T cell-derived EVs to elicit T-cell anti-tumor immunity by simultaneously displaying αPD-L1 and αCD3 scFvs on the EV surface (denoted as αPD-L1×αCD3 bispecific T-cell engaging exosomes, BiTExos). We demonstrated that αPD-L1×αCD3 BiTExos actively redirected T cells to bind to PD-L1+ tumor cells, promoting T-cell activation, proliferation and tumoricidal cytokine production. Furthermore, the αPD-L1×αCD3 BiTExos promoted T-cell infiltration into the tumor microenvironment to mitigate the tumor burden in vivo. Our study suggested that the LEAP scaffold may serve as a platform for EV surface display and could be applied for a broad range of EV-based biomedical applications.


Subject(s)
B7-H1 Antigen , CD3 Complex , Extracellular Vesicles , Single-Chain Antibodies , T-Lymphocytes , Humans , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , CD3 Complex/immunology , CD3 Complex/metabolism , HEK293 Cells , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Single-Chain Antibodies/immunology , Exosomes/metabolism , Exosomes/immunology , Neoplasms/immunology , Neoplasms/therapy , Lymphocyte Activation/immunology
4.
Front Immunol ; 15: 1401852, 2024.
Article in English | MEDLINE | ID: mdl-38994350

ABSTRACT

Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.


Subject(s)
Biomarkers, Tumor , Exosomes , Neoplasms , Humans , Exosomes/metabolism , Exosomes/immunology , Neoplasms/therapy , Neoplasms/immunology , Animals , Immunotherapy/methods , Liquid Biopsy/methods
5.
Front Immunol ; 15: 1435426, 2024.
Article in English | MEDLINE | ID: mdl-39007145

ABSTRACT

Exosomes are small disk-shaped extracellular vesicles (EVs) that are naturally released into the environment by different types of cells. Exosomes range from 30-150 nm in size and contain complex RNA and proteins. They are widely found in body fluids such as blood, saliva, urine and breast milk and participate in cell communication by functioning as cell messengers. Almost all cell types can transmit information and exchange substances through the production and release of exosomes to regulate proliferation, differentiation, apoptosis, the immune response, inflammation, and other biological functions. Because exosomes exist widely in various body fluids, they are easy to obtain and detect and have the potential for use in disease diagnosis and prognosis detection. Exosomes can be genetically fused with targeted proteins, enhancing their biocompatibility and immunogenicity. Therefore, exosomes are the preferred vector tools for vaccines. In this review, we describe the characteristics of exosomes and discuss their unique and ambiguous functions in the immune microenvironment after infection. In this regard, we explored the ability of exosomes to carry immunogenic virus antigens and to establish adaptive immune responses. Exosomes can provide an interesting platform for antigen presentation and since vaccines are a powerful method for the prevention of infectious diseases, we further review the advantages and disadvantages of the use of exosomes in vaccine preparation. Overall, exosomes are emerging as a promising avenue for vaccine development.


Subject(s)
Exosomes , Vaccine Development , Exosomes/immunology , Exosomes/metabolism , Humans , Animals , Vaccines/immunology , Drug Delivery Systems
6.
Front Immunol ; 15: 1436151, 2024.
Article in English | MEDLINE | ID: mdl-39076982

ABSTRACT

Introduction: Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods: Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results: We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.


Subject(s)
Annexin A1 , Exosomes , Leishmania major , Leishmaniasis, Cutaneous , Mice, Knockout , Receptors, Formyl Peptide , Annexin A1/metabolism , Annexin A1/genetics , Animals , Exosomes/metabolism , Exosomes/immunology , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/metabolism , Mice , Receptors, Formyl Peptide/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Skin/parasitology , Skin/immunology , Skin/pathology , Skin/metabolism , Th1 Cells/immunology , Female
7.
Cancer Lett ; 595: 216989, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38825162

ABSTRACT

Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.


