Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.397
Filter
1.
Braz J Biol ; 84: e283106, 2024.
Article in English | MEDLINE | ID: mdl-39292139

ABSTRACT

Inga cylindrica, a tropical fruit tree of the Fabaceae family (subfamily Mimosoideae), is native to South America. The seeds from this family are an essential source of trypsin inhibitors, which display promising bioactivity for increasing host defense against pathogens. The aim of the present study was to characterize the antimicrobial and antibiofilm activities of the trypsin inhibitor extracted from I. cylindrica seeds, ICTI. ICTI demonstrated antifungal activity with a minimum inhibitory concentration (MIC) of 32.11 µmol.L-1, and a minimum fungicidal concentration (MFC) of 32.1 µmol.L-1, against Cryptococcus gattii, Candida albicans, Candida glabrata and Candida guilliermondii. Combining ICTI with Amphotericin B had a significant synergistic effect, reducing the concentration of the antibiotic by 75% for C. albicans and 94% for C. gatti. The significant increase (16 x) in activity observed with ergosterol (1.01 mol.L-1) for C. albicans and C. gatti, and the lack of activity against bacterial strains, suggests that ICTI interferes with the integrity of the fungal cell membrane. Treatment with ICTI at 10 x MIC resulted in a 51% reduction in biofilm formation and a 56% decrease in mature biofilm colonies for C. albicans. Finally, ICTI displayed no toxicity in the in vivo Galleria mellonella model. Given its antifungal and antibiofilm properties, ICTI could be a promising candidate for the development of new antimicrobial drug prototypes.


Subject(s)
Antifungal Agents , Biofilms , Microbial Sensitivity Tests , Trypsin Inhibitors , Biofilms/drug effects , Animals , Antifungal Agents/pharmacology , Trypsin Inhibitors/pharmacology , Candida/drug effects , Plant Extracts/pharmacology , Fabaceae/chemistry , Seeds/chemistry
2.
PLoS One ; 19(9): e0308700, 2024.
Article in English | MEDLINE | ID: mdl-39269945

ABSTRACT

The studies presented in this paper constitute the first scientific attempt to interpret the manner whereby notched implements made of scapulae were made and used. These implements have been found at numerous European and non-European sites, usually dated to the Neolithic-Early Iron Age (predominantly the Early Bronze Age). Research has examined these products since the beginning of the 20th century, resulting in the development of several hypotheses regarding their functions. This paper presents the analysis results of 41 such artefacts from the early Bronze Age defensive settlement in Bruszczewo (central Poland). This is the largest collection of these products from a single site worldwide. The artefacts were subjected to multi-aspect traceological tests (both technological and functional) using optical, metallographic, and scanning electron microscopes. The residues identified on their surfaces were analysed using optical microscopy and scanning electron microscopy and energy dispersive X-rays spectroscopy. Moreover, the studies reported herein involved extensive experimental research. Consequently, the chain of operations followed in producing these tools was reconstructed and the use-wear traces present on their surfaces were classified; it was determined that these tools were most likely used for threshing cereals but might also have been used for threshing legumes. This is the first proof of threshing in central Europe in the Early Bronze Age and the first scientifically substantiated hypothesis regarding the function of these important artefacts.


Subject(s)
Archaeology , Edible Grain , Microscopy, Electron, Scanning , Edible Grain/chemistry , History, Ancient , Fabaceae/chemistry , Europe , Poland , Humans , Spectrometry, X-Ray Emission
3.
Int J Biol Macromol ; 278(Pt 2): 134648, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142482

ABSTRACT

Glutamate dehydrogenases (GDHs) are key enzymes at the crossroads of N and C metabolism in plants. Legumes, whose N metabolism is particularly intricate, possess a unique type of GDH. This study presents an analysis of a legume-type GDH (isoform 2) from Medicago truncatula (MtGDH2). We measured MtGDH2 activity in both the Glu â†’ 2-oxoglutarate (2OG) and 2OG â†’ Glu reaction directions and obtained kinetic parameters for Glu, 2OG, NAD+, and NADH. Inhibition assays revealed that compounds possessing di- or tricarboxylates act as inhibitors of plant GDHs. Interestingly, 2,6-pyridinedicarboxylate (PYR) weakly inhibits MtGDH2 compared to Arabidopsis thaliana homologs. Furthermore, we explored tetrazole derivatives to discover 3-(1H-tetrazol-5-yl)benzoic acid (TBA) as an MtGDH2 inhibitor. The kinetic experiments are supported by six crystal structures, solved as: (i) unliganded enzyme, (ii) trapping the reaction intermediate 2-amino-2-hydroxyglutarate and NAD+, and also complexed with NAD+ and inhibitors such as (iii) citrate, (iv) PYR, (v) isophthalate, and (vi) TBA. The complex with TBA revealed a new mode of action that, in contrast to other inhibitors, prevents domain closure. This discovery points to TBA as a starting point for the development of novel GDH inhibitors to study the functions of GDH in plants and potentially boost biomass production.


Subject(s)
Enzyme Inhibitors , Glutamate Dehydrogenase , Medicago truncatula , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/antagonists & inhibitors , Kinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Medicago truncatula/enzymology , Models, Molecular , Structure-Activity Relationship , NAD/metabolism , NAD/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/antagonists & inhibitors , Fabaceae/enzymology , Fabaceae/chemistry
4.
Sci Rep ; 14(1): 20253, 2024 08 31.
Article in English | MEDLINE | ID: mdl-39215068

ABSTRACT

Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.


Subject(s)
Cell Movement , Mitochondria , Plant Extracts , Triple Negative Breast Neoplasms , Mitochondria/metabolism , Mitochondria/drug effects , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Cell Movement/drug effects , Mice , Female , Cell Line, Tumor , Humans , Glycolysis/drug effects , Fabaceae/chemistry
5.
Acta Parasitol ; 69(3): 1426-1438, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147955

ABSTRACT

PURPOSE: The flea Ctenocephalides felis (Siphonaptera: Pulicidae), parasitizes dogs and cats globally, acting as a vector for various pathogens affecting both animals and humans. Growing interest in environmentally friendly, plant-based products prompted this study. The aim of the study was to determine the chemical composition of essential oils (EOs) from Copaifera reticulata, Citrus paradisi, Lavandula hybrida and Salvia sclarea, assessing their insecticidal and repellent properties, determining lethal concentrations (LC50 and LC90), and evaluating residual efficacy in vitro against Ctenocephalides felis felis. METHODS: Gas Chromatography with Flame Ionization Detector analyzed EO composition. In vitro tests involved preparing EO solutions at various concentrations. Ten specimens from each life stage (egg, larva, pupa, adult) were used for insecticidal activity assessment. Adulticidal activity was assessed using 10 cm2 filter paper strip, each treated with 0.200 mL of the test solution. Immature stages activities were evaluated using 23.76 cm2 discs of the same filter paper, each treated with 0.470 mL of the test solution. Mortality percentage was calculated using (number of dead insects × 100) / number of incubated insects. Probit analysis calculated LC50 values with a 95% confidence interval. RESULTS: Major EO constituents were ß-caryophyllene (EOCR), linalool (EOLH), linalyl acetate (EOSS), and limonene (EOCP). LC50 values were obtained for all stages except for the essential oil of C. paradisi. All oils showed repellent activity at 800 µg/cm2. OECR exhibited greater residual efficacy. CONCLUSION: Each EO demonstrated superior insecticidal activity against specific C. felis felis stages.


Subject(s)
Ctenocephalides , Insect Repellents , Insecticides , Oils, Volatile , Salvia , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Salvia/chemistry , Insect Repellents/pharmacology , Insect Repellents/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Ctenocephalides/drug effects , Fabaceae/chemistry , Lavandula/chemistry , Larva/drug effects , Pupa/drug effects , Citrus/chemistry , Acyclic Monoterpenes/pharmacology , Monoterpenes/pharmacology , Monoterpenes/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Lethal Dose 50
6.
Article in English | MEDLINE | ID: mdl-39153407

ABSTRACT

Phytic acid or inositol hexakisphosphate (InsP6) and its dephosphorylated forms (InsP5, InsP4 & InsP3) are integral to cellular functions and confer several health benefits. The present study was aimed to develop a cost effective and high sample throughput RP-HPLC-RID method for routine quantification of lower inositol phosphates in both raw and processed cereals and pulses. For this asuitable mobile phase composition was formulated and two columns (MacroporusHamilton PRP-1 Vs Waters Symmetry C18) were compared in terms ofsystem specificity,linearity, accuracy and precision. Separation ofInsP3, InsP4, InsP5 and InsP6 were recorded at 2.39, 2.93, 3.83 and 5.37 min usingPRP-1column while the RT were 4.67, 5.64, 6.99 and 9.14 min with C18column.Linearity of standards (R2 > 0.99), with an accuracy and precision ranging from 1 to 5 % was achieved. The LOD and LOQ of all InsPs were 5 and 15 µg/ml, respectively. In quality control sample InsP6 was found in highest concentration (446 ± 14.71 mg/100 g) followed by InsP5 (162 ± 8.00 mg/100 g) and InsP4 with the least concentration of 11.63 ± 1.06 mg/100 g whereas InsP3 was below detectable limit (BDL). The optimised method was used for profiling of InsPs in the raw and processed cereals and pulses consumed as staple foods in India. Processed foods contained lesser InsP6 and more of lower InsP compared to raw foods. The optimised method using unique mobile phase composition was found to yield accurate results and can used for large scale analysis of cereals and pulses and estimation of mineral nutrition potential and allied health benefits.


Subject(s)
Chromatography, Reverse-Phase , Edible Grain , Fabaceae , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Edible Grain/chemistry , Fabaceae/chemistry , India , Inositol Phosphates/analysis , Inositol Phosphates/chemistry , Limit of Detection , Linear Models , Phytic Acid/analysis , Phytic Acid/chemistry , Reproducibility of Results
7.
Int J Biol Macromol ; 278(Pt 1): 134610, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128737

ABSTRACT

Multifunctional green food packaging films were developed by incorporating Koelreuteria paniculata Laxm. bract extract (KBE) and bio-waste-derived Ti-doped carbon dots (Ti-CDs) into a chitosan/locust bean gum (CG) matrix for the first time. Results from FTIR and XRD demonstrated the precise bonding of Ti-CDs to CG through a Schiff base reaction and hydrogen bonding, while KBE was effectively immobilized within the film matrix via hydrogen bonding. SEM and TGA analysis demonstrated enhanced thermal stability and density of the films. Addition of Ti-CDs synergistically improved the barrier properties and mechanical strength of the films through enhanced hydrogen bonding and Schiff base reactions. Specifically, the incorporation of 3 wt% Ti-CDs increased the oxygen barrier properties, tensile strength, water resistance, and vapor permeability of CG films by approximately 1.18, 0.75, and 1.51 times, respectively. Furthermore, the antimicrobial and antioxidant capabilities were significantly improved with the addition of KBE to films. The CG-3%CDs-KBE film coating effectively prolonged the shelf life of strawberries. Additionally, these films exhibited superior pH responsiveness and ammonia-sensitivity, enabling visual monitoring of shrimp freshness during storage. Importantly, CG-3%CDs-KBE films exhibited biodegradability in soil and displayed good biosafety. Overall, these findings underscore the promising potential of CG-3%CDs-KBE films as multifunctional green food packaging materials.


Subject(s)
Carbon , Chitosan , Food Packaging , Galactans , Mannans , Plant Extracts , Plant Gums , Chitosan/chemistry , Food Packaging/methods , Plant Gums/chemistry , Plant Extracts/chemistry , Mannans/chemistry , Carbon/chemistry , Galactans/chemistry , Titanium/chemistry , Quantum Dots/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Permeability , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Green Chemistry Technology , Fabaceae/chemistry
8.
Carbohydr Res ; 544: 109241, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153325

ABSTRACT

Legume lectins are a diverse family of carbohydrate-binding proteins that share significant similarities in their primary, secondary, and tertiary structures, yet exhibit remarkable variability in their quaternary structures and carbohydrate-binding specificities. The tertiary structure of legume lectins, characterized by a conserved ß-sandwich fold, provides the scaffold for the formation of a carbohydrate-recognition domain (CRD) responsible for ligand binding. The structural basis for the binding is similar between members of the family, with key residues interacting with the sugar through hydrogen bonds, hydrophobic interactions, and van der Waals forces. Variability in substructures and residues within the CRD are responsible for the large array of specificities and enable legume lectins to recognize diverse sugar structures, while maintaining a consistent structural fold. Therefore, legume lectins can be classified into several specificity groups based on their preferred ligands, including mannose/glucose-specific, N-acetyl-d-galactosamine/galactose-specific, N-acetyl-d-glucosamine-specific, l-fucose-specific, and α-2,3 sialic acid-specific lectins. In this context, this review examined the structural aspects and carbohydrate-binding properties of representative legume lectins and their specific ligands in detail. Understanding the structure/binding relationships of lectins continues to provide valuable insights into their biological roles, while also assisting in the potential applications of these proteins in glycobiology, diagnostics, and therapeutics.


Subject(s)
Fabaceae , Plant Lectins , Fabaceae/chemistry , Fabaceae/metabolism , Plant Lectins/chemistry , Plant Lectins/metabolism , Protein Binding , Carbohydrates/chemistry , Binding Sites
9.
J Agric Food Chem ; 72(33): 18528-18536, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39105735

ABSTRACT

In recent years, there has been a need for environmentally friendly compounds for weed management in agriculture. This study is aimed to assess the phytotoxic constituents of oils obtained from oleoresins of seven Copaifera species (known as copaiba oils). Copaiba oils were separated from the resins by hydro-distillation, and the distillates were analyzed using gas chromatography-mass spectrometry (GC-MS) to characterize their chemical compositions. Multivariate analyses and molecular networking of GC-MS data were conducted to discern patterns in the chemical composition and phytotoxic activity of the oils, with the aim of identifying key compounds associated with phytotoxic activity. Seed germination bioassay revealed strong or complete germination inhibition against the monocot, Agrostis stolonifera but not the dicot Lactuca sativa. GC-MS analysis showed variations in composition among Copaifera species with some common compounds identified across multiple species. Caryophyllene oxide and junenol were associated with the observed phytotoxic effects. Automated flash chromatography was used to isolate the major compounds of the oils. Isolated compounds exhibited differing levels of phytotoxicity compared to the oils, suggesting the importance of interactions or synergism among oil components. These findings highlight the potential of copaiba oils as natural herbicidal agents and underscore the importance of considering species-specific responses in weed management strategies.


Subject(s)
Fabaceae , Gas Chromatography-Mass Spectrometry , Germination , Oils, Volatile , Seeds , Fabaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/toxicity , Oils, Volatile/pharmacology , Seeds/chemistry , Seeds/drug effects , Seeds/growth & development , Germination/drug effects , Plant Oils/chemistry , Plant Oils/toxicity , Plant Oils/pharmacology , Lactuca/drug effects , Lactuca/growth & development , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/toxicity
10.
Molecules ; 29(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124907

ABSTRACT

Gabon has a rich flora, many species of which are used in traditional medicine. However, little research has been carried out on this wealth. An ethnopharmacological survey in the Fang language was carried out among traditional practitioners to collect antimicrobial medicinal plants. Phytochemical profiling of ethanolic and methanolic extracts from Erismadelphus exsul Mildbr leaves was carried out using HPLC-ESI-Q/TOF and a molecular network approach. Antibacterial activity was assessed with disk diffusion and microdilution methods, antioxidant activity via DPPH and FRAP methods, and in vitro cell viability via Cell Counting Kit-8. A total of 21 medicinal plants were collected, grouped into 10 families, of which the Fabaceae is the most represented. Erismadelphus exsul was chosen for chemical and biological studies due to its citation frequency (RCF = 0.59) and the absence of previous phytochemical studies. These studies revealed 4 major families of natural compounds and annotated 19 compounds for the first time. The crude leaf extract showed significant antioxidant and antibacterial activity. Cytotoxicity studies showed that the leaves were not cytotoxic, unlike the bark. This study underlines the importance of preserving the ancestral knowledge of the Fang populations, while showing promising results for Erismadelphus exsul.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Phytochemicals , Plant Extracts , Plant Leaves , Plants, Medicinal , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plants, Medicinal/chemistry , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Microbial Sensitivity Tests , Fabaceae/chemistry , Medicine, Traditional , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Chromatography, High Pressure Liquid , Cell Survival/drug effects
11.
Sci Rep ; 14(1): 18080, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103462

ABSTRACT

Introducing legumes into C4-dominated tropical pastures, may enhance their sustainability but has some pasture management constraints. One potential alternative is using arboreal legumes, but several of these species have relatively high condensed tannin (CT) concentrations, which negatively impact forage quality. There is limited knowledge, however, on how arboreal legume leaf CT content varies over the year and how this might impact forage quality. The objective of this 2 year study was to assess the seasonal variation of CT and nutritive value for ruminants of the tropical tree legumes gliricidia [Gliricidia sepium (Jacq.) Kunth ex. Walp.] and mimosa (Mimosa caesalpiniifolia Benth). The research was carried out in the sub-humid tropical region of Brazil on well-established pastures in which either legume was present with signalgrass (Urochloa decumbens Stapf.). We determined CT and nitrogen concentrations, in vitro digestible organic matter (IVDOM), and leaf δ13C and δ15N from January to October of 2017 and 2018. All parameters were affected (P < 0.05) by the interaction between legume species and sampling time, with generally higher leaf CT content for mimosa than gliricidia, and both were reduced at the start of the dry season, although much more drastically for mimosa. The IVDOM was strongly affected by CT content and increased at the start of the dry season, coincidentally when C4 grass forage quality typically decreased. There is a marked species effect, with CT from gliricidia impacting IVDOM more than the same CT content from mimosa. While N concentration from mimosa also increased at the start of the dry season, that for gliricidia did not vary over the year. We conclude that although these arboreal legumes have relatively high CT contents, these reduce during the dry season when CT concentrations coinciding with a reduced forage quality as the protein content for C4 grasses is usually inadequate in this season.


Subject(s)
Fabaceae , Nutritive Value , Proanthocyanidins , Trees , Proanthocyanidins/analysis , Fabaceae/chemistry , Fabaceae/metabolism , Plant Leaves/chemistry , Seasons , Mimosa/chemistry , Animals , Brazil , Animal Feed/analysis , Nitrogen/analysis
12.
Sci Rep ; 14(1): 19637, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179586

ABSTRACT

Even though legumes are valuable medicinal plants with edible seeds that are extensively consumed worldwide, there is little information available on the metabolic variations between different dietary beans and their influence as potential anti-cholinesterase agents. High-resolution liquid chromatography coupled with mass spectrometry in positive and negative ionization modes combined with multivariate analysis were used to explore differences in the metabolic profiles of five commonly edible seeds, fava bean, black-eyed pea, kidney bean, red lentil, and chickpea. A total of 139 metabolites from various classes were identified including saponins, alkaloids, phenolic acids, iridoids, and terpenes. Chickpea showed the highest antioxidant and anti-cholinesterase effects, followed by kidney beans. Supervised and unsupervised chemometric analysis determined that species could be distinguished by their different discriminatory metabolites. The major metabolic pathways in legumes were also studied. Glycerophospholipid metabolism was the most significantly enriched KEGG pathway. Pearson's correlation analysis pinpointed 18 metabolites that were positively correlated with the anti-cholinesterase activity. Molecular docking of the biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes revealed promising binding scores, validating the correlation results. The present study will add to the metabolomic analysis of legumes and their nutritional value and advocate their inclusion in anti-Alzheimer's formulations.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Fabaceae , Molecular Docking Simulation , Seeds , Alzheimer Disease/metabolism , Seeds/metabolism , Seeds/chemistry , Fabaceae/metabolism , Fabaceae/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/metabolism , Humans , Acetylcholinesterase/metabolism , Metabolomics/methods , Antioxidants/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Metabolome , Butyrylcholinesterase/metabolism
13.
Molecules ; 29(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202855

ABSTRACT

Plant peptidase inhibitors play crucial roles in plant defence mechanisms and physiological processes. In this study, we isolated and characterised a Kunitz trypsin inhibitor from Enterolobium gummiferum seeds named EgPI (E. gummiferum peptidase inhibitor). The purification process involved two chromatography steps using size exclusion and hydrophobic resins, resulting in high purity and yield. EgPI appeared as a single band of ~20 kDa in SDS-PAGE. Under reducing conditions, the inhibitor exhibited two polypeptide chains, with 15 and 5 kDa. Functional characterisation revealed that EgPI displayed an inhibition stoichiometry of 1:1 against trypsin, with a dissociation constant of 8.4 × 10-9 mol·L-1. The amino-terminal sequencing of EgPI revealed the homology with Kunitz inhibitors. Circular dichroism analysis provided insights into the secondary structure of EgPI, which displayed the signature typical of Kunitz inhibitors. Stability studies demonstrated that EgPI maintained the secondary structure necessary to exhibit its inhibitory activity up to 70 °C and over a pH range from 2 to 8. Microbiological screening revealed that EgPI has antibiofilm properties against pathogenic yeasts at 1.125 µmol·L-1, and EgPI reduced C. albicans biofilm formation by 82.7%. The high affinity of EgPI for trypsin suggests potential applications in various fields. Furthermore, its antibiofilm properties recommended its usefulness in agriculture and antimicrobial therapy research, highlighting the practical implications of our research.


Subject(s)
Biofilms , Fabaceae , Plant Proteins , Seeds , Trypsin Inhibitors , Seeds/chemistry , Biofilms/drug effects , Fabaceae/chemistry , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification , Plant Proteins/pharmacology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Amino Acid Sequence , Peptides
14.
Molecules ; 29(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203001

ABSTRACT

This work aimed to investigate the feasibility of fabricating Pickering emulsions stabilized by Desmodium intortum protein isolate (DIPI) aggregates. The DIPI aggregates were formed using heat treatment, and the effects of ionic strength and pH on their properties were investigated. The heat-treated protein exposes its hydrophobic groups due to structural damage, resulting in rapid aggregation of the protein into aggregates with a size of 236 nm. The results showed that the aggregates induced by ionic strength had larger particle size and higher surface hydrophobicity and partial wettability. Moreover, this study explored effective strategies for bolstering Pickering emulsion stability through optimized DIPI aggregate concentration (c) and oil fraction (ø). The DIPI Pickering emulsion (DIPIPE) formed at c = 5% and ø = 0.7 was still highly stable after 30 days of storage. As confirmed by laser confocal microscopy, DIPI aggregates could be adsorbed onto the oil-water interface to form a network structure that could trap oil droplets in the network. Collectively, the Pickering emulsion stabilized by DIPI aggregates exhibited excellent stability, which not only deeply utilizes the low-value protein resources in the Desmodium intortum for the first time, but also demonstrates the potential of DIPI for the bio-based field.


Subject(s)
Emulsions , Hydrophobic and Hydrophilic Interactions , Protein Aggregates , Emulsions/chemistry , Particle Size , Plant Proteins/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Emulsifying Agents/chemistry , Wettability , Fabaceae/chemistry , Chemical Phenomena
15.
Pak J Biol Sci ; 27(7): 348-355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39206468

ABSTRACT

<b>Background and Objective:</b> Carob tree (<i>Ceratonia siliqua</i> L.) is a perennial leguminous species and is known as a medicinal importance tree. This species exhibits a myriad of biological effects including antibacterial, antidiarrheal and antidiabetic. To this end, current study evaluates the difference between the phytochemical composition of the leaves of two accessions of "wild" and "domesticated" hermaphroditic carob trees. <b>Materials and Methods:</b> The comparison between two carob accessions "wild" and "domesticated" was done according to methanolic extraction by the Soxhlet and aqueous extraction by maceration. The polyphenols, flavonoids, tannins and their antioxidant activity were measured. The ANOVA test was used for the analysis of results. <b>Results:</b> The total polyphenols in aqueous extract are 6.19±0.25 mg equivalent gallic acid/g dry weight (EGA/g DW) and 4.23±0.2 mg EGA/g DW) in carob fresh leaves for wild and domesticated trees, respectively. The flavonoid content was higher in methanolic extract (3.17±0.64 mg quercetin equivalent/g DW) than in aqueous extract (1.06±0.19 mg EQ/g DW) for wild trees. Wild accession recorded the highest concentration of condensed tannins in the methanolic extract (6.4±0.3 mg catechin equivalents/g DW) while low levels were recorded in aqueous extract (0.51±0.27 mg EC/g DW). <b>Conclusion:</b> Such knowledge is expected to be the key to understanding the biochemical composition of two different leaves of <i>C. siliqua</i> accessions and its various commercial food products.


Subject(s)
Antioxidants , Phytochemicals , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phytochemicals/chemistry , Fabaceae/chemistry , Polyphenols/analysis , Flavonoids/analysis , Mannans , Plant Gums/chemistry , Galactans , Tannins/analysis
16.
Plant Foods Hum Nutr ; 79(3): 551-562, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38976203

ABSTRACT

Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.


Subject(s)
Crops, Agricultural , Germination , Nutritive Value , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Seeds/chemistry , Seeds/growth & development , Zea mays/chemistry , Zea mays/growth & development , Humans , Chenopodium quinoa/chemistry , Taste , Dietary Fiber/analysis , Amaranthus/chemistry , Amaranthus/growth & development , Minerals/analysis , Dietary Proteins/analysis , Fabaceae/chemistry
17.
Sci Rep ; 14(1): 17405, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075092

ABSTRACT

Tilapia is one of the most important farmed fish in the world and the most cultivated in Brazil. The increase of this farming favors the appearance of diseases, including bacterial diseases. Therefore, the aim of this study was to evaluate the bactericidal activity of copaiba oil, Copaifera duckei, against Streptococcus agalactiae and Flavobacterium columnare and the dietary effect of copaiba oil on zootechnical performance, hematological, biochemical, immunological, and histological analysis before and after an intraperitoneal infection (body cavity) with S. agalactiae in Nile tilapia. For this, fish were randomly distributed into 15 fiber tanks in five treatments (0, 0.25, 0.50, 0.75, and 1.0%) and fed with a commercial diet supplemented with copaiba oil for 30 days. After this period, the fish were randomly redistributed for the experimental challenge with S. agalactiae into six treatments (T0, T1, T2, T3, T4, and T5), the fish were anesthetized, and blood samples were collected to assess hematological, biochemical, immunological, and histological parameters. Copaiba oil showed bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro. In addition, concentrations of 0.75 and 1.0% of copaiba oil have an anti-inflammatory effect and improve hematological and immunological parameters, increasing leukocyte numbers, albumin, and serum lytic activity. Furthermore, there is an increase in the intestinal villus length and tissue damage in groups at concentrations of 0.75 and 1.0% of copaiba oil. In conclusion, copaiba oil presented bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro, and oral supplementation at concentrations of 0.75 and 1.0% compared to the control group enhanced non-specific immune parameters and digestibility in Nile Tilapia.


Subject(s)
Cichlids , Dietary Supplements , Fish Diseases , Flavobacterium , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Flavobacterium/drug effects , Fish Diseases/microbiology , Fish Diseases/drug therapy , Fish Diseases/prevention & control , Fabaceae/chemistry , Anti-Bacterial Agents/pharmacology , Streptococcal Infections/veterinary , Streptococcal Infections/drug therapy , Streptococcal Infections/prevention & control , Plant Oils/pharmacology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/drug therapy , Flavobacteriaceae Infections/prevention & control , Animal Feed , Administration, Oral , Aquaculture/methods
18.
Sci Rep ; 14(1): 16028, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992070

ABSTRACT

We aimed to determine the chemical profile and unveil Anadenanthera colubrina (Vell.) Brenan standardized extract effects on inflammatory cytokines expression and key proteins from immunoregulating signaling pathways on LPS-induced THP-1 monocyte. Using the RT-PCR and Luminex Assays, we planned to show the gene expression and the levels of IL-8, IL-1ß, and IL-10 inflammatory cytokines. Key proteins of NF-κB and MAPK transduction signaling pathways (NF-κB, p-38, p-NF-κB, and p-p38) were detected by Simple Western. Using HPLC-ESI-MSn (High-Performance Liquid-Chromatography) and HPLC-HRESIMS, we showed the profile of the extract that includes an opus of flavonoids, including the catechins, quercetin, kaempferol, and the proanthocyanidins. Cell viability was unaffected up to 250 µg/mL of the extract (LD50 = 978.7 µg/mL). Thereafter, the extract's impact on the cytokine became clear. Upon LPS stimuli, in the presence of the extract, gene expression of IL-1ß and IL-10 were downregulated and the cytokines expression of IL-1ß and IL-10 were down an upregulated respectively. The extract is involved in TLR-4-related NF-κB/MAPK pathways; it ignited phosphorylation of p38 and NF-κB, orchestrating a reduced signal intensity. Therefore, Anadenanthera colubrina's showed low cytotoxicity and profound influence as a protector against the inflammation, modulating IL-1ß and IL-10 inflammatory cytokines gene expression and secretion by regulating intracellular NF-κB and p38-MAPK signaling pathways.


Subject(s)
Inflammation , Lipopolysaccharides , MAP Kinase Signaling System , NF-kappa B , Plant Extracts , p38 Mitogen-Activated Protein Kinases , Humans , Cell Survival/drug effects , Cytokines/metabolism , Fabaceae/chemistry , Inflammation/metabolism , Inflammation/chemically induced , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/pharmacology , Signal Transduction/drug effects , THP-1 Cells
19.
Food Chem ; 460(Pt 1): 140394, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39032292

ABSTRACT

In this work, a sea urchin gold nanoparticles-zearalenone aptamer- tetramethylrhodamine sensor was constructed. Sea urchin gold nanoparticles, prepared using the seed-mediated growth method, were used as Raman substrates. Nucleic acid aptamers were mainly used as specific recognition molecules. Zearalenone detection in miscellaneous beans was accomplished using the principle of conformational change in aptamer. In addition, we evaluated the linear range, sensitivity, and selectivity of our sensor. We observed that at the displacement of 814 cm-1, for Zearalenone concentrations of 0.01-60 ng/mL, the Raman signal intensity linearly correlated with the zearalenone concentration, with a limit of detection of 0.01 ng/mL, and recoveries of 91.7% to 108.3%. The optimum detection time was 30 min. Thus, our sensor exhibited great potential in zearalenone detection in food products.


Subject(s)
Aptamers, Nucleotide , Food Contamination , Gold , Metal Nanoparticles , Sea Urchins , Spectrum Analysis, Raman , Zearalenone , Animals , Zearalenone/analysis , Aptamers, Nucleotide/chemistry , Spectrum Analysis, Raman/methods , Food Contamination/analysis , Sea Urchins/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Fabaceae/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Limit of Detection
20.
J Ethnopharmacol ; 335: 118619, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39053713

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hymenaea eriogyne Benth (Fabaceae) is popularly known as "Jatobá". Despite its use in folk medicine to treat inflammatory disorders, there are no descriptions that show its anti-inflammatory potential. AIM OF THE STUDY: In this sense, this study aimed to evaluate the anti-inflammatory and antivenom action of bark and leaves extract of H. eriogyne. MATERIALS AND METHODS: The in vivo anti-inflammatory activity was conducted by carrageenan-induced paw edema and zymosan-induced air pouch models, evaluating the edematogenic effect, leukocyte migration, protein concentration, levels of pro-inflammatory cytokines, malondialdehyde (MDA) and myeloperoxidase (MPO) activity. The antivenom potential was investigated in vitro on the enzymatic action (proteolytic, phospholipase and hyaluronidase) of Bothrops brazili and B. leucurus venom, as well as in vivo on the paw edema model induced by B. leucurus. Furthermore, the influence of its markers (astilbin and rutin) on MPO activity was investigated in silico. For molecular docking, AutodockVina, Biovia Discovery Studio, and Chimera 1.16 software were used. RESULTS: The extracts and bark and leaves of H. eriogyne revealed a high anti-inflammatory effect, with a reduction in all inflammatory parameters evaluated. The bark extract showed superior results when compared to the leaf extract, suggesting the influence of the astilbin concentration, higher in the bark, on the anti-inflammatory action. In addition, only the H. eriogyne bark extract was able to reduce MDA, indicating an associated antioxidant effect. Regarding the in vitro antivenom action, the extracts (bark and leaves) revealed the ability to inhibit the proteolytic, phospholipase and hyaluronidase action of both bothropic venom, with a greater effect against B. leucurus venom. In vivo, extracts from the bark and leaves of H. eriogyne (50-200 mg/kg) showed antiedematogenic activity, reducing the release of MPO and pro-inflammatory cytokines, indicating the presence of bioactive components useful in controlling the inflammatory process induced by the venom. In the in silico assays, astilbin and rutin showed reversible interactions of 9 possible positions and orientations towards MPO, with affinities of -9.5 and -10.4 kcal/mol and interactions with Phe407, Gln91, His95 and Arg239, important active pockets of MPO. Rutin demonstrated more effective types of interactions with MPO. CONCLUSION: This approach reveals for the first time the anti-inflammatory action of H. eriogyne bark and leaf extracts in vivo, as well as its antiophidic potential. Moreover, the distinct effect of pharmacogens as antioxidant agents and distinct effect of astilbin and rutin under MPO sheds light on the different anti-inflammatory mechanisms of bioactive compounds present in H. eriogyne extracts, with high potential for the prospection of new pharmacological agents.


Subject(s)
Anti-Inflammatory Agents , Carrageenan , Edema , Molecular Docking Simulation , Plant Bark , Plant Extracts , Plant Leaves , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Edema/drug therapy , Edema/chemically induced , Plant Leaves/chemistry , Plant Bark/chemistry , Male , Structure-Activity Relationship , Peroxidase/metabolism , Fabaceae/chemistry , Antivenins/pharmacology , Antivenins/chemistry , Rats, Wistar , Crotalid Venoms/toxicity , Mice , Bothrops , Cytokines/metabolism , Zymosan , Biomarkers/metabolism , Rutin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL