Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 531
1.
Food Chem ; 451: 139409, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38692236

Herein, nineteen buckwheat honey samples collected from 19 stations of different ecological zones of Kazakhstan were analysed for their pollen density, physicochemical properties, chemical composition, antioxidant, anticholinesterase, tyrosinase inhibitory, and urease inhibitory activities with chemometric approaches. Twelve phenolic compounds and fumaric acid were identified using HPLC-DAD, and mainly fumaric, p-hydroxybenzoic, p-coumaric, trans-2-hydroxy cinnamic acids, and chrysin were detected in all samples. The honey samples collected from the Northern zone exhibited best antioxidant activity in lipid peroxidation inhibitory (IC50:8.65 ± 0.50 mg/mL), DPPH• (IC50:17.07 ± 1.49 mg/mL), ABTS•+ (IC50:8.90 ± 0.65 mg/mL), CUPRAC (A0.50:7.51 ± 0.30 mg/mL) and metal chelating assay (IC50:10.39 ± 0.71 mg/mL). In contrast, South-eastern zone samples indicated better acetylcholinesterase (55.57 ± 0.83%), butyrylcholinesterase (49.59 ± 1.09%), tyrosinase (44.40 ± 1.21%), and moderate urease (24.57 ± 0.33%) inhibitory activities at 20 mg/mL. The chemometric classification of nineteen buckwheat honey was performed using PCA and HCA techniques. Both were supported by correlation analysis. Thirteen compounds contributed significantly to the clustering of buckwheat honey based on geographical origin.


Antioxidants , Fagopyrum , Honey , Honey/analysis , Honey/classification , Fagopyrum/chemistry , Fagopyrum/classification , Antioxidants/chemistry , Antioxidants/analysis , Kazakhstan , Monophenol Monooxygenase/antagonists & inhibitors , Chemometrics , Phenols/analysis , Phenols/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis
2.
Ultrason Sonochem ; 106: 106895, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705082

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear. Therefore, to bridge the gap between the chemical structure and the biological function of TBP, the impacts of ultrasound-assisted Fenton degradation (UFD) and mild alkaline de-esterification (MAD) on structural properties and biological effects of TBP were systematically studied. Compared with the native TBP (molecular mass, 9.537 × 104 Da), the molecular masses of degraded TBPs (TBP-MMW, 4.811 × 104 Da; TBP-LMW, 2.101 × 104 Da) were significantly reduced by the UFD modification, while their primary chemical structures were overall stable. Besides, compared with the native TBP (esterification degree, 22.73 %), the esterification degrees of de-esterified TBPs (TBP-MDE, 14.27 %; TBP-LDE, 6.59 %) were notably reduced by the MAD modification, while their primary chemical structures were also overall stable. Furthermore, the results revealed that both UFD and MAD modifications could significantly improve the antioxidant, antiglycation, and immunostimulatory effects of TBP. Indeed, TBP's biological effects were negatively correlated to its molecular mass and esterification degree, while positively linked to its free uronic acids. The findings demonstrate that both UFD and MAD modifications are promising techniques for the structural modification of TBP, which can remarkedly promote its biological effects. Besides, the present results are conducive to better understanding TBP's structure-bioactivity relationship.


Fagopyrum , Pectins , Plant Leaves , Ultrasonic Waves , Plant Leaves/chemistry , Fagopyrum/chemistry , Esterification , Pectins/chemistry , Pectins/pharmacology , Iron/chemistry , Hydrogen Peroxide/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals
3.
J Agric Food Chem ; 72(22): 12630-12640, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38779919

