Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
Theranostics ; 14(9): 3583-3602, 2024.
Article in English | MEDLINE | ID: mdl-38948067

ABSTRACT

Rationale: Mesenchymal stromal cells (MSCs) are considered a promising resource for cell therapy, exhibiting efficacy in ameliorating diverse bone diseases. However, most MSCs undergo apoptosis shortly after transplantation and produce apoptotic extracellular vesicles (ApoEVs). This study aims to clarify the potential role of ApoEVs from apoptotic MSCs in ameliorating osteoporosis and molecular mechanism. Methods: In this study, Dio-labeled bone marrow mesenchymal stem cells (BMSCs) were injected into mice to track BMSCs apoptosis and ApoEVs production. ApoEVs were isolated from BMSCs after inducing apoptosis, the morphology, size distribution, marker proteins expression of ApoEVs were characterized. Protein mass spectrometry analysis revealed functional differences in proteins between ApoEVs and BMSCs. BMSCs were adopted to test the cellular response to ApoEVs. Ovariectomy mice were used to further compare the ability of ApoEVs in promoting bone formation. SiRNA and lentivirus were used for gain and loss-of-function assay. Results: The results showed that BMSCs underwent apoptosis within 2 days after being injected into mice and produce a substantial quantity of ApoEVs. Proteomic analysis revealed that ApoEVs carried a diverse functional array of proteins, and easily traversed the circulation to reach the bone. After being phagocytized by endogenous BMSCs, ApoEVs efficiently promoted the proliferation, migration, and osteogenic differentiation of BMSCs. In an osteoporosis mouse model, treatment of ApoEVs alleviated bone loss and promoted bone formation. Mechanistically, ApoEVs carried Ras protein and activated the Ras/Raf1/Mek/Erk pathway to promote osteogenesis and bone formation in vitro and in vivo. Conclusion: Given that BMSC-derived ApoEVs are high-yield and easily obtained, our data underscore the substantive role of ApoEVs from dying BMSCs to treat bone loss, presenting broad implications for cell-free therapeutic modalities.


Subject(s)
Apoptosis , Extracellular Vesicles , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/metabolism , Osteoporosis/therapy , Osteoporosis/metabolism , Mice , Female , Osteogenesis/physiology , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Mice, Inbred C57BL , Disease Models, Animal , Ovariectomy , Proteomics , Signal Transduction
2.
Nat Commun ; 15(1): 4870, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849333

ABSTRACT

Critical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. Here, we utilize a nanovial technology for enrichment of millions of single cells based on EV secretion. This approach is applied to select mesenchymal stem cells (MSCs) with high EV secretion as therapeutic cells for improving treatment. The selected MSCs exhibit distinct transcriptional profiles associated with EV biogenesis and vascular regeneration and maintain high levels of EV secretion after sorting and regrowth. In a mouse model of myocardial infarction, treatment with high-secreting MSCs improves heart functions compared to treatment with low-secreting MSCs. These findings highlight the therapeutic importance of EV secretion in regenerative cell therapies and suggest that selecting cells based on EV secretion could enhance therapeutic efficacy.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Myocardial Infarction , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Humans , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cell Transplantation/methods , Disease Models, Animal , Mice, Inbred C57BL , Cell Separation/methods , Male
3.
Brain Res Bull ; 214: 110999, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851436

ABSTRACT

Endogenous brain repair occurs following an ischemic stroke but is transient, thus unable to fully mount a neuroprotective response against the evolving secondary cell death. Finding a treatment strategy that may render robust and long-lasting therapeutic effects stands as a clinically relevant therapy for stroke. Extracellular vesicles appear to be upregulated after stroke, which may represent a candidate target for neuroprotection. In this study, we probed whether transplanted stem cells could enhance the expression of extracellular vesicles to afford stable tissue remodeling in the ischemic stroke brain. Aged rats were initially exposed to the established ischemic stroke model of middle cerebral artery occlusion then received intravenous delivery of either bone marrow-derived mesenchymal stem cell transplantation or vehicle. A year later, the animals were assayed for brain damage, inflammation, and extracellular vesicle expression. Our findings revealed that while core infarction was not reduced, the stroke animals transplanted with stem cells displayed a significant reduction in peri-infarct cell loss that coincided with downregulated Iba1-labeled inflammatory cells and upregulated CD63-positive extracellular vesicles that appeared to be co-localized with GFAP-positive astrocytes. Interestingly, grafted stem cells were not detected at one year post-transplantation period, suggesting that the extracellular vesicles likely originated within the host brain. That long-lasting functional benefits persisted in the absence of surviving transplanted stem cells, but with upregulation of endogenous extracellular vesicles, advances the concept that transplantation of stem cells acutely after stroke propels host extracellular vesicles to the ischemic brain, altogether promoting chronic brain remodeling.


Subject(s)
Brain , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Stroke , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Rats , Male , Mesenchymal Stem Cell Transplantation/methods , Stroke/metabolism , Stroke/therapy , Brain/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/metabolism , Rats, Sprague-Dawley , Disease Models, Animal , Astrocytes/metabolism
4.
Theranostics ; 14(8): 3358-3384, 2024.
Article in English | MEDLINE | ID: mdl-38855176

ABSTRACT

With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Parkinson Disease , Stem Cells , Stroke , Humans , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Parkinson Disease/therapy , Parkinson Disease/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Animals , Stroke/therapy , Stem Cell Transplantation/methods
5.
Int J Med Sci ; 21(8): 1529-1540, 2024.
Article in English | MEDLINE | ID: mdl-38903926

ABSTRACT

Introduction: Skin, being the body's largest organ, is susceptible to injuries. Despite the adoption of common treatments such as debridement, wound dressing, and infection control measures for skin injuries, the outcomes remain unsatisfactory, especially in diabetic patients or elderly patients. The use of adipose stem cell-derived apoptotic extracellular vesicles (apoEVs-ASCs) has been shown great therapeutic potential in wound repair. The effect of the donor age on the biological properties and functions of apoEVs-ASCs has not been reported. Methods: In this study, we isolated apoEVs-ASCs from young and aged rats. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were applied for the characteristics of apoEVs-ASCs. For aged and young apoEVs-ASCs groups, the proliferative and migration abilities in vitro, and wound healing function in vivo were contrastively evaluated and quantified for statistical analysis. Results: Our results showed that both young and aged apoEVs-ASCs induced skin healing and reduced scar formation. In addition, young apoEVs-ASCs had significantly higher proliferation, migration of fibroblasts and endothelial cells, and increased neo-angiogenesis ability, when compared with that of aged apoEVs-ASCs. Conclusion: Young apoEVs-ASCs should be employed for wound repair, which is associated with its superior promoting effect on wound healing.


Subject(s)
Apoptosis , Cell Proliferation , Extracellular Vesicles , Skin , Wound Healing , Animals , Wound Healing/physiology , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Rats , Skin/injuries , Skin/pathology , Adipose Tissue/cytology , Stem Cells/cytology , Stem Cells/metabolism , Humans , Male , Cell Movement , Age Factors , Regeneration/physiology , Rats, Sprague-Dawley
6.
Cells ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891122

ABSTRACT

Temporomandibular disorders (TMDs) are a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and associated structures. Mesenchymal stromal/stem cells (MSCs) have emerged as a promising therapy for TMJ repair. This systematic review aims to consolidate findings from the preclinical animal studies evaluating MSC-based therapies, including MSCs, their secretome, and extracellular vesicles (EVs), for the treatment of TMJ cartilage/osteochondral defects and osteoarthritis (OA). Following the PRISMA guidelines, PubMed, Embase, Scopus, and Cochrane Library databases were searched for relevant studies. A total of 23 studies involving 125 mice, 149 rats, 470 rabbits, and 74 goats were identified. Compliance with the ARRIVE guidelines was evaluated for quality assessment, while the SYRCLE risk of bias tool was used to assess the risk of bias for the studies. Generally, MSC-based therapies demonstrated efficacy in TMJ repair across animal models of TMJ defects and OA. In most studies, animals treated with MSCs, their derived secretome, or EVs displayed improved morphological, histological, molecular, and behavioral pain outcomes, coupled with positive effects on cellular proliferation, migration, and matrix synthesis, as well as immunomodulation. However, unclear risk in bias and incomplete reporting highlight the need for standardized outcome measurements and reporting in future investigations.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Temporomandibular Joint Disorders , Temporomandibular Joint , Animals , Temporomandibular Joint/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Temporomandibular Joint Disorders/therapy , Humans , Osteoarthritis/therapy , Osteoarthritis/pathology , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Disease Models, Animal
7.
Circ Res ; 135(1): 198-221, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900854

ABSTRACT

From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Cardiovascular Diseases/therapy
8.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892376

ABSTRACT

Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Cardiovascular Diseases/therapy , Regenerative Medicine/methods , Stem Cells/metabolism , Stem Cells/cytology
9.
Function (Oxf) ; 5(3): zqae012, 2024.
Article in English | MEDLINE | ID: mdl-38706963

ABSTRACT

Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.


Subject(s)
Acute Kidney Injury , Extracellular Vesicles , Acute Kidney Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Humans , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Animals , Cell Culture Techniques/methods , MicroRNAs/metabolism , MicroRNAs/genetics
10.
Cell Commun Signal ; 22(1): 293, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802896

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS: EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS: Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS: This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.


Subject(s)
Endothelial Cells , Extracellular Vesicles , Isocitrate Dehydrogenase , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/metabolism , Endothelial Cells/metabolism , Humans , Mice , Mesenchymal Stem Cell Transplantation/methods , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice, Inbred C57BL , Male , Lipopolysaccharides/pharmacology , Signal Transduction , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Cell Movement
11.
Life Sci ; 350: 122747, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38797364

ABSTRACT

AIMS: To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS: There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE: Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Humans , Animals , Drug Delivery Systems/methods
12.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786076

ABSTRACT

Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.


Subject(s)
Cardiovascular Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Cardiovascular Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Cell- and Tissue-Based Therapy/methods
13.
Kaohsiung J Med Sci ; 40(6): 520-529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38712483

ABSTRACT

Autoimmune disease is characterized by the proliferation of harmful immune cells, inducing tissue inflammation and ultimately causing organ damage. Current treatments often lack specificity, necessitating high doses, prolonged usage, and high recurrence rates. Therefore, the identification of innovative and safe therapeutic strategies is urgently required. Recent preclinical studies and clinical trials on inflammatory and autoimmune diseases have evidenced the immunosuppressive properties of mesenchymal stromal cells (MSCs). Studies have demonstrated that extracellular vesicles (EV) derived from MSCs can mitigate abnormal autoinflammation while maintaining safety within the diseased microenvironment. This study conducted a systematic review to elucidate the crucial role of MSC-EVs in alleviating autoimmune diseases, particularly focusing on their impact on the underlying mechanisms of autoimmune conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). By specifically examining the regulatory functions of microRNAs (miRNAs) derived from MSC-EVs, the comprehensive study aimed to enhance the understanding related to disease mechanisms and identify potential diagnostic markers and therapeutic targets for these diseases.


Subject(s)
Autoimmune Diseases , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Animals , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Immunomodulation
14.
ACS Biomater Sci Eng ; 10(6): 3868-3882, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38703236

ABSTRACT

The reconstruction of bone defects has been associated with severe challenges worldwide. Nowadays, bone marrow mesenchymal stem cell (BMSC)-based cell sheets have rendered this approach a promising way to facilitate osteogenic regeneration in vivo. Extracellular vesicles (EVs) play an essential role in intercellular communication and execution of various biological functions and are often employed as an ideal natural endogenous nanomedicine for restoring the structure and functions of damaged tissues. The perception of polymorphonuclear leukocytes (neutrophils, PMNs) as indiscriminate killer cells is gradually changing, with new evidence suggesting a role for these cells in tissue repair and regeneration, particularly in the context of bone healing. However, the role of EVs derived from PMNs (PMN-EVs) in bone regeneration remains largely unknown, with limited research being conducted on this aspect. In the current study, we investigated the effects of PMN-EVs on BMSCs and the underlying molecular mechanisms as well as the potential application of PMN-EVs in bone regeneration. Toward this end, BMSC-based cell sheets with integrated PMN-EVs (BS@PMN-EVs) were developed for bone defect regeneration. PMN-EVs were found to significantly enhance the proliferation and osteogenic differentiation of BMSCs in vitro. Furthermore, BS@PMN-EVs were found to significantly accelerate bone regeneration in vivo by enhancing the maturation of the newly formed bone in rat calvarial defects; this is likely attributable to the effect of PMN-EVs in promoting the expression of key osteogenic proteins such as SOD2 and GJA1 in BMSCs. In conclusion, our findings demonstrate the crucial role of PMN-EVs in promoting the osteogenic differentiation of BMSCs during bone regeneration. Furthermore, this study proposes a novel strategy for enhancing bone repair and regeneration via the integration of PMN-EVs with BMSC-based cell sheets.


Subject(s)
Bone Regeneration , Cell Differentiation , Extracellular Vesicles , Mesenchymal Stem Cells , Neutrophils , Osteogenesis , Extracellular Vesicles/metabolism , Extracellular Vesicles/physiology , Extracellular Vesicles/transplantation , Bone Regeneration/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Animals , Neutrophils/metabolism , Neutrophils/physiology , Neutrophils/cytology , Rats , Rats, Sprague-Dawley , Male , Cell Proliferation , Humans
15.
Mol Pharm ; 21(6): 2637-2658, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38728585

ABSTRACT

To date, the widespread implementation of therapeutic strategies for the treatment of chronic wounds, including debridement, infection control, and the use of grafts and various dressings, has been time-consuming and accompanied by many challenges, with definite success not yet achieved. Extensive studies on mesenchymal stem cells (MSCs) have led to suggestions for their use in treating various diseases. Given the existing barriers to utilizing such cells and numerous pieces of evidence indicating the crucial role of the paracrine signaling system in treatments involving MSCs, extracellular vesicles (EVs) derived from these cells have garnered significant attention in treating chronic wounds in recent years. This review begins with a general overview of current methods for chronic wound treatment, followed by an exploration of EV structure, biogenesis, extraction methods, and characterization. Subsequently, utilizing databases such as Google Scholar, PubMed, and ScienceDirect, we have explored the latest findings regarding the role of EVs in the healing of chronic wounds, particularly diabetic and burn wounds. In this context, the role and mode of action of these nanoparticles in healing chronic wounds through mechanisms such as oxygen level elevation, oxidative stress damage reduction, angiogenesis promotion, macrophage polarization assistance, etc., as well as the use of EVs as carriers for engineered nucleic acids, have been investigated. The upcoming challenges in translating EV-based treatments for healing chronic wounds, along with possible approaches to address these challenges, are discussed. Additionally, clinical trial studies in this field are also covered.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Wound Healing , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Wound Healing/physiology , Animals , Mesenchymal Stem Cell Transplantation/methods , Chronic Disease , Clinical Trials as Topic , Burns/therapy
16.
J Extracell Vesicles ; 13(5): e12433, 2024 May.
Article in English | MEDLINE | ID: mdl-38738585

ABSTRACT

Extracellular vesicles (EVs) are released by all cells and contribute to cell-to-cell communication. The capacity of EVs to target specific cells and to efficiently deliver a composite profile of functional molecules have led researchers around the world to hypothesize their potential as therapeutics. While studies of EV treatment in animal models are numerous, their actual clinical benefit in humans has more slowly started to be tested. In this scoping review, we searched PubMed and other databases up to 31 December 2023 and, starting from 13,567 records, we selected 40 pertinent published studies testing EVs as therapeutics in humans. The analysis of those 40 studies shows that they are all small pilot trials with a large heterogeneity in terms of administration route and target disease. Moreover, the absence of a placebo control in most of the studies, the predominant local application of EV formulations and the inconsistent administration dose metric still impede comparison across studies and firm conclusions about EV safety and efficacy. On the other hand, the recording of some promising outcomes strongly calls out for well-designed larger studies to test EVs as an alternative approach to treat human diseases with no or few therapeutic options.


Subject(s)
Extracellular Vesicles , Animals , Humans , Cell Communication , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation
17.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Article in English | MEDLINE | ID: mdl-38711334

ABSTRACT

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Myocardial Infarction , Myocytes, Cardiac , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Humans , Animals , Mice , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Male , Myocardial Reperfusion Injury/therapy , Myocardial Reperfusion Injury/metabolism , Disease Models, Animal , Neovascularization, Physiologic , Cells, Cultured
18.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769196

ABSTRACT

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Subject(s)
Brain Ischemia , Brain , Cystatin C , Extracellular Vesicles , Mice, Inbred C57BL , Synapses , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Cystatin C/metabolism , Synapses/metabolism , Mice , Male , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain/metabolism , Brain/pathology , Proteomics/methods , Synaptosomes/metabolism , Neurons/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/therapy , Cells, Cultured , Disease Models, Animal
19.
Commun Biol ; 7(1): 514, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710749

ABSTRACT

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Subject(s)
Acute Lung Injury , Annexin A1 , Epithelial Cells , Extracellular Vesicles , Receptors, Formyl Peptide , Receptors, Lipoxin , Signal Transduction , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Annexin A1/metabolism , Annexin A1/genetics , Animals , Mice , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Epithelial Cells/metabolism , Bronchi/metabolism , Bronchi/cytology , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Cytokines/metabolism , THP-1 Cells
20.
ACS Biomater Sci Eng ; 10(5): 3355-3377, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38563817

ABSTRACT

An imbalance between M1 and M2 macrophage polarization is critical in osteoarthritis (OA) development. We investigated the effect of M2 macrophage-derived extracellular vesicles (M2-EVs) to reprogramme macrophages from the M1 to M2 phenotype for OA treatment. M1 macrophages and mouse OA models were treated with M2-EVs. Proteomic analysis was performed to evaluate macrophage polarization in vitro. The OA models were as follows: destabilization of the medial meniscus (DMM) surgery-induced OA and collagenase-induced OA (CIOA). Hyaluronic acid (HA) was used to deliver M2-EVs. M2-EVs decreased macrophage accumulation, repolarized macrophages from the M1 to M2 phenotype, mitigated synovitis, reduced cartilage degradation, alleviated subchondral bone damage, and improved gait abnormalities in the CIOA and DMM models. Moreover, HA increased the retention time of M2-EVs and enhanced the efficiency of M2-EVs in OA treatment. Furthermore, proteomic analysis demonstrated that M2-EVs exhibited a macrophage reprogramming ability similar to IL-4, and the pathways might be the NOD-like receptor (NLR), TNF, NF-κB, and Toll-like receptor (TLR) signaling pathways. M2-EVs reprogrammed macrophages from the M1 to M2 phenotype, which resulted in beneficial effects on cartilage and attenuation of OA severity. In summary, our study indicated that M2-EV-guided reprogramming of macrophages is a promising treatment strategy for OA.


Subject(s)
Extracellular Vesicles , Hyaluronic Acid , Macrophages , Osteoarthritis , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Hyaluronic Acid/chemistry , Animals , Macrophages/drug effects , Macrophages/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/transplantation , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Mice , Mice, Inbred C57BL , Male , Disease Models, Animal , RAW 264.7 Cells , Proteomics , Macrophage Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...