Subject(s)
Cancer Vaccines , Exosomes , Immunotherapy , Neoplasms , Humans , Exosomes/immunology , Exosomes/metabolism , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Animals
8.
Front Immunol ; 15: 1400112, 2024.
Article in English | MEDLINE | ID: mdl-38868769

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and has a poor prognosis. Although immune checkpoint inhibitors have entered a new era of HCC treatment, their response rates are modest, which can be attributed to the immunosuppressive tumor microenvironment within HCC tumors. Accumulating evidence has shown that tumor growth is fueled by cancer stem cells (CSCs), which contribute to therapeutic resistance to the above treatments. Given that CSCs can regulate cellular and physical factors within the tumor niche by secreting various soluble factors in a paracrine manner, there have been increasing efforts toward understanding the roles of CSC-derived secretory factors in creating an immunosuppressive tumor microenvironment. In this review, we provide an update on how these secretory factors, including growth factors, cytokines, chemokines, and exosomes, contribute to the immunosuppressive TME, which leads to immune resistance. In addition, we present current therapeutic strategies targeting CSC-derived secretory factors and describe future perspectives. In summary, a better understanding of CSC biology in the TME provides a rational therapeutic basis for combination therapy with ICIs for effective HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Tumor Microenvironment/immunology , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Animals , Exosomes/metabolism , Exosomes/immunology , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
9.
Mol Immunol ; 172: 17-22, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865800

ABSTRACT

Acute myocardial infarction (AMI), mainly triggered by vascular occlusion or thrombosis, is the most prevalent cause of morbidity and mortality among all cardiovascular diseases. The devastating consequences of AMI are further aggravated by the intricate cellular processes involved in inflammation. In the past two decades, many studies have reported that regulatory T cells (Tregs), as the main immunoregulatory cells, play a crucial role in AMI progression. This review offers a comprehensive insight into the intricate relationship between Tregs and AMI development. Moreover, it explores emerging therapeutic strategies that focus on Tregs and their exosomes. Furthermore, we underscore the importance of employing noninvasive in vivo imaging techniques to advance the clinical applications of Tregs-based treatments in AMI. Although further research is essential to fully elucidate the molecular mechanisms underlying the effects of Tregs, therapies tailored to these cells hold immense potential for the treatment of patients with AMI.


Subject(s)
Myocardial Infarction , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/immunology , Myocardial Infarction/immunology , Myocardial Infarction/therapy , Animals , Exosomes/immunology
10.
Int Immunopharmacol ; 137: 112484, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38885605

ABSTRACT

Melanoma is a malignant skin tumor with a high mortality rate. Regulatory T cells (Tregs) are immune cells with immunosuppressive roles, however, the precise mechanisms governing Treg involvement in melanoma remain enigmatic. Experimental findings unveiled different transcription factor switches between normal and tumor T cell, with heightened FOXP3 and BATF in the latter. These factors induced immunosuppressive molecules and Treg maintenance genes, polarizing tumor T cells into Tregs. Spatial transcriptomics illuminated the preferential settlement of Tregs at the melanoma periphery. Within this context, FOXP3 in Tregs facilitated direct enhancement of specific ligand gene expression, fostering communication with neighboring cells. Novel functional molecules bound to FOXP3 or BATF in Tregs, such as SPOCK2, SH2D2A, and ligand molecules ITGB2, LTA, CLEC2C, CLEC2D, were discovered, which had not been previously reported in melanoma Treg studies. Furthermore, we validated our findings in a large number of clinical samples and identified the Melanoma Treg-Specific Regulatory Tag Set (Mel TregS). ELISA analysis showed that the protein levels of Mel TregS in melanoma Tregs were higher than in normal Tregs. We then utilized SERS technology to measure the signal values of Mel TregS in exosome, and successfully discriminated between healthy individuals and melanoma patients, as well as early and late-stage patients. This approach significantly enhanced detection sensitivity. In sum, our research elucidated fresh insights into the mechanisms governing Treg self-maintenance and communication with surrounding cells in melanoma. We also introduced an innovative method for clinical disease monitoring through SERS technology.


Subject(s)
Forkhead Transcription Factors , Melanoma , Skin Neoplasms , T-Lymphocytes, Regulatory , Melanoma/immunology , Melanoma/genetics , Humans , T-Lymphocytes, Regulatory/immunology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Skin Neoplasms/immunology , Skin Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Exosomes/metabolism , Exosomes/genetics , Exosomes/immunology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism
11.
Int Immunopharmacol ; 137: 112509, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38889509

ABSTRACT

Tumor-derived extracellular vesicles (EVs) are one of the most important ways of intercellular communication and signaling. Cancer stem cells (CSCs) secrete EVs to modulate immune checkpoint molecules and evade immune surveillance. Activated CD8+ T cells known as cytotoxic T lymphocytes (CTLs) are the most powerful anti-cancer adaptive cells. Their activity is compromised upon encountering cells and signaling within the tumor microenvironment (TME), resulting in hyporesponsiveness called exhaustion. CSC-derived exosomes express programmed death ligand-1 (PD-L1) and upregulate programmed death-1 (PD-1) on CD8+ T cells to promote their exhaustion. PD-L1 expression on tumor-derived exosomes appears to be induced by CSC-derived exosomes containing transforming growth factor (TGF)-ß. Tenascin-C is another constituent of CSC exosomes that acts on mammalian target of rapamycin (mTOR) signaling in T cells. Glycolysis is a metabolic event promoted by the inducing effect of CSC-derived exosomes on hypoxia-inducible factor-1α (HIF-1α). CSC interaction with CD8+ T cells is even more complex as the CSC-derived exosomes contain Notch1 to stimulate stemness in non-tumor cells, and the inducible effect of Notch1 on PD-1 promotes CD8+ T cell exhaustion. CSC exosome targeting has not been extensively studied yet. Advances in the field will open up new therapeutic windows and shape the future of cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Exosomes , Neoplasms , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Exosomes/metabolism , Exosomes/immunology , CD8-Positive T-Lymphocytes/immunology , Animals , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , T-Cell Exhaustion
12.
J Nanobiotechnology ; 22(1): 315, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840207

ABSTRACT

Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.


Subject(s)
Exosomes , Hepatitis B virus , Hepatitis B, Chronic , Hepatocytes , Liver , Exosomes/immunology , Exosomes/metabolism , Humans , Hepatitis B virus/immunology , Liver/immunology , Liver/virology , Animals , Hepatitis B, Chronic/immunology , Hepatocytes/virology , Hepatocytes/immunology , Cell Communication , Cellular Microenvironment/immunology , Hepatitis B/immunology , Hepatitis B/virology
13.
Front Immunol ; 15: 1401867, 2024.
Article in English | MEDLINE | ID: mdl-38846947

ABSTRACT

Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.


Subject(s)
Biomarkers , Exosomes , Mycobacterium tuberculosis , Tuberculosis , Exosomes/immunology , Exosomes/metabolism , Humans , Tuberculosis/immunology , Tuberculosis/diagnosis , Tuberculosis/therapy , Tuberculosis/microbiology , Mycobacterium tuberculosis/immunology , Animals , Antitubercular Agents/therapeutic use
14.
Immun Inflamm Dis ; 12(6): e1325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38934401

ABSTRACT

OBJECTIVE: Asthma, a chronic inflammatory disease with diverse pathomechanisms, presents challenges in developing personalized diagnostic and therapeutic approaches. This review aims to provide a comprehensive overview of the role of exosomes, small extracellular vesicles, in asthma pathophysiology and explores their potential as diagnostic biomarkers and therapeutic tools. METHODS: A literature search was conducted to identify recent studies investigating the involvement of exosomes in asthma. The retrieved articles were analyzed to extract relevant information on the role of exosomes in maintaining lung microenvironment homeostasis, regulating inflammatory responses, and their diagnostic and therapeutic potential for asthma. RESULTS: Exosomes secreted by various cell types, have emerged as crucial mediators of intercellular communication in healthy and diseased conditions. Evidence suggest that exosomes play a significant role in maintaining lung microenvironment homeostasis and contribute to asthma pathogenesis by regulating inflammatory responses. Differential exosomal content between healthy individuals and asthmatics holds promise for the development of novel asthma biomarkers. Furthermore, exosomes secreted by immune and nonimmune cells, as well as those detected in biofluids, demonstrate potential in promoting or regulating immune responses, making them attractive candidates for designing new treatment strategies for inflammatory conditions such as asthma. CONCLUSION: Exosomes, with their ability to modulate immune responses and deliver therapeutic cargo, offer potential as targeted therapeutic tools in asthma management. Further research and clinical trials are required to fully understand the mechanisms underlying exosome-mediated effects and translate these findings into effective diagnostic and therapeutic strategies for asthma patients.


Subject(s)
Asthma , Biomarkers , Exosomes , Exosomes/metabolism , Exosomes/immunology , Humans , Asthma/immunology , Asthma/metabolism , Asthma/therapy , Asthma/diagnosis , Animals , Lung/immunology , Lung/pathology , Lung/metabolism , Cell Communication/immunology
15.
Front Immunol ; 15: 1384946, 2024.
Article in English | MEDLINE | ID: mdl-38835784

ABSTRACT

Breast cancer has a high incidence and a heightened propensity for metastasis. The absence of precise targets for effective intervention makes it imperative to devise enhanced treatment strategies. Exosomes, characterized by a lipid bilayer and ranging in size from 30 to 150 nm, can be actively released by various cells, including those in tumors. Exosomes derived from distinct subsets of immune cells have been shown to modulate the immune microenvironment within tumors and influence breast cancer progression. In addition, tumor-derived exosomes have been shown to contribute to breast cancer development and progression and may become a new target for breast cancer immunotherapy. Tumor immunotherapy has become an option for managing tumors, and exosomes have become therapeutic vectors that can be used for various pathological conditions. Edited exosomes can be used as nanoscale drug delivery systems for breast cancer therapy, contributing to the remodeling of immunosuppressive tumor microenvironments and influencing the efficacy of immunotherapy. This review discusses the regulatory role of exosomes from different cells in breast cancer and the latest applications of exosomes as nanoscale drug delivery systems and immunotherapeutic agents in breast cancer, showing the development prospects of exosomes in the clinical treatment of breast cancer.


Subject(s)
Breast Neoplasms , Exosomes , Immunotherapy , Tumor Microenvironment , Exosomes/immunology , Exosomes/metabolism , Humans , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Female , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Drug Delivery Systems
16.
Int Immunopharmacol ; 138: 112282, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38936058

ABSTRACT

Hypoxia is a hallmark of solid tumors. Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment, and CAF-derived exosomes are involved in cancer genesis and progression. Here, this work investigated the role and mechanism of exosomal circHIF1A derived from hypoxia-induced CAFs in hepatocellular carcinoma (HCC) tumorigenesis. CAFs isolated from fresh HCC tissues were incubated in normoxia or hypoxia condition (N/CAFs or H/CAFs), and then the exosomes from N/CAFs or H/CAFs were isolated for functional analysis. Cell proliferation, migration and invasion were analyzed by cell counting kit-8, colony formation, and transwell assays. Immune evasion was evaluated by measuring the cytotoxicity and viability of CD8+T cells. qRT-PCR and western blotting analyses were used for the level measurement of genes and proteins. The binding between Hu antigen R (HuR) and circHIF1A or Programmed death ligand 1 (PD-L1) was analyzed by RNA immunoprecipitation assay. Functionally, we found that CAFs, especially CAFs under hypoxic stress (H/CAFs), promoted the proliferation, migration, invasion and EMT progression in HCC cells, as well as induced immune escape by suppressing CD8+T cell cytotoxicity and activity in an exosome-dependent manner. H/CAFs-derived exosomes showed highly expressed circHIF1A, and could secrete circHIF1A into HCC cells via exosomes. The oncogenic effects of H/CAFs-secreted exosomes were abolished by circHIF1A knockdown. Mechanistically, circHIF1A interacted with HuR to stabilize PD-L1 expression in HCC cells. Meanwhile, circHIF1A silencing suppressed HCC cell proliferation, mobility and immune escape by regulating PD-L1 expression. In all, exosomal circHIF1A derived from hypoxic-induced CAFs promoted the proliferation, migration, invasion, EMT progression and immune escape in HCC cells by up-regulating PD-L1 expression in a HuR-dependent manner.