Tartary buckwheat is highly valued for its abundant rutin (quercetin 3-O-rutinoside). As a flavonoid glycoside, rutin is synthesized with the crucial involvement of UDP-dependent glycosyltransferases (UGTs). However, the functions and transcriptional regulation of the UGT-encoded genes remain poorly understood. This study identified a key gene, FtUFGT163, potentially encoding flavonol 3-O-glucoside (1 → 6) rhamnosyltransferase in Tartary buckwheat through omics analysis and molecular docking methods. The recombinant FtUFGT163 expressed in Escherichia coli demonstrated the capacity to glycosylate isoquercetin into rutin. Overexpression of FtUFGT163 significantly enhanced the rutin content in Tartary buckwheat. Further investigation identified a novel bZIP transcription factor, FtGBF1, that enhances FtUFGT163 expression by binding to the G-box element within its promoter, thereby augmenting rutin biosynthesis. Additional molecular biology experiments indicated that the specific positive regulator of rutin, FtMYB5/6, could directly activate the FtGBF1 promoter. Collectively, this study elucidates a novel regulatory module, termed "FtMYB5/6-FtGBF1-FtUFGT163", which effectively coordinates the biosynthesis of rutin in Tartary buckwheat, offering insights into the genetic enhancement of nutraceutical components in crops.


Fagopyrum , Gene Expression Regulation, Plant , Plant Proteins , Rutin , Fagopyrum/genetics , Fagopyrum/metabolism , Fagopyrum/chemistry , Rutin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Molecular Docking Simulation
4.
PeerJ ; 12: e17136, 2024.
Article En | MEDLINE | ID: mdl-38590707

The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.


Fagopyrum , Melatonin , Germination , Melatonin/pharmacology , Fagopyrum/chemistry , Temperature , Seeds/chemistry
5.
Int J Food Microbiol ; 417: 110705, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38640815

The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.


Bread , Caseins , Fagopyrum , Fermentation , Fagopyrum/chemistry , Bread/microbiology , Caseins/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/growth & development , Hydrogen-Ion Concentration , Bacteria/metabolism , Bacteria/growth & development , Fermented Foods/microbiology
6.
Food Chem ; 449: 139183, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604028

Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development. Metabolic profiles including 17 phenolic acids and 83 flavonoids are influenced by both varietal distinctions and developmental intricacies. Notably, flavonols, as major flavonoids, accumulated with achene ripening and showed a tissue-specific distribution. Specifically, flavonol glycosides and aglycones concentrated in the embryo, while methylated flavonols and procyanidins in the hull. Black achenes at the green achene stage have higher bioactive compounds and enhanced antioxidant capacity. These findings provide insights into spatial and temporal characteristics of metabolites in Tartary buckwheat achenes and serve as a theoretical guide for selecting optimal resources for food production.


Fagopyrum , Metabolomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fagopyrum/chemistry , Fagopyrum/growth & development , Fagopyrum/metabolism , Flavonoids/metabolism , Flavonoids/chemistry , Flavonoids/analysis , Chromatography, High Pressure Liquid , Plant Extracts/metabolism , Plant Extracts/chemistry , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Liquid Chromatography-Mass Spectrometry
7.
Food Chem ; 451: 139350, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38663246

The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".


Digestion , Ethanol , Fagopyrum , Quercetin , Rutin , Starch , Fagopyrum/chemistry , Starch/chemistry , Quercetin/chemistry , Ethanol/chemistry , Viscosity , Rutin/chemistry , Particle Size , Plant Extracts/chemistry , Models, Biological , X-Ray Diffraction
8.
Article En | MEDLINE | ID: mdl-38635926

A method was developed for the determination of tropane alkaloids (TAs), including atropine, scopolamine, anisodamine and homatropine in buckwheat and related products. This work presents an optimised methodology based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction procedure followed by ultra-high performance liquid chromatography combined with time-of-flight mass spectrometry for the determination of TAs (atropine, scopolamine, anisodamine and homatropine) in buckwheat samples. The analytical methodology was successfully validated, demonstrating good linearity, low limit of quantification, repeatability (RSDr < 15%), inter-day precision (RSDR < 19%) and recovery (74-113%). Finally, 13 commercial samples of buckwheat were analysed and the results demonstrated that they were in compliance with the current European regulations regarding TAs.


Fagopyrum , Tropanes , Fagopyrum/chemistry , Chromatography, High Pressure Liquid , Tropanes/analysis , Tropanes/chemistry , Mass Spectrometry , Food Contamination/analysis
9.
Methods Mol Biol ; 2791: 57-70, 2024.
Article En | MEDLINE | ID: mdl-38532092

Immunohistochemistry is a method that allows the detection of individual components of cell walls in an extremely precise way at the level of a single cell and wall domains. The cell wall antibodies detect specific epitopes of pectins, arabinogalactan proteins (AGP), hemicelluloses, and extensins. The presented method visualization of the selected pectic and AGP epitopes using antibodies directed to wall components is described. The method of the analysis of the chemical composition of the wall is present on the example of the shoot apical meristems of Fagopurum esculentum and Fagopyrum tataricum. Recommended protocols for immunostaining and examination on fluorescence microscopy level are presented.


Fagopyrum , Fagopyrum/chemistry , Fagopyrum/metabolism , Meristem/metabolism , Pectins/analysis , Immunohistochemistry , Epitopes , Cell Wall/chemistry
10.
Methods Mol Biol ; 2791: 81-87, 2024.
Article En | MEDLINE | ID: mdl-38532094

This chapter presents the squash chromosome preparation technique for Fagopyrum esculentum and F. tataricum, using the root tips as the source of the material. Using an optimized version of this method, the chromosomes are free of cytoplasmic debris and are spread evenly on the glass slide. What comes of it is the possibility to make observations of the chromosome number and structure at the metaphase stage. This technique's modified version allows micronuclei analysis in interphase cells of buckwheats.


Fagopyrum , Fagopyrum/chemistry , Fagopyrum/genetics , Chromosomes
11.
Int J Biol Macromol ; 265(Pt 1): 130686, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460638

To elucidate the effect of starch granule-associated proteins (SGAPs) on retrogradation properties of buckwheat starch, the retrogradation properties of Tartary buckwheat starch (TBS) and common buckwheat starch (CBS) before and after removal of SGAPs were systematically investigated, with wheat starch (WS) as reference. A significant decrease in gel strength of starches and density of starch aggregates were observed after removing SGAPs. The results were in line with the changes in retrogradation enthalpy of starches and short-range ordered structure of starch aggregates. After removing SGAPs, the retrogradation enthalpy of TBS decreased from 4.16 J/g to 3.74 J/g, CBS decreased from 4.05 J/g to 3.35 J/g and WS decreased from 3.27 J/g to 2.81 J/g, respectively. Taken together the results of LF-NMR, FTIR and rheological analysis, it can be concluded that SGAPs could promote the hydrogen bond interactions between starch molecules by competitively binding with water molecules, enhancing the rearrangement of starch molecules and forming a more ordered structure. Overall, the study suggested that the presence of SGAPs could enhanced the interaction between starch molecules chains, thus accelerated the retrogradation process. The research results provide more information about SGAPs in buckwheat starch and support further study for manipulation of starch properties.


Fagopyrum , Starch , Starch/chemistry , Fagopyrum/chemistry , Plant Proteins/chemistry , Thermodynamics
12.
Food Res Int ; 180: 114065, 2024 Mar.
Article En | MEDLINE | ID: mdl-38395582

Tartary buckwheat is rich in nutrients and its protein supports numerous biological functions. However, the digestibility of Tartary buckwheat protein (TBP) poses a significant limitation owing to its inherent structure. This study aimed to assess the impact of high moisture extrusion (HME, 60 % moisture content) on the structural and physicochemical attributes, as well as the in vitro digestibility of TBP. Our results indicated that TBP exhibited unfolded and amorphous microstructures after HME. The protein molecular weight of TBP decreased after HME, and a greater degradation was observed at 70 °C than 100 °C. In particular, HME at 70 °C caused an almost complete disappearance of bands near 35 kDa compared with HME at 100 °C. In addition, compared with native TBP (NTBP, 44.53 µmol/g protein), TBP subjected to HME at 70 °C showed a lower disulfide bond (SS) content (42.67 µmol/g protein), whereas TBP subjected to HME at 100 °C demonstrated a higher SS content (45.70 µmol/g protein). These changes endowed TBP with good solubility (from 55.96 % to 83.31 % at pH 7), foaming ability (20.00 %-28.57 %), and surface hydrophobicity (8.34-23.07). Furthermore, the emulsifying activity (EA) and in vitro digestibility are closely related to SS content. Notably, extruded TBP (ETBP) obtained at 70 °C exhibited higher EA and digestibility than NTBP, whereas ETBP obtained at 100 °C showed the opposite trend. Consequently, HME (especially at 70 °C) demonstrated significant potential as a processing technique for improving the functional and digestive properties of TBP.


Fagopyrum , Fagopyrum/chemistry , Solubility , Digestion , GTP-Binding Proteins/metabolism
13.
Sci Rep ; 14(1): 3127, 2024 02 07.
Article En | MEDLINE | ID: mdl-38326346

This research aimed to enhance the nutritional and sensory qualities of Balady bread by adding locally Egyptian buckwheat flours, Fagopyrum esculentum (FE) and Fagopyrum tataricum (FT), to Hard Wheat Flour (HWF) 82% extraction at three levels (10%, 20%, and 30%). The chemical composition, rheological properties, color, sensory evaluation and stalling of the balady bread were determined. The chemical composition of raw materials revealed that FE was significantly (P ≤ 0.05) higher in protein and fat contents compared to HWF and FT. While FT was higher in fiber and ash contents. The findings show that a 30% replacement with FE or FT significantly enhances the bread's nutritional profile, notably increasing protein, fiber, ash, and moisture content. Rheological analysis revealed that FE and FT alter dough handling, with a notable improvement in dough stability and mixing tolerance at 30% FT. Sensory evaluation indicated acceptable qualities even at higher substitution levels, although 30% FE showed slight declines in certain attributes. Furthermore, bread supplemented with 30% FT demonstrated slower staling and potentially extended shelf life. These results highlight the potential of FE and FT as nutritional enhancers in bread formulations, with 30% FT emerging as the optimal replacement level for balancing nutritional benefits and sensory acceptance.


Fagopyrum , Flour , Flour/analysis , Bread/analysis , Fagopyrum/chemistry , Egypt , Triticum/chemistry , Carbohydrates
14.
Ecotoxicol Environ Saf ; 270: 115833, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38181602

Elaborating on the fate tendency of thifluzamide (thiazole-amide fungicide) in buckwheat based on nationwide application is vital for grain security and human health based on nationwide application. A rapid and sensitive analytical method was developed to trace thifluzamide in buckwheat matrices using an ultrahigh-performance liquid chromatography-tandem triple quadrupole mass spectrometer (UHPLC-MS/MS), with a retention time of 2.90 min and limit of quantitation (LOQ) of 0.001 mg/kg. Thifluzamide could be stably stored for 84 d in buckwheat matrices under -20 °C under dark condition. The occurrence, dissipation and terminal magnitudes of thifluzamide were reflected by the primary deposition of 0.02-0.55 mg/kg, half-lives of 12-14 d, and highest residues of 0.41 mg/kg. The long-term risks (ADI%) of thifluzamide were 37.268 %-131.658 % in registered crops, and the risks for the rural population were significantly higher than those of the urban population. The unacceptable dietary risks of thifluzamide should be continuously emphasized for children aged 2-7 with an ADI% values of 100.750 %-131.658 %. A probabilistic model was further introduced to evaluate the risk discrepancy of thifluzamide in buckwheat, showing the risks in Tartary buckwheat (Fagopyrum tararicum Gaerth) were 1.5-75.4 times than that in sweet buckwheat (Fagopyrum esculentum Moench). Despite the low risks for dietary buckwheat, the high-potential health hazards of thifluzamide should be pay more attention given the increasing applications and cumulative effects.


Anilides , Fagopyrum , Child , Humans , Fagopyrum/chemistry , Tandem Mass Spectrometry , Chromatography, Liquid , Thiazoles
15.
Int J Biol Macromol ; 257(Pt 2): 127504, 2024 Feb.
Article En | MEDLINE | ID: mdl-37858650

Tartary buckwheat protein-rutin/quercetin covalent complex was synthesized in alkaline oxygen-containing environment, and its binding sites, conformational changes and functional properties were evaluated by multispectral technique and proteomics. The determination of total sulfhydryl and free amino groups showed that rutin/quercetin can form a covalent complex with BPI and could significantly reduce the group content. Ultraviolet-visible spectrum analysis showed that protein could form new characteristic peaks after binding with rutin/quercetin. Circular dichroism spectrum analysis showed that rutin and quercetin caused similar changes in the secondary structure of proteins, both promoting ß-sheet to α-helix, ß-ture and random coil transformation. The fluorescence spectrometry results showed that the combination of phenols can cause the fluorescence quenching, and the combination of rutin was stronger than the quercetin. Proteomics showed that there were multiple covalent binding sites between phenols and protein. Rutin had a high affinity for arginine, and quercetin and cysteine had high affinity. Meanwhile, the combination of rutin/quercetin and protein had reduced the surface hydrophobic ability of the protein, and improved the foaming, stability and antioxidant properties of the protein. This study expounded the mechanism of the combination of BPI and rutin/quercetin, and analysed the differences of the combination of protein and phenols in different structures. The findings can provide a theoretical basis for the development of complexes in the area of food.


Fagopyrum , Quercetin , Quercetin/chemistry , Phenols , Phenol , Fagopyrum/chemistry , Rutin/chemistry , Binding Sites
16.
J Sci Food Agric ; 104(2): 698-706, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37653274

BACKGROUND: This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS: There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION: These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.


Antioxidants , Fagopyrum , Antioxidants/chemistry , Phenols/chemistry , Fagopyrum/chemistry , Molecular Docking Simulation , Rutin , Binding Sites
17.
Talanta ; 270: 125548, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38104427

The use of two-dimensional heterostructure composite as electrode modification material has become a new strategy to improve the electrocatalytic activity and electroactive sites of electrochemical sensor. Herein, a soluble heterostructure, namely rGO-PSS@MXene, was designed and synthesized by integrating poly (sodium p-styrenesulfonate)-functionalized reduced graphene oxide into MXene nanosheets via ultrasonic method. The interactive heterostructure can effectively alleviate the self-stacking of MXene and rGO, endowing them with superior electron transfer capacity and large specific surface area, thereby producing prominent synergistic electrocatalytic effect towards rutin. In addition, the excellent enrichment effect of rGO-PSS@MXene for rutin also plays an important role through the electrostatic and π-π stacking interactions. The electrochemical characteristics of rutin on the sensor were examined in detail and a sensitive sensing method was proposed. Under optimized conditions, the method showed satisfactory linear relationship for rutin in the concentration range of 0.005-10.0 µM, with limit of detection of 1.8 nM (S/N = 3). The quantitative validation results in herbal medicine and commercial Tartary buckwheat tea were highly consistent with the labeled quantity and the results of HPLC determination, respectively, suggesting the sensor possessed excellent selectivity and accuracy. This proposed strategy for rutin determination is expected to expand the application of MXene heterostructure in electrochemical sensors, and is envisioned as a promising candidate for quality monitoring of drugs and foods.


Fagopyrum , Graphite , Nitrites , Transition Elements , Rutin/analysis , Graphite/chemistry , Fagopyrum/chemistry , Tea , Electrochemical Techniques/methods
18.
J Sci Food Agric ; 104(1): 286-294, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37556207

BACKGROUND: Common buckwheat (Fagopyrum esculentum Moench) is a pseudo cereal that is gaining interest in the world. The chemical profile of common buckwheat determines its high nutritional and health-promoting value. The accumulation of these valuable ingredients depends on many factors, such as: variety, location of cultivation and related weather and agrotechnical conditions. Due to the growing interest in common buckwheat as a natural plant material for food production, it is important to know the factors affecting the quantitative and qualitative composition of its grains. The aim of the research was to determine the effect of the genotype (G), environment (E) and G × E interaction on the content of nutrients (protein, starch, ash, lipids) and bioactive components [dietary fiber (DF), total phenolic content (TPC)] in the common buckwheat grains. The study covered four cultivars grown in three locations for three consecutive vegetation seasons (2016/2017, 2017/2018, 2018/2019). RESULTS: Based on the obtained results, a significant influence of the environment and G × E interaction on the content of the studied parameters was found. The greatest impact on the diversity of the content of nutrients had environmental conditions, which in the case of protein and ash determined these features in more than 80%, and in the case of starch, 70%. With regard to bioactive compounds, the greatest influence of the environment was observed for the amount of TPC (78%), lignin (51%) and the DF complex (56%). CONCLUSION: The obtained results are useful for breeders working on expanding the pool of common buckwheat genotypes, stable in changing environmental conditions. © 2023 Society of Chemical Industry.


Fagopyrum , Fagopyrum/genetics , Fagopyrum/chemistry , Plant Extracts/chemistry , Phenols/metabolism , Allergens/metabolism , Starch/metabolism
19.
Ultrason Sonochem ; 101: 106656, 2023 Dec.
Article En | MEDLINE | ID: mdl-37918294

Utilizing natural hypoglycemic ingredients in staple foods is a safe and effective way to improve diabetes. High Tartary buckwheat noodles have garnered research interest due to their hypoglycemic properties. However, increasing the Tartary buckwheat content poses challenges in noodle processing and affects their edible quality. Effective resting is a critical link to improve the processing performance of noodle and edible quality of noodle. Therefore, research was conducted on ultrasound assisted resting of Tartary buckwheat dough (TBD) to explore its feasibility and mechanism in improving the quality of Tartary buckwheat noodle. The results indicated that ultrasound treatment effectively promoted the migration of weakly-bound water towards strongly-bound water, thereby enhancing the gluten protein network structure and increasing the α-helix and ß-sheet contents significantly (p < 0.05). Furthermore, Texture analysis indicated decreased hardness and adhesion, and increased elasticity and stretching distance in the final noodles. Ultrasound-assisted maturation pre-treatment shortens TBD's dough's resting time and improves noodle quality, according to this study.


Fagopyrum , Fagopyrum/chemistry , Ultrasonics , Glutens/metabolism , Water , Hypoglycemic Agents
20.
Food Funct ; 14(24): 10814-10828, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37982812

This study investigated the composition of Tartary buckwheat oil fermented by Monascus purpureus and extracted under supercritical CO2 conditions (FTBO) and evaluated its effects on lipid-lowering, inflammation modulation, and gut microbial regulation in mice that were fed a high-fat diet (MOD). Compared with the raw oil (TBO), the γ-oryzanol content reached 27.09 mg g-1; the monounsaturated fatty acid (MUFA) content (such as oleic acid and palmitic acid) was elevated; and the antioxidant capacities of DPPH, ABTS, and hydroxyl were improved in FTBO (p < 0.0001). Then, supplementation with FTBO had a remarkable effect on reducing the body weight and visceral obesity as well as alleviating hyperglycemia, dyslipidemia, inflammatory reactions, and liver damage. The TC, TG, and LDL-C levels in the liver and plasma were reduced, and the HDL-C levels in the liver were increased (p < 0.05). In particular, the high-dose group (FTBOH) exhibited the most significant effect on reducing the pro-inflammatory cytokines ET, TNF-α, IL-1ß, and IL-6 in the liver, which were 18.85, 570.12, 50.47, and 26.22 pg mL-1, respectively (p < 0.05). Moreover, FTBO reversed intestinal disorders and increased the intestinal microbial diversity and richness. The relative abundance of beneficial bacteria, such as Bifidobacterium, Lactobacillus, Limosilactobacillus, and Lachnospiraceae_UCG-006, were increased, and the relative abundance of the harmful bacteria Staphylococcus and Lachnoclostridium were reduced. In summary, FTBO has potential applications as a dietary supplement or dietary modifier in lowering blood lipids, modulating immune activity, and reversing intestinal disorders. This study provides reference guidance for the subsequent industrialization and development of Tartary buckwheat, the extension of the industrial chain, the development of new products, and the extraction of functional components.


Fagopyrum , Gastrointestinal Microbiome , Mice , Animals , Fagopyrum/chemistry , Inflammation/drug therapy , Lipids , Liver , Diet, High-Fat/adverse effects
...