Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Clin Transl Oncol ; 24(3): 517-531, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34811696

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignant tumors of the digestive system. Many patients are diagnosed at an advanced stage and lose eligibility for surgery. Moreover, there are few effective methods for treating pancreatic ductal cell carcinoma. Increasing attention has been given to microRNAs (miRNAs) and their regulatory roles in tumor progression. In this study, we investigated the effects of exosomes extracted from human umbilical cord mesenchymal stem cells (HUCMSCs) carrying hsa-miRNA-128-3p on pancreatic cancer cells. METHODS: Based on existing experimental and database information, we selected Galectin-3, which is associated with pancreatic cancer, and the corresponding upstream hsa-miRNA-128-3p. We extracted HUCMSCs from a fresh umbilical cord, hsa-miRNA-128-3p was transfected into HUCMSCs, and exosomes containing hsa-miRNA-128-3p were extracted and collected. The effect of exosomes rich in hsa-miRNA-128-3p on pancreatic cancer cells was analyzed. RESULTS: The expression of Galectin-3 in normal pancreatic duct epithelial cells was significantly lower than that in PDAC cell lines. We successfully extracted HUCMSCs from the umbilical cord and transfected hsa-miRNA-128-3p into HUCMSCs. Then we demonstrated that HUCMSC-derived exosomes with hsa-miRNA-128-3p could suppress the proliferation, invasion, and migration of PANC-1 cells in vitro by targeting Galectin-3. CONCLUSION: Hsa-miRNA-128-3p could be considered as a potential therapy for pancreatic cancer. We provided a new idea for targeted therapy of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Exosomes/physiology , Galectin 3/physiology , Mesenchymal Stem Cells/ultrastructure , Pancreatic Neoplasms/pathology , Umbilical Cord/cytology , Humans , Tumor Cells, Cultured
2.
Clin Transl Oncol ; 24(2): 288-296, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34287816

ABSTRACT

PURPOSE: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive cancers in the world. Stearoyl-CoA desaturase-1 (SCD-1) is one of major enzymes in the de novo synthesis of fatty acids and is related to cancer aggressiveness and poor patient prognosis. The study aimed to construct exosomes loaded SCD-1 interference, investigate its effects and mechanisms on the cell proliferation and apoptosis of ATC cells. METHODS: The expressions of SCD-1 in normal thyroid cell line and ATC cell lines were determined by qRT-PCR and western blotting, respectively. Exosomes were prepared and purification then loaded with SCD-1 siRNA by electroporation and observed by transmission electron microscopy. Higher SCD-1 mRNA and protein levels were found in ATC cell lines compared than normal thyroid cell line (P < 0.05), and both Hth-7 and FRO cells could uptake PKH67-labeled exosomes. The effects of exosomes loaded SCD-1 siRNA on ATC cells were measured by CCK8 assay and apoptosis detection kit. RESULTS: When compared with control group, the cell viability significantly decreased in both two ATC cell lines taken up exosomes loaded SCD-1 siRNA (P < 0.001), and apoptotic and necrotic cells obviously increased (P < 0.05). In order to explore the mechanism of exosomes loaded SCD-1 on ATC, the ROS level was detected by fluorescence reagent. It was found that exosomes loaded SCD-1 siRNA significantly increased intracellular ROS level of ATC cells (P < 0.05). CONCLUSIONS: Exosomes loaded SCD-1 siRNA inhibited ATC cellular proliferation and promoted cellular apoptosis, and the mechanisms involved maybe the regulation of fatty acids metabolism and ROS level. Our study provides a promising therapeutic strategy for ATC.


Subject(s)
Exosomes/physiology , RNA, Small Interfering/physiology , Stearoyl-CoA Desaturase/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathology , Apoptosis , Cell Proliferation , Humans , Tumor Cells, Cultured
3.
Cells ; 10(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34685596

ABSTRACT

Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.


Subject(s)
Drug Resistance, Neoplasm , Exosomes/physiology , Neoplasms , Tumor Microenvironment , Antineoplastic Agents/therapeutic use , Epithelial-Mesenchymal Transition , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells
4.
Arch Cardiol Mex ; 91(1): 105-113, 2021.
Article in Spanish | MEDLINE | ID: mdl-33661872

ABSTRACT

Los exosomas tienen un papel clave en la comunicación intercelular. Debido a sus múltiples interacciones, estas estructuras cumplen con el papel de «mensajeros¼ de forma dinámica, transportando su contenido a células blanco específicas y generando nuevas señales celulares. En este artículo se describen algunas de las proteínas, lípidos y ácidos nucleicos que son transportados por estas vesículas y que se han relacionado con cardioprotección, con la finalidad de proporcionar información y generar interés sobre la relevancia de los exosomas como posibles blancos diagnósticos y terapéuticos.Exosomes have a key role in intercellular communication. Due to their multiple interactions, these structures fulfill the role of "messengers" in a dynamic way, transporting their content to target-specific cells and generating new cellular signals. This article describes some of the proteins, lipids and nucleic acids that are transported by these vesicles and that have been related to cardioprotection, in order to provide information and generate interest in the relevance of exosomes as possible diagnostic and therapeutic targets.


Subject(s)
Exosomes/physiology , Heart/physiology , Humans
5.
Arch. cardiol. Méx ; Arch. cardiol. Méx;91(1): 105-113, ene.-mar. 2021. tab, graf
Article in Spanish | LILACS | ID: biblio-1152867

ABSTRACT

Resumen Los exosomas tienen un papel clave en la comunicación intercelular. Debido a sus múltiples interacciones, estas estructuras cumplen con el papel de «mensajeros¼ de forma dinámica, transportando su contenido a células blanco específicas y generando nuevas señales celulares. En este artículo se describen algunas de las proteínas, lípidos y ácidos nucleicos que son transportados por estas vesículas y que se han relacionado con cardioprotección, con la finalidad de proporcionar información y generar interés sobre la relevancia de los exosomas como posibles blancos diagnósticos y terapéuticos.


Abstract Exosomes have a key role in intercellular communication. Due to their multiple interactions, these structures fulfill the role of “messengers” in a dynamic way, transporting their content to target-specific cells and generating new cellular signals. This article describes some of the proteins, lipids and nucleic acids that are transported by these vesicles and that have been related to cardioprotection, in order to provide information and generate interest in the relevance of exosomes as possible diagnostic and therapeutic targets.


Subject(s)
Humans , Exosomes/physiology , Heart/physiology
6.
Rev. cuba. hematol. inmunol. hemoter ; 36(2): e1133, abr.-jun. 2020.
Article in Spanish | CUMED, LILACS | ID: biblio-1149903

ABSTRACT

La terapia celular basada en células mesenquimales/estromales se aplica ampliamente en la medicina moderna, aun cuando no todos los mecanismos de supervivencia y diferenciación están identificados. Sin embargo, hace pocos años se comenzaron a encontrar elementos extracelulares que generan nuevos paradigmas. En el presente trabajo se explican las principales características y funciones atribuidas a los exosomas, nanopartículas constituidas por microvesículas secretadas por las células con efecto en la matriz extracelular, y su repercusión como alternativa hacia una medicina regenerativa libre de células. Estas estructuras participan de forma notoria y crucial en la comunicación intercelular, lo que ha supuesto un cambio en el concepto de las funciones y el papel que desempeñan estas vesículas en los organismos vivos, en particular en la restauración de tejidos dañados y la respuesta inflamatoria e inmunológica. Se comentan algunos ejemplos de la repercusión biotecnológica de los exosomas en empresas y el mercado biofarmaceútico(AU)