Subject(s)
B7-H1 Antigen , Cancer-Associated Fibroblasts , Carcinoma, Hepatocellular , Cell Proliferation , Exosomes , Liver Neoplasms , Tumor Escape , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Exosomes/metabolism , Exosomes/immunology , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Cell Movement , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , Animals
17.
Hum Vaccin Immunother ; 20(1): 2345940, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38714324

ABSTRACT

Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , Cancer Vaccines , Exosomes , Exosomes/immunology , Humans , COVID-19 Vaccines/immunology , Cancer Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Neoplasms/immunology , Animals , Vaccine Development
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 460-464, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790103

ABSTRACT

Allergic rhinitis (AR), a common disease in otolaryngology, is a key risk factor for poorly controlled asthma and many complications, although it is not life-threatening. The negative impact of AR on social productive forces and human health is no less than that of asthma. Dendritic cells (DCs) play an important role in AR. In addition to sharing some of DC's biological characteristics, DCs-derived exosomes (DEXs) can promote the priming and activation of T cells and the maturation and differentiation of T helper type 2 (Th2) cells. Multiple signaling pathways in AR can be modulated by DEXs, which present allergens and participate in allergic immune responses. Anti-allergic drugs can be carried by DEXs to alleviate allergic airway inflammation and treat Th2-mediated AR effectively. Therefore, DEXs are crucial in the pathogenesis and treatment of AR.


Subject(s)
Dendritic Cells , Exosomes , Rhinitis, Allergic , Exosomes/immunology , Exosomes/metabolism , Dendritic Cells/immunology , Humans , Rhinitis, Allergic/immunology , Rhinitis, Allergic/therapy , Animals , Th2 Cells/immunology
19.
Int J Nanomedicine ; 19: 3943-3956, 2024.
Article in English | MEDLINE | ID: mdl-38708179

ABSTRACT

Autoimmune diseases refer to a group of conditions where the immune system produces an immune response against self-antigens, resulting in tissue damage. These diseases have profound impacts on the health of patients. In recent years, with the rapid development in the field of biomedicine, engineered exosomes have emerged as a noteworthy class of biogenic nanoparticles. By precisely manipulating the cargo and surface markers of exosomes, engineered exosomes have gained enhanced anti-inflammatory, immunomodulatory, and tissue reparative abilities, providing new prospects for the treatment of autoimmune diseases. Engineered exosomes not only facilitate the efficient delivery of bioactive molecules including nucleic acids, proteins, and cytokines, but also possess the capability to modulate immune cell functions, suppress inflammation, and restore immune homeostasis. This review mainly focuses on the applications of engineered exosomes in several typical autoimmune diseases. Additionally, this article comprehensively summarizes the current approaches for modification and engineering of exosomes and outlines their prospects in clinical applications. In conclusion, engineered exosomes, as an innovative therapeutic approach, hold promise for the management of autoimmune diseases. However, while significant progress has been made, further rigorous research is still needed to address the challenges that engineered exosomes may encounter in the therapeutic intervention process, in order to facilitate their successful translation into clinical practice and ultimately benefit a broader population of patients.


Subject(s)
Autoimmune Diseases , Exosomes , Exosomes/immunology , Humans , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Animals , Nanoparticles/chemistry
20.
Front Immunol ; 15: 1402468, 2024.
Article in English | MEDLINE | ID: mdl-38799471

ABSTRACT

Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.


Subject(s)
Exosomes , Macrophages , Myocardial Ischemia , Exosomes/metabolism , Exosomes/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Myocardial Ischemia/immunology , Myocardial Ischemia/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL