Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.615
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 559-565, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948269

ABSTRACT

Objective: Infertility affects approximately one-sixth of the people of childbearing age worldwide, causing not only economic burdens of treatment for families with fertility problems but also psychological stress for patients and presenting challenges to societal and economic development. Premature ovarian insufficiency (POI) refers to the loss of ovarian function in women before the age of 40 due to the depletion of follicles or decreased quality of remaining follicles, constituting a significant cause of female infertility. In recent years, with the help of the rapid development in genetic sequencing technology, it has been demonstrated that genetic factors play a crucial role in the onset of POI. Among the population suffering from POI, genetic studies have revealed that genes involved in processes such as meiosis, DNA damage repair, and mitosis account for approximately 37.4% of all pathogenic and potentially pathogenic genes identified. FA complementation group M (FANCM) is a group of genes involved in the damage repair of DNA interstrand crosslinks (ICLs), including FANCA-FANCW. Abnormalities in the FANCM genes are associated with female infertility and FANCM gene knockout mice also exhibit phenotypes similar to those of POI. During the genetic screening of POI patients, this study identified a suspicious variant in FANCM. This study aims to explore the pathogenic mechanisms of the FANCM genes of the FA pathway and their variants in the development of POI. We hope to help shed light on potential diagnostic and therapeutic strategies for the affected individuals. Methods: One POI patient was included in the study. The inclusion criteria for POI patients were as follows: women under 40 years old exhibiting two or more instances of basal serum follicle-stimulating hormone levels>25 IU/L (with a minimum interval of 4 weeks inbetween tests), alongside clinical symptoms of menstrual disorders, normal chromosomal karyotype analysis results, and exclusion of other known diseases that can lead to ovarian dysfunction. We conducted whole-exome sequencing for the POI patient and identified pathogenic genes by classifying variants according to the standards and guidelines established by the American College of Medical Genetics and Genomics (ACMG). Subsequently, the identified variants were validated through Sanger sequencing and subjected to bioinformatics analysis. Plasmids containing wild-type and mutant FANCM genes were constructed and introduced into 293T cells. The 293T cells transfected with wild-type and mutant human FANCM plasmids and pEGFP-C1 empty vector plasmids were designated as the EGFP FANCM-WT group, the EGFP FANCM-MUT group, and the EGFP group, respectively. To validate the production of truncated proteins, cell proteins were extracted 48 hours post-transfection from the three groups and confirmed using GFP antibody. In order to investigate the impact on DNA damage repair, immunofluorescence experiments were conducted 48 hours post-transfection in the EGFP FANCM-WT group and the EGFP FANCM-MUT group to examine whether the variant affected FANCM's ability to localize on chromatin. Mitomycin C was used to induce ICLs damage in vitro in both the EGFP FANCM-WT group and the EGFP FANCM-MUT group, which was followed by verification of its effect on ICLs damage repair using γ-H2AX antibody. Results: In a POI patient from a consanguineous family, we identified a homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10. The patient presented with primary infertility, experiencing irregular menstruation since menarche at the age of 16. Hormonal evaluation revealed an FSH level of 26.79 IU/L and an anti-Müllerian hormone (AMH) level of 0.07 ng/mL. Vaginal ultrasound indicated unsatisfactory visualization of the ovaries on both sides and uterine dysplasia. The patient's parents were a consanguineous couple, with the mother having regular menstrual cycles. The patient had two sisters, one of whom passed away due to osteosarcoma, while the other exhibited irregular menstruation, had been diagnosed with ovarian insufficiency, and remained childless. Bioinformatics analysis revealed a deletion of four nucleotides (c.1152-1155del) in the exon 6 of the patient's FANCM gene. This variant resulted in a frameshift at codon 386, introducing a premature stop codon at codon 396, which ultimately led to the production of a truncated protein consisting of 395 amino acids. In vitro experiments demonstrated that this variant led to the production of a truncated FANCM protein of approximately 43 kDa and caused a defect in its nuclear localization, with the protein being present only in the cytoplasm. Following treatment with mitomycin C, there was a significant increase in γ-H2AX levels in 293T cells transfected with the mutant plasmid (P<0.01), indicating a statistically significant impairment of DNA damage repair capability caused by this variant. Conclusions: The homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10, results in the production of a truncated FANCM protein. This truncation leads to the loss of its interaction site with the MHF1-MHF2 complex, preventing its entry into the nucleus and the subsequent recognition of DNA damage. Consequently, the localization of the FA core complex on chromatin is disrupted, impeding the normal activation of the FA pathway and reducing the cell's ability to repair damaged ICLs. By disrupting the rapid proliferation and meiotic division processes of primordial germ cells, the reserve of oocytes is depleted, thereby triggering premature ovarian insufficiency in females.


Subject(s)
Primary Ovarian Insufficiency , Female , Primary Ovarian Insufficiency/genetics , Humans , Mutation , Fanconi Anemia/genetics , Adult , Infertility, Female/genetics , Infertility, Female/etiology , DNA Helicases
5.
Leukemia ; 38(6): 1256-1265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740980

ABSTRACT

Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.


Subject(s)
Bone Marrow Diseases , Bone Marrow Failure Disorders , Proteogenomics , Humans , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Proteogenomics/methods , Male , Female , Bone Marrow Diseases/genetics , Bone Marrow Diseases/pathology , Child , Adult , Adolescent , Child, Preschool , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/diagnosis , Young Adult , Fanconi Anemia/genetics , Fanconi Anemia/diagnosis , Proteomics/methods , Infant , Shwachman-Diamond Syndrome/genetics , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/pathology
6.
Pediatr Blood Cancer ; 71(8): e31030, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733122

ABSTRACT

Fanconi anemia (FA) is a disease caused by defective deoxyribonucleic acid (DNA) repair that manifests as bone marrow failure, cancer predisposition, and developmental defects. We previously reported that monotherapy with either metformin (MET) or oxymetholone (OXM) improved peripheral blood (PB) counts and the number and functionality of bone marrow hematopoietic stem progenitor cells (HSPCs) number in Fancd2-/- mice. To evaluate whether the combination treatment of these drugs has a synergistic effect to prevent bone marrow failure in FA, we treated cohorts of Fancd2-/- mice and wildtype controls with either MET alone, OXM alone, MET+OXM, or placebo diet from age 3 weeks to 18 months. The OXM treated animals showed modest improvements in blood parameters including platelet count (p = .01) and hemoglobin levels (p < .05). In addition, the percentage of quiescent hematopoietic stem cell (HSC) (LSK [Lin-Sca+c-Kit+]) was significantly increased (p = .001) by long-term treatment with MET alone. The combination of metformin and oxymetholone did not result in a significant synergistic effect in any hematopoietic parameter. Gene expression analysis of liver tissue from these animals showed that some of the expression changes caused by Fancd2 deletion were partially normalized by metformin treatment. Importantly, no adverse effects of the individual or combination therapies were observed, despite the long-term administration. We conclude that androgen therapy is not a contraindication to concurrent metformin administration in clinical trials. HIGHLIGHTS: Long-term coadministration of metformin in combination with oxymetholone is well tolerated by Fancd2-/- mice. Hematopoietic stem cell quiescence in mutant mice was enhanced by treatment with metformin alone. Metformin treatment caused a partial normalization of gene expression in the livers of mutant mice.


Subject(s)
Disease Models, Animal , Drug Therapy, Combination , Fanconi Anemia , Metformin , Oxymetholone , Animals , Metformin/pharmacology , Metformin/administration & dosage , Mice , Fanconi Anemia/drug therapy , Fanconi Anemia Complementation Group D2 Protein/genetics , Mice, Knockout , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism
7.
Clin Genet ; 106(2): 193-198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38658784

ABSTRACT

Acute promyelocytic leukemia (APL) represents 5%-10% of childhood acute myeloid leukemia (AML) and is the most curable subtype of AML. Fanconi anemia (FA) is one of the most common inherited bone marrow failure syndromes caused by biallelic pathogenic variants (PV) in specific DNA-repair genes. Biallelic PVs in FANCD1/BRCA2 (FA-D1) account for 3% of FA and are associated with early-onset leukemia and a high risk of solid tumors. We report a 4 year-old boy from non-consanguineous parents diagnosed with standard risk APL. This child had café-au-lait spots and an extra thumb remnant. Genomic sequencing revealed two PV in FANCD1/BRCA2 confirming a diagnosis of FA-D1. Chromosomal breakage studies were compatible with FA. Each parent carried one variant and had no personal history of cancer. Morphological then molecular remissions were achieved with all-trans retinoic acid and Arsenic trioxide. This patient underwent haploidentical stem cell transplant. In addition to our patient, a literature search revealed four additional patients with APL/FA, with a total of three patients with FA-D1. This raises the possibility of an association between such rare disorders. Practical management of APL in the setting of FA-D1 is discussed with an overview of current evidence and knowledge gaps.


Subject(s)
Fanconi Anemia , Leukemia, Promyelocytic, Acute , Humans , Fanconi Anemia/genetics , Fanconi Anemia/diagnosis , Fanconi Anemia/therapy , Fanconi Anemia/complications , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/diagnosis , Male , Child, Preschool , BRCA2 Protein/genetics , Genetic Predisposition to Disease
8.
J Hematol Oncol ; 17(1): 26, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685107

ABSTRACT

Constitutional heterozygous pathogenic variants in genes coding for some components of the Fanconi anemia-BRCA signaling pathway, which repairs DNA interstrand crosslinks, represent risk factors for common cancers, including breast, ovarian, pancreatic and prostate cancer. A high cancer risk is also a main clinical feature in patients with Fanconi anemia (FA), a rare condition characterized by bone marrow failure, endocrine and physical abnormalities. The mainly recessive condition is caused by germline pathogenic variants in one of 21 FA-BRCA pathway genes. Among patients with FA, the highest cancer risks are observed in patients with biallelic pathogenic variants in BRCA2 or PALB2. These patients develop a range of embryonal tumors and leukemia during the first decade of life, however, little is known about specific clinical, genetic and pathologic features or toxicities. Here, we present genetic, clinical, pathological and treatment characteristics observed in an international cohort of eight patients with FA due to biallelic BRCA2 pathogenic variants and medulloblastoma (MB), an embryonal tumor of the cerebellum. Median age at MB diagnosis was 32.5 months (range 7-58 months). All patients with available data had sonic hedgehog-MB. Six patients received chemotherapy and one patient also received proton radiation treatment. No life-threatening toxicities were documented. Prognosis was poor and all patients died shortly after MB diagnosis (median survival time 4.5 months, range 0-21 months) due to MB or other neoplasms. In conclusion, MB in patients with biallelic BRCA2 pathogenic variants is a lethal disease. Future experimental treatments are necessary to help these patients.


Subject(s)
BRCA2 Protein , Fanconi Anemia , Germ-Line Mutation , Medulloblastoma , Humans , BRCA2 Protein/genetics , Medulloblastoma/genetics , Medulloblastoma/mortality , Medulloblastoma/pathology , Medulloblastoma/therapy , Male , Child, Preschool , Female , Infant , Cohort Studies , Fanconi Anemia/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/mortality , Alleles
9.
Sci Rep ; 14(1): 9922, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688950

ABSTRACT

Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.


Subject(s)
Phylogeny , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fungi/genetics , Fungi/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Evolution, Molecular , DNA Repair
10.
Pediatr Blood Cancer ; 71(7): e30773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644609

ABSTRACT

The complementation Q group (FANCQ) subtype of Fanconi anemia (FA) caused by the ERCC4/XPF mutation is very rare. Two siblings, aged 13 and 10 with Fanconi phenotypic features, presented with right hemiparesis and focal-onset seizures. In both cases, cranial magnetic resonance imaging (MRI) showed mass-like lesions accompanied by peripheral edema and calcification. In one case, oral steroid treatment and surgical excision were performed, while in the other case, the cranial lesion regressed just with steroid treatment and without surgery. Both siblings remained wheelchair-bound due to neurological dysfunction. One case died due to hepatocellular carcinoma. ERCC4/XPF gene mutation was detected in both siblings.


Subject(s)
DNA-Binding Proteins , Fanconi Anemia , Siblings , Humans , Fanconi Anemia/complications , Fanconi Anemia/genetics , Fanconi Anemia/pathology , Male , DNA-Binding Proteins/genetics , Child , Adolescent , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/complications , Female , Magnetic Resonance Imaging , Mutation , Diagnosis, Differential
11.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612901

ABSTRACT

We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Fanconi Anemia , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , DNA
12.
Transplant Cell Ther ; 30(5): 532.e1-532.e16, 2024 May.
Article in English | MEDLINE | ID: mdl-38452872

ABSTRACT

Hematopoietic cell transplantation (HCT) remains the sole available curative treatment for Fanconi anemia (FA), with particularly favorable outcomes reported after matched sibling donor (MSD) HCT. This study aimed to describe outcomes, with a special focus on late complications, of FA patients who underwent umbilical cord blood transplantation (UCBT). In this retrospective analysis of allogeneic UCBT for FA performed between 1988 and 2021 in European Society for Blood and Marrow Transplantation (EBMT)-affiliated centers, a total of 205 FA patients underwent UCBT (55 related and 150 unrelated) across 77 transplant centers. Indications for UCBT were bone marrow failure in 190 patients and acute leukemia/myelodysplasia in 15 patients. The median age at transplantation was 9 years (range, 1.2 to 43 years), with only 20 patients aged >18 years. Among the donor-recipient pairs, 56% (n = 116) had a 0 to 1/6 HLA mismatch. Limited-field radiotherapy was administered to 28% (n = 58) and 78% (n = 160) received a fludarabine (Flu)-based conditioning regimen. Serotherapy consisted of antithymocyte globulin (n = 159; 78%) or alemtuzumab (n = 12; 6%). The median follow-up was 10 years for related UCBT and 7 years for unrelated UCBT. Excellent outcomes were observed in the setting of related UCBT, including a 60-day cumulative incidence (CuI) of neutrophil recovery of 98.1% (95% confidence interval [CI], 93.9% to 100%), a 100-day CuI of grade II-IV acute graft-versus-host disease (GVHD) of 17.3% (95% CI, 9.5% to 31.6%), and a 5-year CuI of chronic GVHD (cGVHD) of 22.7% (95% CI, 13.3% to 38.7%; 13% extensive). Five-year overall survival (OS) was 88%. In multivariate analysis, none of the factors included in the model predicted a better OS. In unrelated UCBT, the 60-day CuI of neutrophil recovery was 78.7% (95% CI, 71.9% to 86.3%), the 100-day CuI of grade II-IV aGVHD was 31.4% (95% CI, 24.6% to 40.2%), and the 5-year CuI of cGVHD was 24.3% (95% CI, 17.8% to 32.2%; 12% extensive). Five-year OS was 44%. In multivariate analysis, negative recipient cytomegalovirus serology, Flu-based conditioning, age <9 years at UCBT, and 0 to 1/6 HLA mismatch were associated with improved OS. A total of 106 patients, including 5 with acute leukemia/myelodysplasia, survived for >2 years after UCBT. Nine of these patients developed subsequent neoplasms (SNs), including 1 donor-derived acute myelogenous leukemia and 8 solid tumors, at a median of 9.7 years (range, 2.3 to 21.8 years) post-UCBT (1 related and 8 unrelated UCBT). In a subset of 49 patients with available data, late nonmalignant complications affecting various organ systems were observed at a median of 8.7 years (range, 2.7 to 28.8 years) post-UCBT. UCB is a valid source of stem cells for transplantation in patients with FA, with the best results observed after related UCBT. After unrelated UCBT, improved survival was observed in patients who underwent transplantation at a younger age, with Flu-based conditioning, and with better HLA parity. The incidence of organ-specific complications and SNs was relatively low. The incidence of SNs, mostly squamous cell carcinoma, increases with time. Rigorous follow-up and lifelong screening are crucial in survivors of UCBT for FA.


Subject(s)
Cord Blood Stem Cell Transplantation , Fanconi Anemia , Graft vs Host Disease , Transplantation Conditioning , Humans , Fanconi Anemia/therapy , Fanconi Anemia/complications , Female , Male , Adult , Child , Child, Preschool , Adolescent , Retrospective Studies , Infant , Transplantation Conditioning/methods , Graft vs Host Disease/epidemiology , Young Adult
13.
BMC Med Genomics ; 17(1): 69, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443946

ABSTRACT

Recent evidence has shed light on the significant role of FANCD2 in cancer initiation, development, and progression. However, a comprehensive pan-cancer analysis of FANCD2 has been lacking. In this study, we have conducted a thorough investigation into the expression profiles and prognostic significance of FANCD2, as well as its correlation with clinicopathological parameters and immune cell infiltration, using advanced bioinformatic techniques. The results demonstrate that FANCD2 is significantly upregulated in various common cancers and is associated with prognosis. Notably, higher expression levels of FANCD2 are linked to poor overall survival, as indicated by Cox regression and Kaplan-Meier analyses. Additionally, we have observed a decrease in the methylation of FANCD2 DNA in some cancers, and this decrease is inversely correlated with FANCD2 expression. Genetic alterations in FANCD2 predominantly manifest as mutations, which are associated with overall survival, disease-specific survival, disease-free survival, and progression-free survival in certain tumor types. Moreover, FANCD2 exhibits a strong correlation with infiltrating cell levels, immune checkpoint genes, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analysis further highlights the potential impact of FANCD2 on Fanconi anemia (FA) pathway and cell cycle regulation. Through this comprehensive pan-cancer analysis, we have gained a deeper understanding of the functions of FANCD2 in oncogenesis and metastasis across different types of cancer.


Subject(s)
Fanconi Anemia , Humans , Prognosis , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Cognition , Fanconi Anemia Complementation Group D2 Protein/genetics
14.
Am J Hematol ; 99(6): 1066-1076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38497679

ABSTRACT

Haploidentical stem cell transplantation (haplo-SCT) represents the main alternative for children with inherited bone marrow failure syndrome (I-BMF) lacking a matched donor. This retrospective study, conducted on behalf of the EBMT SAAWP and PDWP, aims to report the current outcomes of haplo-SCT in I-BMFs, comparing the different in vivo and ex vivo T-cell depletion approaches. One hundred and sixty-two I-BMF patients who underwent haplo-SCT (median age 7.4 years) have been registered. Fanconi Anemia was the most represented diagnosis (70.1%). Based on different T-cell depletion (TCD) approaches, four categories were identified: (1) TCRαß+/CD19+-depletion (43.8%); (2) T-repleted with post-transplant Cyclophosphamide (PTCy, 34.0%); (3) In-vivo T-depletion with ATG/alemtuzumab (14.8%); (4) CD34+ positive selection (7.4%). The cumulative incidences (CI) of neutrophil and platelet engraftment were 84% and 76% respectively, while that of primary and secondary graft failure was 10% and 8% respectively. The 100-day CI of acute GvHD grade III-IV(95% CI) was 13%, while the 24-month CI of extensive chronic GvHD was 4%. After a median follow-up of 43.4 months, the 2-year overall survival(OS) and GvHD/Rejection-free Survival (GRFS) probabilities are 67% and 53%, respectively. The TCR CD3+αß+/CD19+ depletion group showed a significantly lower incidence of both acute and chronic GvHD and higher OS (79%; p0.013) and GRFS (71%; p < .001), while no significant differences in outcomes have been observed by different diagnosis and conditioning regimens. This large retrospective study supports the safety and feasibility of haplo-SCT in I-BMF patients. TCRαß+/CD19+ depletion offers higher chances of patients' survival, with a significantly lower risk of severe a- and c-GvHD in I-BMFs compared to other platforms.


Subject(s)
Anemia, Aplastic , Humans , Child , Retrospective Studies , Male , Female , Child, Preschool , Adolescent , Anemia, Aplastic/therapy , Infant , Hematopoietic Stem Cell Transplantation , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Bone Marrow Failure Disorders , Transplantation, Haploidentical , Lymphocyte Depletion , Transplantation Conditioning/methods , Hemoglobinuria, Paroxysmal/therapy , Fanconi Anemia/therapy , Fanconi Anemia/mortality , Bone Marrow Diseases/therapy , HLA Antigens/genetics , HLA Antigens/immunology
15.
Blood ; 143(21): 2201-2216, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38447038

ABSTRACT

ABSTRACT: Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, leukemia, and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched Lineage-Sca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60% to 80% and 70% to 80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC-conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wild-type and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared with lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable patients with FA.


Subject(s)
Fanconi Anemia , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immunoconjugates , Leukocyte Common Antigens , Animals , Fanconi Anemia/therapy , Mice , Graft vs Host Disease/pathology , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Transplantation Conditioning/methods , Transplantation, Homologous , Mice, Inbred C57BL , Mice, Knockout
16.
Blood Adv ; 8(12): 3027-3037, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38522093

ABSTRACT

ABSTRACT: Fanconi anemia (FA) is a complex inherited bone marrow failure syndrome characterized by chromosomal instability and defective DNA repair, causing sensitivity to DNA interstrand crosslinking agents. Our understanding of the full adult phenotype of the disease continues to evolve, because most patients with FA died of marrow failure in the first decade of life before more recent advances in allogeneic hematopoietic cell transplantation. Herein, we report a previously undescribed, clinically concerning, progressive neurologic syndrome in patients with FA. Nine nonimmunosuppressed pediatric patients and young adults with FA presented with acute and chronic neurological signs and symptoms associated with distinct neuroradiological findings. Symptoms included, but were not limited to, limb weakness, papilledema, gait abnormalities, headaches, dysphagia, visual changes, and seizures. Brain imaging demonstrated a characteristic radiographic appearance of numerous cerebral and cerebellar lesions with associated calcifications and often a dominant ring-enhancing lesion. Tissue from the dominant brain lesions in 4 patients showed nonspecific atypical glial proliferation, and a small number of polyomavirus-infected microglial cells were identified by immunohistochemistry in 2 patients. Numerous interventions were pursued across this cohort, in general with no improvement. Overall, these patients demonstrated significant progressive neurologic decline. This cohort highlights the importance of recognizing FA neuroinflammatory syndrome, which is distinct from malignancy, and warrants careful ongoing evaluation by clinicians.


Subject(s)
Brain , Fanconi Anemia , Neuroinflammatory Diseases , Humans , Fanconi Anemia/complications , Fanconi Anemia/pathology , Fanconi Anemia/diagnosis , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology , Female , Child , Adolescent , Brain/pathology , Brain/diagnostic imaging , Young Adult , Adult , Child, Preschool , Magnetic Resonance Imaging
17.
Hum Genet ; 143(3): 357-369, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483614

ABSTRACT

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.


Subject(s)
Fanconi Anemia Complementation Group Proteins , Heterozygote , Primary Ovarian Insufficiency , Humans , Primary Ovarian Insufficiency/genetics , Female , Adult , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Exome Sequencing , DNA Damage , Fanconi Anemia/genetics , Mutation, Missense
18.
Nat Commun ; 15(1): 1852, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424108

ABSTRACT

Demand-adjusted and cell type specific rates of protein synthesis represent an important safeguard for fate and function of long-term hematopoietic stem cells. Here, we identify increased protein synthesis rates in the fetal hematopoietic stem cell pool at the onset of hematopoietic failure in Fanconi Anemia, a prototypical DNA repair disorder that manifests with bone marrow failure. Mechanistically, the accumulation of misfolded proteins in Fancd2-/- fetal liver hematopoietic stem cells converges on endoplasmic reticulum stress, which in turn constrains midgestational expansion. Restoration of protein folding by the chemical chaperone tauroursodeoxycholic acid, a hydrophilic bile salt, prevents accumulation of unfolded proteins and rescues Fancd2-/- fetal liver long-term hematopoietic stem cell numbers. We find that proteostasis deregulation itself is driven by excess sterile inflammatory activity in hematopoietic and stromal cells within the fetal liver, and dampened Type I interferon signaling similarly restores fetal Fancd2-/- long-term hematopoietic stem cells to wild type-equivalent numbers. Our study reveals the origin and pathophysiological trigger that gives rise to Fanconi anemia hematopoietic stem cell pool deficits. More broadly, we show that fetal protein homeostasis serves as a physiological rheostat for hematopoietic stem cell fate and function.


Subject(s)
Fanconi Anemia , Humans , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Proteostasis , Hematopoietic Stem Cells/metabolism , Cell Cycle , Fetus/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism
19.
Am J Med Genet A ; 194(7): e63554, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38317562

ABSTRACT

Patients with Fanconi anemia (FA) are often perceived to have poor growth when general population growth curves are utilized. We hypothesize that FA patients have unique growth and aimed to create FA-specific growth charts. Height and weight data from ages 0 to 20 years were extracted from medical records of patients treated at the Fanconi Anemia Comprehensive Care Clinic at the University of Minnesota. Height, weight, and BMI growth curves were generated and fitted to reference percentiles using the Lambda-Mu-Sigma method. FA-specific percentiles were compared to WHO standards for ages 0-2 and CDC references for ages 2-20. In FA males, the 50th height- and weight-for-age percentiles overlap with the 3rd reference percentile. In FA females, only the 50th height-for-age percentile overlaps with the 3rd reference percentile. For weight, FA females show progressive growth failure between 6 and 24 months followed by stabilization around the 50th percentile. The FA BMI-for-age percentiles show similar patterns to the weight-for-age percentiles but have different timing of onset of adiposity rebound and broader variability in females. Growth in FA patients follows a different trajectory than available normative curves. FA-specific growth charts may be useful to better guide accurate growth expectations, evaluations, and treatment.


Subject(s)
Body Height , Body Mass Index , Body Weight , Fanconi Anemia , Growth Charts , Humans , Female , Male , Fanconi Anemia/diagnosis , Fanconi Anemia/pathology , Fanconi Anemia/genetics , Fanconi Anemia/physiopathology , Child , Adolescent , Child, Preschool , Infant , Young Adult , Infant, Newborn
20.
Oral Oncol ; 150: 106699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309198

ABSTRACT

The purpose of the present study was to perform a systematic review focusing on oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD) in Fanconi anemia (FA) individuals. Electronic searches were undertaken in five databases supplemented by manual scrutiny and gray literature. Case reports and/or cases series were included. The searches yielded 55 studies describing 112 cases of OSCC (n = 107) and/or OPMD (n = 5) in FA individuals. The mean age at diagnosis of OSCC/OPMD was 27.1 (±9.6) years, and females (51.8 %) were slightly more affected. Ulcer (n = 37) or mass (n = 25) were described as clinical presentations for OSCC and OPMD. White lesions (n = 4) were the most common manifestation in OPMD. Tongue (47.2 %) was the most frequent location. Sixty-one (54.5 %) individuals underwent HSCT. Surgical resection (n = 75) was the main treatment adopted. The estimated rate of OPMD malignant transformation was 1.8 % and recurrences following OSCC excision occurred in 26.8 % of individuals. Overall, at 60 months of follow-up, the probability of survival fell to 25.5 % and at 64 months the probability of recurrence increased to 63.2 %. The present data support the need for strict surveillance of patients with FA, even in the absence of OPMD, for early OSCC detection and reduction of mortality.


Subject(s)
Fanconi Anemia , Mouth Diseases , Mouth Neoplasms , Precancerous Conditions , Squamous Cell Carcinoma of Head and Neck , Female , Humans , Fanconi Anemia/complications , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...