Mesenchymal/stromal cell ;based therapy is widely applied in modern medicine, even though not all survival and differentiation mechanisms are identified. However, a few years ago, extracellular elements began to be found that generate new paradigms. The present work explains the main characteristics and functions attributed to exosomes, nanoparticles made up of microvesicles secreted by with an effect on the extracellular matrix, and their impact as an alternative towards cell-free regenerative medicine. These structures participate, notoriously and critically, in intercellular communication, which has led to a change in the concept of the functions and role that these vesicles play within living organisms, particularly in the restoration of damaged tissues and the inflammatory and immunological response. Some examples of the exosomes' biotechnological impact on companies and the biopharmaceutical market are discussed(AU)


Subject(s)
Humans , Male , Female , Regenerative Medicine/methods , Exosomes/physiology , Mesenchymal Stem Cells/physiology
7.
Reprod Fertil Dev ; 32(2): 56-64, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32188558

ABSTRACT

The follicle is a dynamic microenvironment in the ovary where the oocyte develops. Intercellular communication between somatic cells and the oocyte inside the follicle is essential to generate a competent gamete. Extracellular vesicles are nanoparticles secreted by cells that mediate cell-to-cell communication in the follicle microenvironment and can be obtained from the follicular fluid. These extracellular vesicles have been studied as biomarkers and supplementation tools to mimic physiological conditions during assisted reproductive techniques because they are vehicles of bioactive molecules. Therefore, this paper reviews the importance of changes in the ovarian follicle and the effects of extracellular vesicles from follicular fluid during oocyte maturation and early embryo development. Finally, we propose that is important to consider the source of the extracellular vesicles to improve diagnostic methods and to increase invitro embryo production.


Subject(s)
Embryonic Development/physiology , Extracellular Vesicles/physiology , Oocytes/physiology , Oogenesis/physiology , Animals , Cells, Cultured , Embryo Culture Techniques/methods , Embryo Culture Techniques/veterinary , Embryo, Mammalian/cytology , Exosomes/physiology , Female , In Vitro Oocyte Maturation Techniques/methods , In Vitro Oocyte Maturation Techniques/veterinary , Ovarian Follicle/physiology
8.
Cells ; 8(12)2019 12 16.
Article in English | MEDLINE | ID: mdl-31888159

ABSTRACT

Dendritic cells play a fundamental role in the antitumor immunity cycle, and the loss of their antigen-presenting function is a recognized mechanism of tumor evasion. We have recently demonstrated the effect of exosomes extracted from serum of patients with acute myeloid leukemia as important inducers of dendritic cell immunotolerance, and several other works have recently demonstrated the effects of these nanoparticles on immunity to other tumor types as well. The aim of this review was to highlight the recent findings on the effects of tumor exosomes on dendritic cell functions, the mechanisms by which they can lead to tumor evasion, and their manipulation as a possible strategy in cancer treatment.


Subject(s)
Dendritic Cells/metabolism , Exosomes/metabolism , Neoplasms/immunology , Dendritic Cells/physiology , Exosomes/physiology , Humans , Immunity/immunology , Immunologic Factors/immunology , Immunotherapy/methods , Neoplasms/pathology , Tumor Escape/immunology
9.
Clin Transl Oncol ; 20(9): 1109-1116, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29536331

ABSTRACT

Circular RNAs (CircRNAs) are a type of non-coding RNAs (NcRNAs) with a closed annular structure. Until next-generation sequencing (NGS) is developed, the misunderstanding of circRNAs 'splicing error' has changed, and the mysterious veil of circRNAs has been revealed. NGS provides an approach to investigate circRNAs. Many scholars point out that circRNAs may play an important role in many diseases, especially cancer. At the same time, exosomes, as a kind of extracellular vesicles loaded with many contents, are a hotspot in recent years. They can act as 'messengers' between cells, especially in cancer. Lately, it is interesting circRNAs are enriched and stable in exosomes, also called exo-circRNAs, and there have been several articles on circRNAs associated with exosomes. In this review, we summarize the characteristics of circRNAs, especially its main functions. Then, we briefly introduce exosomes and their function in cancer. Finally, the known relation between circRNAs and exosomes is discussed. With further researches, exo-circRNAs may be a novel pathway for cancer diagnosis and targeted therapy.


