Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 825
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167229, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734319

ABSTRACT

The prostate gland is a complex and heterogeneous organ composed of epithelium and stroma. Whilst many studies into prostate cancer focus on epithelium, the stroma is known to play a key role in disease with the emergence of a cancer-associated fibroblasts (CAF) phenotype associated upon disease progression. In this work, we studied the metabolic rewiring of stromal fibroblasts following differentiation to a cancer-associated, myofibroblast-like, phenotype. We determined that CAFs were metabolically more active compared to normal fibroblasts. This corresponded with a heightened lipogenic metabolism, as both reservoir species and building block compounds. Interestingly, lipid metabolism affects mitochondria functioning yet the mechanisms of lipid-mediated functions are unclear. Data showing oxidised fatty acids and glutathione system are elevated in CAFs, compared to normal fibroblasts, strengthens the hypothesis that increased metabolic activity is related to mitochondrial activity. This manuscript describes mechanisms responsible for the altered metabolic flux and shows that prostate cancer-derived extracellular vesicles can increase basal respiration in normal fibroblasts, mirroring that of the disease-like phenotype. This indicates that extracellular vesicles derived from prostate cancer cells may drive an altered oxygen-dependent metabolism associated to mitochondria in CAFs.


Subject(s)
Cancer-Associated Fibroblasts , Mitochondria , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Mitochondria/metabolism , Mitochondria/pathology , Metabolomics/methods , Proteomics/methods , Fibroblasts/metabolism , Fibroblasts/pathology , Lipid Metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Prostate/metabolism , Prostate/pathology
2.
Neuro Oncol ; 26(7): 1280-1291, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38567448

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) obtained by noninvasive liquid biopsy from patient blood can serve as biomarkers. Here, we investigated the potential of circulating plasma EVs to serve as an indicator in the diagnosis, prognosis, and treatment response of glioblastoma patients. METHODS: Plasma samples were collected from glioblastoma patients at multiple timepoints before and after surgery. EV concentrations were measured by nanoparticle tracking analysis and imaging flow cytometry. Tumor burden and edema were quantified by 3D reconstruction. EVs and tumors were further monitored in glioma-bearing mice. RESULTS: Glioblastoma patients displayed a 5.5-fold increase in circulating EVs compared to healthy donors (P < .0001). Patients with higher EV levels had significantly shorter overall survival and progression-free survival than patients with lower levels, and the plasma EV concentration was an independent prognostic parameter for overall survival. EV levels correlated with the extent of peritumoral fluid-attenuated inversion recovery hyperintensity but not with the size of the contrast-enhancing tumor, and similar findings were obtained in mice. Postoperatively, EV concentrations decreased rapidly back to normal levels, and the magnitude of the decline was associated with the extent of tumor resection. EV levels remained low during stable disease, but increased again upon tumor recurrence. In some patients, EV resurgence preceded the magnetic resonance imaging detectability of tumor relapse. CONCLUSIONS: Our findings suggest that leakiness of the blood-brain barrier may primarily be responsible for the high circulating EV concentrations in glioblastoma patients. Elevated EVs reflect tumor presence, and their quantification may thus be valuable in assessing disease activity.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Glioblastoma/blood , Glioblastoma/diagnosis , Glioblastoma/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , Animals , Biomarkers, Tumor/blood , Mice , Prognosis , Brain Neoplasms/blood , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Male , Female , Middle Aged , Aged , Survival Rate , Adult , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/diagnosis , Xenograft Model Antitumor Assays , Liquid Biopsy/methods
3.
J Clin Invest ; 134(10)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564289

ABSTRACT

Cancer-derived small extracellular vesicles (sEVs) are capable of modifying the tumor microenvironment and promoting tumor progression. Ovarian cancer (OvCa) is a lethal malignancy that preferentially spreads through the abdominal cavity. Thus, the secretion of such vesicles into the peritoneal fluid could be a determinant factor in the dissemination and behavior of this disease. We designed a prospective observational study to assess the impact of peritoneal fluid-derived sEVs (PFD-sEVs) in OvCa clinical outcome. For this purpose, 2 patient cohorts were enrolled: patients with OvCa who underwent a diagnostic or cytoreductive surgery and nononcological patients, who underwent abdominal surgery for benign gynecological conditions and acted as the control group. Systematic extraction of PFD-sEVs from surgical samples enabled us to observe significant quantitative and qualitative differences associated with cancer diagnosis, disease stage, and platinum chemosensitivity. Proteomic profiling of PFD-sEVs led to the identification of molecular pathways and proteins of interest and to the biological validation of S100A4 and STX5. In addition, unsupervised analysis of PFD-sEV proteomic profiles in high-grade serous ovarian carcinomas (HGSOCs) revealed 2 clusters with different outcomes in terms of overall survival. In conclusion, comprehensive characterization of PFD-sEV content provided a prognostic value with potential implications in HGSOC clinical management.


Subject(s)
Ascitic Fluid , Extracellular Vesicles , Ovarian Neoplasms , Proteomics , Humans , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Ascitic Fluid/metabolism , Ascitic Fluid/pathology , Middle Aged , Aged , Prospective Studies , Neoplasm Proteins/metabolism , Adult
4.
Viral Immunol ; 37(3): 159-166, 2024 04.
Article in English | MEDLINE | ID: mdl-38588555

ABSTRACT

The high global prevalence of hepatitis B and hepatitis C and the poor prognosis of hepatitis B and hepatitis C-associated hepatocellular carcinoma (HCC), necessitates the early diagnosis and treatment of the disease. Recent studies show that cell-to-cell communication via extracellular vesicles (EVs) is involved in the HCC progression. The objective of the following study was to explore the role of EVs in the progression of viral-induced HCC and investigate their potential for the early diagnosis of cancer. First, the mRNA derived from EVs of HCC patients was compared to the mRNA derived from EVs from the healthy controls. Expression analysis of ANGPTL3, SH3BGRL3, and IFITM3 genes from the EVs was done. Afterward, to confirm whether hepatocytes can uptake EVs, HuH7 cells were exposed to EVs, and the expression analysis of downstream target genes (AKT, TNF-α, and MMP-9) in Huh7 cells was done. Transcriptional analysis showed that in the EVs from HCC patients, the expression levels of ANGPTL3, SH3BGRL3, and IFITM3 were significantly increased by 2.62-, 4.3-, and 9.03-folds, respectively. The downstream targets, AKT, TNF-α, and MMP-9, also showed a considerable change of 4.1-, 1.46-, and 5.05-folds, respectively, in Huh7 cells exposed to HCC EVs. In conclusion, the following study corroborates the role of EVs in HCC progression. Furthermore, the significant alteration in mRNA levels of the selected genes demonstrates their potential to be used as possible biomarkers for the early diagnosis of HCC.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , Extracellular Vesicles , Hepatitis B , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Matrix Metalloproteinase 9/metabolism , Proto-Oncogene Proteins c-akt , Tumor Necrosis Factor-alpha/metabolism , Hepatitis C/genetics , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , RNA, Messenger/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Angiopoietin-Like Protein 3
5.
Int J Nanomedicine ; 19: 3475-3495, 2024.
Article in English | MEDLINE | ID: mdl-38623080

ABSTRACT

Purpose: Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods: To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results: Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion: These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Mice , Humans , Hepatic Stellate Cells/pathology , Mice, Inbred C57BL , Liver Cirrhosis/chemically induced , Liver Cirrhosis/therapy , Liver Cirrhosis/metabolism , Fibrosis , Extracellular Vesicles/pathology , Mesenchymal Stem Cells/metabolism , Umbilical Cord , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism
6.
J Extracell Vesicles ; 13(4): e12425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38594791

ABSTRACT

Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.


Subject(s)
Extracellular Vesicles , Ossification, Heterotopic , Humans , Endothelial Protein C Receptor , Extracellular Vesicles/pathology , Ossification, Heterotopic/pathology , Ossification, Heterotopic/therapy , Extracellular Matrix , Fibroblasts
7.
J Neurosci Methods ; 406: 110137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626853

ABSTRACT

BACKGROUND: The neuronal and gliaI populations within the brain are tightly interwoven, making isolation and study of large populations of a single cell type from brain tissue a major technical challenge. Concurrently, cell-type specific extracellular vesicles (EVs) hold enormous diagnostic and therapeutic potential in neurodegenerative disorders including Alzheimer's disease (AD). NEW METHOD: Postmortem AD cortical samples were thawed and gently dissociated. Following filtration, myelin and red blood cell removal, cell pellets were immunolabeled with fluorescent antibodies and analyzed by flow cytometry. The cell pellet supernatant was applied to a triple sucrose cushion for brain EV isolation. RESULTS: Neuronal, astrocyte and microglial cell populations were identified. Cell integrity was demonstrated using calcein AM, which is retained by cells with esterase activity and an intact membrane. For some experiments cell pellets were fixed, permeabilized, and immunolabeled for cell-specific markers. Characterization of brain small EV fractions showed the expected size, depletion of EV negative markers, and enrichment in positive and cell-type specific markers. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: We optimized and integrated established protocols, aiming to maximize information obtained from each human autopsy brain sample. The uniqueness of our method lies in its capability to isolate cells and EVs from a single cryopreserved brain sample. Our results not only demonstrate the feasibility of isolating specific brain cell subpopulations for RNA-seq but also validate these subpopulations at the protein level. The accelerated study of EVs from human samples is crucial for a better understanding of their contribution to neuron/glial crosstalk and disease progression.


Subject(s)
Alzheimer Disease , Cell Separation , Cerebral Cortex , Extracellular Vesicles , Alzheimer Disease/pathology , Extracellular Vesicles/pathology , Cell Separation/methods , Cerebral Cortex/pathology , Humans , Cryopreservation , Autopsy , RNA-Seq , Neuroglia/pathology , Neurons/pathology
9.
BMC Cancer ; 24(1): 449, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605332

ABSTRACT

BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.


Subject(s)
Extracellular Vesicles , Meningeal Neoplasms , Meningioma , Humans , Meningioma/surgery , Meningeal Neoplasms/surgery , Prospective Studies , Liquid Biopsy , Biomarkers , Extracellular Vesicles/pathology
10.
Clin Chim Acta ; 557: 117875, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38493944

ABSTRACT

Breast cancer (BC) is the most prevalent malignancy affecting women worldwide. Although conventional treatments such as chemotherapy, surgery, hormone therapy, radiation therapy, and biological therapy are commonly used, they often entail significant side effects. Therefore, there is a critical need to investigate more cost-effective and efficient treatment modalities in BC. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, play a crucial role in modulating recipient cell behaviour and driving cancer progression. Among the EVs, exosomes provide valuable insights into cellular dynamics under both healthy and diseased conditions. In cancer, exosomes play a critical role in driving tumor progression and facilitating the development of drug resistance. BC-derived exosomes (BCex) dynamically influence BC progression by regulating cell proliferation, immunosuppression, angiogenesis, metastasis, and the development of treatment resistance. Additionally, BCex serve as promising diagnostic markers in BC which are detectable in bodily fluids such as urine and saliva. Targeted manipulation of BCex holds significant therapeutic potential. This review explores the therapeutic and diagnostic implications of exosomes in BC, underscoring their relevance to the disease. Furthermore, it discusses future directions for exosome-based research in BC, emphasizing the necessity for further exploration in this area.


Subject(s)
Breast Neoplasms , Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Humans , Female , Exosomes/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Extracellular Vesicles/pathology
11.
Metab Syndr Relat Disord ; 22(5): 394-401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38498801

ABSTRACT

Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.


Subject(s)
Diet, High-Fat , Disease Models, Animal , Extracellular Vesicles , Rats, Sprague-Dawley , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Animals , Male , Rats , Liver/metabolism , Liver/pathology , Biomarkers/blood , Biomarkers/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Fatty Liver/pathology , Fatty Liver/metabolism , Fatty Liver/etiology , Inflammation Mediators/metabolism , Inflammation Mediators/blood , Inflammation/pathology , Inflammation/metabolism , Choline Deficiency/complications
12.
Adv Clin Chem ; 119: 1-32, 2024.
Article in English | MEDLINE | ID: mdl-38514208

ABSTRACT

Physiologically, extracellular vesicles (EVs) have been implicated as crucial mediators of immune response, cell homeostasis, angiogenesis, cell differentiation and growth, and tissue repair. In heart failure (HF) they may act as regulators of cardiac remodeling, microvascular inflammation, micro environmental changes, tissue fibrosis, atherosclerosis, neovascularization of plaques, endothelial dysfunction, thrombosis, and reciprocal heart-remote organ interaction. The chapter summaries the nomenclature, isolation, detection of EVs, their biologic role and function physiologically as well as in the pathogenesis of HF. Current challenges to the utilization of EVs as diagnostic and predictive biomarkers in HF are also discussed.


Subject(s)
Extracellular Vesicles , Heart Failure , Humans , Stroke Volume/physiology , Heart Failure/diagnosis , Biomarkers , Fibrosis , Extracellular Vesicles/pathology
13.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L517-L523, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38469633

ABSTRACT

Extracellular vesicle (EV) biology in neonatal lung development and disease is a rapidly growing area of investigation. Although EV research in the neonatal population lags behind EV research in adult lung diseases, recent discoveries demonstrate promise in furthering our understanding of the pathophysiology of bronchopulmonary dysplasia and the potential use of EVs in the clinical setting, as both biomarkers and therapeutic agents. This review article explores some of the recent advances in this field and our evolving knowledge of the role of EVs in bronchopulmonary dysplasia.


Subject(s)
Bronchopulmonary Dysplasia , Extracellular Vesicles , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/physiopathology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Animals , Infant, Newborn , Lung/pathology , Lung/metabolism , Biomarkers/metabolism
14.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542098

ABSTRACT

Leptomeningeal metastasis (LM) is a common and fatal complication of advanced non-small cell lung cancer (NSCLC) caused by the spread of malignant cells to the leptomeninges and cerebrospinal fluid (CSF). While intra-CSF methotrexate (MTX) chemotherapy can improve prognosis, eventual MTX resistance deters continued chemotherapy. Recent studies have shown that increased miRNA-21 (miR-21) expression in the CSF of patients with LM after intraventricular MTX-chemotherapy is associated with poor overall survival; however, the molecular mechanisms underlying this resistance are poorly understood. Here, we confirm, in 36 patients with NSCLC-LM, that elevated miR-21 expression prior to treatment correlates with poor prognosis. MiR-21 overexpression or sponging results in a corresponding increase or decrease in MTX resistance, demonstrating that cellular miR-21 expression correlates with drug resistance. MiR-21-monitoring sensor and fluorescent extracellular vesicle (EV) staining revealed that EV-mediated delivery of miR-21 could modulate MTX resistance. Moreover, EVs isolated from the CSF of LM patients containing miR-21 could enhance the cell proliferation and MTX resistance of recipient cells. These results indicate that miR-21 can be transferred from cell-to-cell via EVs and potentially modulate MTX sensitivity, suggesting that miR-21 in CSF EVs may be a prognostic and therapeutic target for overcoming MTX resistance in patients with NSCLC-LM.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Methotrexate/pharmacology , Methotrexate/therapeutic use , MicroRNAs/genetics , MicroRNAs/therapeutic use , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology
15.
J Exp Clin Cancer Res ; 43(1): 81, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486328

ABSTRACT

BACKGROUND: Immune-checkpoint inhibitors (ICIs) have showed unprecedent efficacy in the treatment of patients with advanced non-small cell lung cancer (NSCLC). However, not all patients manifest clinical benefit due to the lack of reliable predictive biomarkers. We showed preliminary data on the predictive role of the combination of radiomics and plasma extracellular vesicle (EV) PD-L1 to predict durable response to ICIs. MAIN BODY: Here, we validated this model in a prospective cohort of patients receiving ICIs plus chemotherapy and compared it with patients undergoing chemotherapy alone. This multiparametric model showed high sensitivity and specificity at identifying non-responders to ICIs and outperformed tissue PD-L1, being directly correlated with tumor change. SHORT CONCLUSION: These findings indicate that the combination of radiomics and EV PD-L1 dynamics is a minimally invasive and promising biomarker for the stratification of patients to receive ICIs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , B7-H1 Antigen/therapeutic use , Radiomics , Multiomics , Prospective Studies , Biomarkers, Tumor , Immunotherapy , Extracellular Vesicles/pathology
16.
Nat Commun ; 15(1): 2292, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480740

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly metastatic and heterogeneous type of breast cancer with poor outcomes. Precise, non-invasive methods for diagnosis, monitoring and prognosis of TNBC are particularly challenging due to a paucity of TNBC biomarkers. Glycans on extracellular vesicles (EVs) hold the promise as valuable biomarkers, but conventional methods for glycan analysis are not feasible in clinical practice. Here, we report that a lectin-based thermophoretic assay (EVLET) streamlines vibrating membrane filtration (VMF) and thermophoretic amplification, allowing for rapid, sensitive, selective and cost-effective EV glycan profiling in TNBC plasma. A pilot cohort study shows that the EV glycan signature reaches 91% accuracy for TNBC detection and 96% accuracy for longitudinal monitoring of TNBC therapeutic response. Moreover, we demonstrate the potential of EV glycan signature for predicting TNBC progression. Our EVLET system lays the foundation for non-invasive cancer management by EV glycans.


Subject(s)
Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/drug therapy , Biomarkers, Tumor , Pilot Projects , Extracellular Vesicles/pathology , Polysaccharides
17.
BMC Med ; 22(1): 138, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528511

ABSTRACT

BACKGROUND: Synaptic dysfunction with reduced synaptic protein levels is a core feature of Alzheimer's disease (AD). Synaptic proteins play a central role in memory processing, learning, and AD pathogenesis. Evidence suggests that synaptic proteins in plasma neuronal-derived extracellular vesicles (EVs) are reduced in patients with AD. However, it remains unclear whether levels of synaptic proteins in EVs are associated with hippocampal atrophy of AD and whether upregulating the expression of these synaptic proteins has a beneficial effect on AD. METHODS: In this study, we included 57 patients with AD and 56 healthy controls. We evaluated their brain atrophy through magnetic resonance imaging using the medial temporal lobe atrophy score. We measured the levels of four synaptic proteins, including synaptosome-associated protein 25 (SNAP25), growth-associated protein 43 (GAP43), neurogranin, and synaptotagmin 1 in both plasma neuronal-derived EVs and cerebrospinal fluid (CSF). We further examined the association of synaptic protein levels with brain atrophy. We also evaluated the levels of these synaptic proteins in the brains of 5×FAD mice. Then, we loaded rabies virus glycoprotein-engineered EVs with messenger RNAs (mRNAs) encoding GAP43 and SNAP25 and administered these EVs to 5×FAD mice. After treatment, synaptic proteins, dendritic density, and cognitive function were evaluated. RESULTS: The results showed that GAP43, SNAP25, neurogranin, and synaptotagmin 1 were decreased in neuronal-derived EVs but increased in CSF in patients with AD, and the changes corresponded to the severity of brain atrophy. GAP43 and SNAP25 were decreased in the brains of 5×FAD mice. The engineered EVs efficiently and stably delivered these synaptic proteins to the brain, where synaptic protein levels were markedly upregulated. Upregulation of synaptic protein expression could ameliorate cognitive impairment in AD by promoting dendritic density. This marks the first successful delivery of synaptic protein mRNAs via EVs in AD mice, yielding remarkable therapeutic effects. CONCLUSIONS: Synaptic proteins are closely related to AD processes. Delivery of synaptic protein mRNAs via EVs stands as a promising effective precision treatment strategy for AD, which significantly advances the current understanding of therapeutic approaches for the disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Extracellular Vesicles , Humans , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Synaptotagmin I , Amyloid beta-Peptides/cerebrospinal fluid , Neurogranin/cerebrospinal fluid , Cognitive Dysfunction/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Atrophy/complications , Atrophy/pathology , Biomarkers
18.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542227

ABSTRACT

Atopic dermatitis, or eczema, is the most common chronic skin disorder, characterized by red and pruritic lesions. Its etiology is multifaceted, involving an interplay of factors, such as the allergic immune response, skin barrier dysfunction, and dysbiosis of the skin microbiota. Recent studies have explored the role of extracellular vesicles (EVs), which are lipid bilayer-delimitated particles released by all cells, in atopic dermatitis. Examination of the available literature identified that most studies investigated EVs released by Staphylococcus aureus, which were found to impact the skin barrier and promote the release of cytokines that contribute to atopic dermatitis development. In addition, EVs released by the skin fungus, Malassezia sympodialis, were found to contain allergens, suggesting a potential contribution to allergic sensitization via the skin. The final major finding was the role of EVs released by mast cells, which were capable of activating various immune cells and attenuating the allergic response. While research in this area is still in its infancy, the studies examined in this review provide encouraging insights into how EVs released from a variety of cells play a role in both contributing to and protecting against atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Extracellular Vesicles , Hypersensitivity , Humans , Dermatitis, Atopic/pathology , Skin/pathology , Allergens , Extracellular Vesicles/pathology
19.
Int J Mol Sci ; 25(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542378

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , MicroRNAs , Pancreatic Neoplasms , Humans , MicroRNAs/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinogenesis/pathology
20.
Arq Neuropsiquiatr ; 82(3): 1-8, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467392

ABSTRACT

Extracellular vesicles (EVs) are small vesicles released by cells that facilitate cell signaling. They are categorized based on their biogenesis and size. In the context of the central nervous system (CNS), EVs have been extensively studied for their role in both normal physiological functions and diseases like Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by cognitive decline and neuronal death. EVs have emerged as potential biomarkers for AD due to their involvement in disease progression. Specifically, EVs derived from neurons, astrocytes, and neuron precursor cells exhibit changes in quantity and composition in AD. Neuron-derived EVs have been found to contain key proteins associated with AD pathology, such as amyloid beta (Aß) and tau. Increased levels of Aß in neuron-derived EVs isolated from the plasma have been observed in individuals with AD and mild cognitive impairment, suggesting their potential as early biomarkers. However, the analysis of tau in neuron-derived EVs is still inconclusive. In addition to Aß and tau, neuron-derived EVs also carry other proteins linked to AD, including synaptic proteins. These findings indicate that EVs could serve as biomarkers for AD, particularly for early diagnosis and disease monitoring. However, further research is required to validate their use and explore potential therapeutic applications. To summarize, EVs are small vesicles involved in cell signaling within the CNS. They hold promise as biomarkers for AD, potentially enabling early diagnosis and monitoring of disease progression. Ongoing research aims to refine their use as biomarkers and uncover additional therapeutic applications.


As vesículas extracelulares (VEs) são pequenas estruturas liberadas pelas células que agem na sinalização celular. No sistema nervoso central (SNC), as VEs são estudadas em relação à doença de Alzheimer (DA), um distúrbio neurodegenerativo que cursa com declínio cognitivo e morte neuronal. As VEs podem ser biomarcadores potenciais para a DA devido ao seu papel na progressão da doença. As VEs derivadas de neurônios, astrócitos e células precursoras apresentam alterações na DA, contendo proteínas associadas à patologia da DA, como beta-amiloide (Aß) e tau. Níveis elevados de Aß foram observados nas VEs de neurônios de indivíduos com DA, sugerindo seu potencial como biomarcadores precoces. A análise de tau nas VEs de neurônios ainda é inconclusiva. Além disso, as VEs neurais carregam outras proteínas relacionadas à DA, incluindo proteínas sinápticas. As VEs podem ser promissoras como biomarcadores para o diagnóstico precoce e monitoramento da DA, porém mais pesquisas são necessárias para validar seu uso e explorar aplicações terapêuticas. Em resumo, as VEs são vesículas envolvidas na sinalização celular no SNC, com potencial como biomarcadores para a DA.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Humans , Amyloid beta-Peptides/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Biomarkers , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL
...