Subject(s)
Exosomes/physiology , Neoplasms/genetics , RNA/physiology , Humans , Immune System/physiology , MicroRNAs/physiology , Neoplasm Metastasis , RNA, Circular
10.
Rev. chil. cardiol ; 36(1): 24-33, 2017. ilus, tab
Article in Spanish | LILACS | ID: biblio-844306

ABSTRACT

Introducción: La Troponina I (TnI) plasmática es el biomarcador "Gold" estándar utilizado en diagnóstico de Infarto Agudo al Miocardio (IAM), indicando necrosis cardíaca. Las microvesículas extracelulares (MVEC), participan en comunicación celular, por lo que estudiar su distribución entregaría información respecto del evento isquémico, antesala del infarto. Objetivo: Estudiar las MVECs plasmáticas en pacientes con Síndrome Coronario Agudo (SCA) y compararlas con los niveles de TnI. Métodos: Plasma de 22 pacientes controles se recolectó 0-2hrs post-ingreso a urgencia. Plasma de 45 pacientes SCA se recolectó 0-2, 6-8 y 10-14hrs post ingreso, junto con la toma de muestra para estudio de TnI. Las MVECs plasmáticas fueron enriquecidas mediante kit comercial. La determinación de la concentración y tamaño MVECs se realizó por NTA (Nanoparticles Tracking Assay) usando el equipo Nanosight. Resultados: La concentración promedio de MVECs 0-2 hrs post ingreso fue 7,2 veces superior en plasma de pacientes con SCA vs controles y la moda del tamaño disminuyó en pacientes con SCA. La TnI no mostró diferencias significativas en 0-2 hrs post ingreso en el grupo estudiado. La concentración de las MVEC disminuyó significativamente después de 10-14 hrs post ingreso, mientras que la concentración promedio TnI se mantuvo invariable demostrando el aumento de MVECs previo al incremento de TnI. Conclusión. El aumento de MVECs previo al incremento de la TnI en pacientes infartados, sugiere que las MVECs aumentan en la fase previa del IAM, como respuesta al daño tisular. Actualmente, estudiamos el contenido molecular de las MVECs, para establecer un método diagnóstico del Síndrome Coronario Agudo basado en MVECs.


Background: Troponin I (TnI) is the gold standard used to establish the diagnosis of myocardial infarction (AMI), indicating the presence of myocardial necrosis. Extracellular micro vesicles are involved in cellular communication. Their distribution may provide information relating to the development of AMI in patients with acute coronary syndromes (ACS) Aim: to study plasma levels of ECMV compared to those of TnI in patients with ACS. Methods: The plasma levels of TnI and ECMV from 22 control patients coming to the emergency units was compared to plasma from 45 patients with ACS. Levels of both parameters were determined 0-2, 6-8 and 10-14 hours post admission. ECMVs were enriched by means of a commercial kit. Concentration and size of ECMV was determined by NTA (Nanoparticles tracking assay) using the Nanosight equipment. Results: Plasma concentration of ECMV was 7.2 times higher than that of TnI 0-2 hrs post admission. The mode of ECMV size was lower in patients with ACS. Concentration of ECMV had decreased significantly 10-14 hrs post admission, whereas the TnI levees remained stable. Conclusion: The increase in ECMV earlier than TnI in AMI suggests that ECMV are elevated in the pre-AMI phase, as a response to early tissue damage. A study of cellular content of ECMV, being carried out, may lead to develop a method for the early diagnosis of AMI in patients with ACS.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Extracellular Vesicles/physiology , Myocardial Infarction/blood , Myocardial Infarction/metabolism , Troponin I/blood , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/metabolism , Analysis of Variance , Biomarkers/blood , Cell Tracking/methods , Exosomes/physiology , Nanoparticles
12.
Chin J Cancer ; 34(12): 541-53, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26369565

ABSTRACT

Stem cells are known to maintain stemness at least in part through secreted factors that promote stem-like phenotypes in resident cells. Accumulating evidence has clarified that stem cells release nano-vesicles, known as exosomes, which may serve as mediators of cell-to-cell communication and may potentially transmit stem cell phenotypes to recipient cells, facilitating stem cell maintenance, differentiation, self-renewal, and repair. It has become apparent that stem cell-derived exosomes mediate interactions among stromal elements, promote genetic instability in recipient cells, and induce malignant transformation. This review will therefore discuss the potential of stem cell-derived exosomes in the context of stromal remodeling and their ability to generate cancer-initiating cells in a tumor niche by inducing morphologic and functional differentiation of fibroblasts into tumor-initiating fibroblasts. In addition, the immunosuppressive potential of stem cell-derived exosomes in cancer immunotherapy and their prospective applications in cell-free therapies in future translational medicine is discussed.


Subject(s)
Exosomes/physiology , Immunotherapy/methods , Mesenchymal Stem Cells/physiology , Neoplasms/pathology , Neoplastic Stem Cells/ultrastructure , Apoptosis , Cell Communication , Cell Transformation, Neoplastic , Disease Progression , Humans , Neoplasms/blood supply , Neoplasms/therapy , Neovascularization, Pathologic/pathology , Organelle Biogenesis , Tumor Microenvironment
13.
Rev. bras. cir. cardiovasc ; Rev. bras. cir. cardiovasc;30(3): 380-385, July-Sept. 2015. tab
Article in English | LILACS | ID: lil-756523

ABSTRACT

AbstractPulmonary hypertension is a devastating and refractory disease and there is no cure for this disease. Recently, microRNAs and mesenchymal stem cells emerged as novel methods to treat pulmonary hypertension. More than 20 kinds of microRNAs may participate in the process of pulmonary hypertension. It seems microRNAs or mesenchymal stem cells can ameliorate some symptoms of pulmonary hypertension in animals and even improve heart and lung function during pulmonary hypertension. Nevertheless, the relationship between mesenchymal stem cells, microRNAs and pulmonary hypertension is not clear. And the mechanisms underlying their function still need to be investigated. In this study we review the recent findings in mesenchymal stem cells - and microRNAs-based pulmonary hypertension treatment, focusing on the potential role of microRNAs regulated mesenchymal stem cells in pulmonary hypertension and the role of exosomes between mesenchymal stem cells and pulmonary hypertension.


ResumoA hipertensão pulmonar é uma doença devastadora e refratária, para a qual não existe cura. Recentemente, microRNAs e células-tronco mesenquimais emergiram como novos métodos para tratar a hipertensão pulmonar. Mais de 20 tipos de microRNAs podem participar no processo de hipertensão pulmonar. Ao que parece, microRNAs ou células-tronco mesenquimais podem atenuar alguns sintomas de hipertensão pulmonar em animais de e até mesmo melhorar a função cardíaca e do pulmão durante a hipertensão pulmonar. No entanto, a relação entre células-tronco mesenquimais, microRNAs e hipertensão pulmonar não é clara. E os mecanismos subjacentes a sua função ainda precisam ser investigados. Neste estudo, revisamos as descobertas recentes no tratamento da hipertensão pulmonar baseado em células-tronco mesenquimais e microRNAs, enfocando o papel potencial dos microRNAs para regular as células-tronco mesenquimais na hipertensão pulmonar e o papel dos exossomos entre células-tronco mesenquimais e hipertensão pulmonar.


Subject(s)
Animals , Humans , Hypertension, Pulmonary/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , MicroRNAs/therapeutic use , Exosomes/physiology , Hypertension, Pulmonary/physiopathology , Lung/physiopathology
14.
Rev Bras Cir Cardiovasc ; 30(3): 380-5, 2015.
Article in English | MEDLINE | ID: mdl-26313730

ABSTRACT

Pulmonary hypertension is a devastating and refractory disease and there is no cure for this disease. Recently, microRNAs and mesenchymal stem cells emerged as novel methods to treat pulmonary hypertension. More than 20 kinds of microRNAs may participate in the process of pulmonary hypertension. It seems microRNAs or mesenchymal stem cells can ameliorate some symptoms of pulmonary hypertension in animals and even improve heart and lung function during pulmonary hypertension. Nevertheless, the relationship between mesenchymal stem cells, microRNAs and pulmonary hypertension is not clear. And the mechanisms underlying their function still need to be investigated. In this study we review the recent findings in mesenchymal stem cells - and microRNAs-based pulmonary hypertension treatment, focusing on the potential role of microRNAs regulated mesenchymal stem cells in pulmonary hypertension and the role of exosomes between mesenchymal stem cells and pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , MicroRNAs/therapeutic use , Animals , Exosomes/physiology , Humans , Hypertension, Pulmonary/physiopathology , Lung/physiopathology
15.
Prostaglandins Leukot Essent Fatty Acids ; 91(6): 299-310, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25301203

ABSTRACT

Extracellular vesicles (EVs) are membrane-limited vesicles secreted by normal and malignant cells and their function is dependent on the cargo they carry and the cell type from which they originate. Moreover, EVs mediate many stages of tumor progression including angiogenesis, escape from immune surveillance and extracellular matrix degradation. Linoleic acid (LA) is an essential polyunsaturated fatty acid that induces expression of plasminogen activator inhibitor-1, proliferation, migration and invasion in breast cancer cells. However the role of secreted EVs from MDA-MB-231 cells stimulated with LA like mediator of the epithelial-mesenchymal-transition (EMT) process in mammary non-tumorigenic epithelial cells MCF10A remains to be studied. In the present study, we demonstrate that treatment of MDA-MB-231 cells for 48 h with 90 µM LA does not induce an increase in the number of secreted EVs. In addition, EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce a transient down-regulation of E-cadherin expression, and an increase of Snail1 and 2, Twist1 and 2, Sip1, vimentin and N-cadherin expression in MCF10A cells. EVs also promote an increase of MMP-2 and -9 secretions, an increase of NFκB-DNA binding activity, migration and invasion in MCF10A cells. In summary, our findings demonstrate, for the first time, that EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce an EMT-like process in MCF10A cells.


Subject(s)
Breast Neoplasms/ultrastructure , Epithelial-Mesenchymal Transition/physiology , Exosomes/physiology , Linoleic Acid/pharmacology , Breast Neoplasms/physiopathology , Cadherins/analysis , Cadherins/genetics , Cell Line, Tumor , Culture Media, Conditioned , Exosomes/drug effects , Exosomes/ultrastructure , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Matrix Metalloproteinases/metabolism
16.
Braz J Med Biol Res ; 46(10): 824-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24141609

ABSTRACT

Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm) involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.


Subject(s)
Cell Communication/physiology , Cell Membrane/physiology , Exosomes/physiology , Kidney Diseases , Humans , Kidney Diseases/diagnosis , Kidney Diseases/physiopathology , Kidney Diseases/therapy
17.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(10): 824-830, 24/set. 2013. tab, graf
Article in English | LILACS | ID: lil-688561

ABSTRACT

Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm) involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.


Subject(s)
Humans , Cell Communication/physiology , Cell Membrane/physiology , Exosomes/physiology , Kidney Diseases , Kidney Diseases/diagnosis , Kidney Diseases/physiopathology , Kidney Diseases/therapy
18.
Biol Res ; 46(1): 5-11, 2013.
Article in English | MEDLINE | ID: mdl-23760408

ABSTRACT

In addition to the established mechanisms of intercellular signaling, a new way of communication has gained much attention in the last decade: communication mediated by exosomes. Exosomes are nanovesicles (with a diameter of 40-120 nm) secreted into the extracellular space by the multivesicular endosome after its outer membrane fuses with the plasma membrane. Once released, exosomes modulate the response of the recipient cells that recognize them. This indicates that exosomes operate in a specific manner and participate in the regulation of the target cell. Remarkably, exosomes occur from unicellular organisms to mammals, suggesting an evolutionarily conserved mechanism of communication. In this review we describe the cascade of exosome formation, intracellular traffic, secretion, and internalization by recipient cells, and review their most relevant effects. We also highlight important steps that are still poorly understood.


Subject(s)
Cell Communication/physiology , Eukaryota/physiology , Exosomes/physiology , Biological Evolution , Endosomal Sorting Complexes Required for Transport/physiology , Exosomes/metabolism , Tetraspanins/physiology
19.
Theriogenology ; 79(7): 1071-82, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23489476

ABSTRACT

Mammalian seminal plasma contains membranous vesicles (exosomes), with a high content of cholesterol and sphingomyelin and a complex protein composition. Their physiological role is uncertain because sperm stabilization and activation effects have been reported. To analyze a putative modulatory role for semen exosomes on sperm activity in the boar, the effects of these vesicles on several sperm functional parameters were examined. Additionally, boar exosome proteins were sequenced and their incorporation into sperm was explored. Boar sperm were incubated under conditions that induce capacitation, manifested as increased tyrosine phosphorylation, cholesterol loss and greater fluidity in apical membranes, and the ability to undergo the lysophosphatidylcholine-induced acrosome reaction. After establishing this cluster of capacitation-dependent functional parameters, the effect produced by exosomes when present during or after sperm capacitation was analyzed. Exosomes inhibited the capacitation-dependent cholesterol efflux and fluidity increase in apical membranes, and the disappearance of a 14-kD phosphorylated polypeptide. In contrast, the acrosome reaction (spontaneous and lysophosphatidylcholine-induced) was not affected, and sperm binding to the oocyte zona pellucida was reduced only when vesicles were present during gamete coincubation. Liposomes with a lipid composition similar to that present in exosomes mimicked these effects, except the one on zona pellucida binding. Interaction between exosomes and sperm was confirmed by transfer of aminopeptidase activity. In addition, the major exosome protein, identified as actin, appeared to associate with sperm after coincubation. Exosome composition had a predominance for structural proteins (actin, plastin, ezrin, and condensin), enzymes, and several porcine seminal plasma-specific polypeptides (e.g., spermadhesins). Transfer of proteins from exosome to sperm and their ability to block cholesterol efflux supports a direct interaction between these vesicles and sperm, whereas inhibition of some capacitation-dependent features suggests a stabilizing function for exosomes in boar semen.


Subject(s)
Exosomes/physiology , Proteins/chemistry , Semen/physiology , Spermatozoa/physiology , Swine/physiology , Acrosome Reaction , Animals , Electrophoresis, Polyacrylamide Gel , Exosomes/metabolism , Lipid Metabolism , Male , Semen/metabolism , Sequence Analysis, Protein
20.
Biol. Res ; 46(1): 5-11, 2013. ilus, tab
Article in English | LILACS | ID: lil-676814

ABSTRACT

In addition to the established mechanisms of intercellular signaling, a new way of communication has gained much attention in the last decade: communication mediated by exosomes. Exosomes are nanovesicles (with a diameter of 40-120 nm) secreted into the extracellular space by the multivesicular endosome after its outer membrane fuses with the plasma membrane. Once released, exosomes modulate the response of the recipient cells that recognize them. This indicates that exosomes operate in a specific manner and participate in the regulation of the target cell. Remarkably, exosomes occur from unicellular organisms to mammals, suggesting an evolutionarily conserved mechanism of communication. In this review we describe the cascade of exosome formation, intracellular traffic, secretion, and internalization by recipient cells, and review their most relevant effects. We also highlight important steps that are still poorly understood.


Subject(s)
Cell Communication/physiology , Eukaryota/physiology , Exosomes/physiology , Biological Evolution , Endosomal Sorting Complexes Required for Transport/physiology , Exosomes , Tetraspanins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL