Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.373
1.
Food Chem ; 452: 139425, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38744128

Effect of puffing on conversion of gingerols to shogaols, physicochemical properties as well as antioxidant and anti-inflammatory activities of puffed ginger was investigated. Puffing significantly increased extraction yield and the highest value was 12.52% at 980 kPa. The significant decrease in gingerols and increase in shogaols were occurred after puffing, respectively. Especially, 6-shogaol was dramatically increased from 4.84 to 99.10 mg/g dried ginger. Puffed ginger exhibited the higher antioxidant activities (analyzed by DPPH, ABTS, TPC, and TFC) than those of control, and they were significantly increased with increasing puffing pressure. In case of anti-inflammatory activity, puffed ginger did not inhibit NO production, but significantly inhibited TNF-α and IL-6 productions. Among gingerols and shogaols, 6-shogaol showed significantly strong correlations with both antioxidant and anti-inflammatory activities. Consequently, puffed ginger can be applied to functional food industry, which dramatically increased the contents of 6, 8, 10-shogaols, the main bioactive compounds in ginger.


Anti-Inflammatory Agents , Antioxidants , Catechols , Fatty Alcohols , Plant Extracts , Zingiber officinale , Zingiber officinale/chemistry , Catechols/chemistry , Catechols/analysis , Antioxidants/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Fatty Alcohols/chemistry , Fatty Alcohols/analysis , Fatty Alcohols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Mice
2.
Sci Rep ; 14(1): 12096, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802434

Biostimulants are heterogeneous products designed to support plant development and to improve the yield and quality of crops. Here, we focused on the effects of triacontanol, a promising biostimulant found in cuticle waxes, on tomato growth and productivity. We examined various phenological traits related to vegetative growth, flowering and fruit yield, the metabolic profile of fruits, and the response of triacontanol-treated plants to salt stress. Additionally, a proteomic analysis was conducted to clarify the molecular mechanisms underlying triacontanol action. Triacontanol application induced advanced and increased blooming without affecting plant growth. Biochemical analyses of fruits showed minimal changes in nutritional properties. The treatment also increased the germination rate of seeds by altering hormone homeostasis and reduced salt stress-induced damage. Proteomics analysis of leaves revealed that triacontanol increased the abundance of proteins related to development and abiotic stress, while down-regulating proteins involved in biotic stress resistance. The proteome of the fruits was not significantly affected by triacontanol, confirming that biostimulation did not alter the nutritional properties of fruits. Overall, our findings provide evidence of the effects of triacontanol on growth, development, and stress tolerance, shedding light on its mechanism of action and providing new insights into its potential in agricultural practices.


Fatty Alcohols , Fruit , Solanum lycopersicum , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Fatty Alcohols/pharmacology , Fruit/drug effects , Fruit/metabolism , Fruit/chemistry , Proteomics/methods , Phenotype , Plant Proteins/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Germination/drug effects , Salt Stress , Seeds/drug effects , Seeds/metabolism , Seeds/growth & development
3.
J Neuroimmune Pharmacol ; 19(1): 20, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758335

Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1ß and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1ß and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.


Catechols , Depression , Fatty Alcohols , Lipopolysaccharides , Microglia , Neuronal Plasticity , Rats, Sprague-Dawley , Animals , Fatty Alcohols/pharmacology , Microglia/drug effects , Microglia/metabolism , Rats , Lipopolysaccharides/toxicity , Male , Catechols/pharmacology , Neuronal Plasticity/drug effects , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Coculture Techniques , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Disease Models, Animal , Neuroprotective Agents/pharmacology , Cells, Cultured , Antidepressive Agents/pharmacology
4.
Food Funct ; 15(11): 6054-6067, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38753306

6-Gingerol (6-G), an active ingredient of ginger with anti-inflammation and anti-oxidation properties, can treat ulcerative colitis (UC). However, its underlying mechanism is still unclear. In this study, the pharmacodynamic evaluation of 6-G for treating UC was performed, and the mechanism of 6-G in ameliorating UC was excavated by plasma metabolomics and network pharmacology analysis, which was further validated by experimental and molecular docking. The results showed that 6-G could notably reduce diarrhea, weight loss, colonic pathological damage, and inflammation in UC mice. Plasma metabolomic results indicated that 6-G could regulate 19 differential metabolites, and its metabolic pathways mainly involved linoleic acid metabolism and arachidonic acid metabolism, which were closely associated with ferroptosis. Moreover, 60 potential targets for 6-G intervention on ferroptosis in UC were identified by network pharmacology, and enrichment analysis revealed that 6-G suppressed ferroptosis by modulating lipid peroxidation. Besides, the integration of metabolomics and network pharmacology showed that the regulation of 6-G on ferroptosis focused on 3 key targets, including ALOX5, ALOX15, and PTGS2. Further investigation indicated that 6-G significantly inhibited ferroptosis by decreasing iron load and malondialdehyde (MDA), and enhanced antioxidant capacity by reducing the content of glutathione disulfide (GSSG) and increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in UC mice and RSL3-induced Caco-2 cells. Furthermore, molecular docking showed the high affinity of 6-G with the identified 3 key targets. Collectively, this study elucidated the potential of 6-G in ameliorating UC by inhibiting ferroptosis. The integrated strategy also provided a theoretical basis for 6-G in treating UC.


Catechols , Colitis, Ulcerative , Fatty Alcohols , Ferroptosis , Metabolomics , Molecular Docking Simulation , Network Pharmacology , Animals , Ferroptosis/drug effects , Mice , Fatty Alcohols/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Catechols/pharmacology , Male , Humans , Disease Models, Animal , Zingiber officinale/chemistry , Mice, Inbred C57BL , Caco-2 Cells
5.
Int J Biol Macromol ; 268(Pt 1): 131503, 2024 May.
Article En | MEDLINE | ID: mdl-38663697

Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.


Larva , Moths , Receptors, Odorant , Animals , Moths/physiology , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Phylogeny , Chemotaxis , Fatty Alcohols/pharmacology , Fatty Alcohols/chemistry
6.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G591-G606, 2024 May 01.
Article En | MEDLINE | ID: mdl-38469632

Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.


Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , Animals , Female , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Gastrointestinal Microbiome/drug effects , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Colitis/immunology , Colitis/microbiology , Fatty Alcohols/pharmacology , Diynes/pharmacology , Disease Models, Animal , Colon/drug effects , Colon/pathology , Colon/immunology , Colon/microbiology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/microbiology
7.
Phytomedicine ; 128: 155347, 2024 Jun.
Article En | MEDLINE | ID: mdl-38493717

BACKGROUND: Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis. PURPOSE: To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism. METHODS: Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels. RESULTS: JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors. CONCLUSION: The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.


1-Naphthylisothiocyanate , Bile Acids and Salts , Catechols , Cholestasis , Fatty Alcohols , Liver , Receptors, Cytoplasmic and Nuclear , Animals , Bile Acids and Salts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cholestasis/drug therapy , Cholestasis/metabolism , Male , Mice , Catechols/pharmacology , Liver/drug effects , Liver/metabolism , Fatty Alcohols/pharmacology , Drugs, Chinese Herbal/pharmacology , Mice, Inbred C57BL , Humans , Chronic Disease , Disease Models, Animal
8.
Biochem Biophys Res Commun ; 708: 149786, 2024 May 14.
Article En | MEDLINE | ID: mdl-38493545

Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.


Metabolic Diseases , Mitochondrial Diseases , Humans , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Fatty Alcohols/pharmacology , Fatty Alcohols/metabolism , Catechols/pharmacology , Fructose/metabolism , Metabolic Diseases/metabolism , Mitochondrial Diseases/metabolism
9.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Article En | MEDLINE | ID: mdl-38266504

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Fatty Alcohols , Genistein , Muscle, Smooth, Vascular , Vascular Calcification , Vitamin D , Humans , Vitamin D/pharmacology , Fatty Alcohols/pharmacology , Cells, Cultured , Vascular Calcification/prevention & control , Vascular Calcification/chemically induced , Vascular Calcification/drug therapy , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Genistein/pharmacology , Genistein/therapeutic use , Superoxide Dismutase/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism
10.
Pancreas ; 53(2): e193-e198, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38127814

OBJECTIVE: To examine the effects of 6-gingerol (6-G) in overcoming fatty pancreas disease of high-fat high-fructose (HFHF) diet-induced metabolic syndrome in rats. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomly divided into 5 groups. The healthy-control group (normal diet, n = 5) received a standard diet. The HFHF group (HFHF; n = 20) received an HFHF diet and a single-dose intraperitoneal injection of streptozotocin (22 mg/kgBW) at week 8. Metabolic syndrome-confirmed rats received 6-G at doses of 50 (6-G 50, n = 5), 100 (6-G 100, n = 5), and 200 (6-G 200, n = 5) mg/kgBW, respectively, for 8 weeks. All rats were killed at week 16. Pancreatic tissue and blood samples were obtained for histological and amylase analysis. RESULTS: The serum amylase, MDA, mRNA of TNF-α, and IL-6 significantly increased, whereas GPx decreased in the HFHF group as compared with the normal diet group, respectively. Rats in the HFHF group showed pancreatic lipid accumulation and a decreased mean number of α- and ß-cells in the pancreas. Meanwhile, all rats in 6-G at all dose groups showed improvement in all parameters and histopathological scores for lipid accumulation. CONCLUSIONS: 6-Gingerol could attenuate pancreatic lipid accumulation and improve the cell number of α- and ß-cells in the pancreas, leading to improvements in fatty pancreas disease.


Catechols , Diet, High-Fat , Fatty Alcohols , Metabolic Syndrome , Pancreas , Animals , Male , Rats , Amylases , Diet, High-Fat/adverse effects , Fatty Alcohols/pharmacology , Fructose , Metabolic Syndrome/etiology , Pancreas/drug effects , Rats, Sprague-Dawley , Case-Control Studies
11.
Mol Pharm ; 20(12): 6237-6245, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-37950377

Oleic acid and oleyl alcohol are commonly used permeation and penetration enhancers to facilitate topical drug delivery. Here, we aimed to better understand the mechanism of their enhancing effects in terms of their interactions with the human skin barrier using diclofenac diethylamine (DIC-DEA), a nonsteroidal anti-inflammatory drug for topical pain management. Oleic acid promoted DIC-DEA permeation through ex vivo human skin more rapidly than oleyl alcohol (both applied at 0.75%) due to fluidization of stratum corneum lipids as revealed by infrared spectroscopy. After 12 h, the effect of these enhancers on DIC-DEA permeation leveled off, fluidization was no longer evident, and skin permeabilization was mainly due to the formation of fluid enhancer-rich domains. Contrary to oleyl alcohol, oleic acid adversely affected two indicators of the skin barrier integrity, transepidermal water loss and skin electrical impedance. The content of oleyl alcohol in the stratum corneum was lower than that of oleic acid (even 12 h after the enhancers were removed from the skin surface), but it caused higher DIC-DEA retention in both epidermis and dermis compared to oleic acid. The effects of oleyl alcohol and oleic acid on DIC-DEA permeation and retention in the skin were similar after a single and repeated application (4 doses every 12 h). Thus, oleyl alcohol offers several advantages over oleic acid for topical drug delivery.


Oleic Acid , Skin Absorption , Humans , Oleic Acid/pharmacology , Oleic Acid/metabolism , Skin/metabolism , Fatty Alcohols/metabolism , Fatty Alcohols/pharmacology , Administration, Cutaneous
12.
Nutr Hosp ; 40(5): 993-999, 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37732352

Introduction: Aim: to investigate the effects of low sodium formula salt combined with the Chinese Modified Dietary Approaches to Stop Hypertension (DASH) diet on cerebrovascular function in patients with hypertension and type 2 diabetes. Methods: an eight-week single-arm trial was conducted in 66 patients with hypertension and type 2 diabetes to investigate effects of low sodium formula salt (potassium chloride 56 %, sodium chloride 23 %, 5 g/day) combined with Chinese Modified DASH diet on cerebrovascular function (measured by transcranial Doppler sonography), indicators of chronic diseases (blood pressure, blood glucose and blood lipids) and urinary excretion. The above indicators were performed before and after intervention. Results: fifty-nine subjects completed the study. Peak systolic velocity, mean flow velocity, end-diastolic velocity, pulsatility index and resistance index of internal cerebral artery and vertebral artery decreased significantly (p < 0.05); pulsatility index and resistance index of anterior cerebral artery and middle cerebral artery decreased significantly (p < 0.05); and end-diastolic velocity and pulsatility index of basilar artery decreased significantly (p < 0.05). Systolic blood pressure, diastolic blood pressure, fasting blood glucose and postprandial blood glucose decreased significantly (p < 0.001; p < 0.001; p < 0.001; p < 0.001). Blood pressure and blood glucose control rates increased significantly (p < 0.001). Conclusions: based on the study, 23 % low-sodium formula combined with CM-DASH diet pattern can improve cerebrovascular function in community patients with hypertension complicated with diabetes and has a good short-term benefit of blood pressure and glucose control.


Introducción: Objetivo: investigar los efectos de una sal baja en sodio combinada con la versión china de la dieta DASH (del inglés Dietary Approaches to Stop Hypertension) modificada en la función cerebrovascular en pacientes con hipertensión y diabetes tipo 2. Métodos: en 66 pacientes con hipertensión y diabetes tipo 2 se llevó a cabo un ensayo de ocho semanas para investigar los efectos de la sal baja en sodio (cloruro de potasio 56 %, cloruro de sodio 23 %, 5 g/día) combinada con la dieta DASH en su versión china modificada en la función cerebrovascular (medido por sonografía Doppler transcraneal), los indicadores de enfermedades crónicas (presión arterial, glucosa sanguínea y lípidos sanguíneos) y la excreción urinaria. Los indicadores anteriores se midieron antes y después de la intervención. Resultados: cincuenta y nueve sujetos completaron el estudio. La velocidad sistólica máxima, la velocidad media del flujo, la velocidad diastólica final, el índice de pulsatilidad y el índice de resistencia de la arteria cerebral anterior y la arteria vertebral disminuyeron significativamente (p < 0,05) ; el índice de pulsatilidad y el índice de resistencia de la arteria cerebral anterior y la arteria media disminuyeron significativamente (p < 0,05); y la velocidad diastólica final y el índice de pulsatilidad de la arteria basilar disminuyeron significativamente (p < 0,05). La presión arterial sistémica, la presión arterial diastólica, la glucosa arterial en ayuno y la glucemia posprandial disminuyeron significativamente (p < 0,001, p < 0,001, p < 0,001, p < 0,001). La presión arterial y las tasas de control de glucosa en sangre aumentaron significativamente (p < 0,001). Conclusiones: la fórmula de sal con un 23 % de sodio combinada con la dieta DASH en su versión china modificada puede mejorar la función cerebrovascular en pacientes comunitarios con hipertensión complicada por la diabetes y es beneficiosa a corto plazo para la presión arterial y el control de la glucosa.


Diabetes Mellitus, Type 2 , Dietary Approaches To Stop Hypertension , Hypertension , Humans , Blood Glucose , Blood Pressure , Diabetes Mellitus, Type 2/complications , Diet, Sodium-Restricted , East Asian People , Fatty Alcohols/pharmacology , Hypertension/complications , Pilot Projects , Sodium Chloride, Dietary
13.
Molecules ; 28(18)2023 Sep 14.
Article En | MEDLINE | ID: mdl-37764386

Many policosanols from different sources, such as sugar cane and rice bran, have been marketed worldwide to improve blood lipid profiles. But so far, no comparative study has commenced elucidating the effect of different policosanols to improve the blood lipid profile and other beneficial effects. This study compared the efficacy of four different policosanols, including one sugar cane wax alcohol from Cuba (Raydel®) and three policosanols from China (Xi'an Natural sugar cane, Xi'an Realin sugar cane, and Shaanxi rice bran), to treat dyslipidemia in hyperlipidemic zebrafish. After 12 weeks of consumption of each policosanol (final 0.1% in diet, wt/wt) and a high-cholesterol diet (HCD, final 4%, wt/wt), the Raydel policosanol group and the Xi'an Natural policosanol group showed the highest survivability, of approximately 81%. In contrast, the Xi'an Realin policosanol and the Shaanxi policosanol groups showed 57% and 67% survivability, respectively. Among the five HCD groups, the Raydel policosanol group showed the lowest serum total cholesterol (TC, p < 0.001 versus HCD control) and triglyceride (p < 0.001 versus HCD control), with the highest percentage of high-density lipoproteins-cholesterol in TC. The Raydel policosanol group also showed the lowest serum aspartate aminotransferase and alanine aminotransferase levels, with the least infiltration of inflammatory cells and interleukin-6 production in hepatocytes with a marked reduction in reactive oxygen species (ROS) production and fatty liver changes. In the ovary, the Raydel policosanol group also showed the highest content of mature vitellogenic oocytes with the lowest production of reactive oxygen species and cellular apoptosis in ovarian cells. In the testes, the Raydel policosanol group also showed the healthiest morphology for spermatogenesis, with the lowest interstitial area and reactive oxygen species production in testicular cells. Conclusively, among the tested policosanols, Cuba (Raydel®) policosanol exhibited a comparatively better effect in maintaining zebrafish body weight, survivability, blood lipid profile, hepatic function biomarkers, fatty liver changes, ROS generation, inflammation, and restoration of the cell morphology in ovaries and testes affected by the HCD consumption.


Dyslipidemias , Fatty Alcohols , Fatty Liver , Animals , Female , Male , Cholesterol , Dyslipidemias/drug therapy , Fatty Liver/drug therapy , Ovary , Reactive Oxygen Species , Testis , Zebrafish , Fatty Alcohols/pharmacology
14.
J Nanobiotechnology ; 21(1): 192, 2023 Jun 14.
Article En | MEDLINE | ID: mdl-37316835

In the treatment of spinal cord injury (SCI), the complex process of secondary injury is mainly responsible for preventing SCI repair or even exacerbating the injury. In this experiment, we constructed the 8-gingerol (8G)-loaded mesoporous polydopamine (M-PDA), M@8G, as the in vivo targeting nano-delivery platform, and investigated the therapeutic effects of M@8G in secondary SCI and its related mechanisms. The results indicated that M@8G could penetrate the blood-spinal cord barrier to enrich the spinal cord injury site. Mechanism research has shown that all of the M-PDA,8G and M@8G displayed the anti-lipid peroxidation effect, and then M@8G can inhibit the secondary SCI by suppressing the ferroptosis and inflammation. In vivo assays showed that M@8G significantly diminished the local injury area, reduced axonal and myelin loss, thus improving the neurological and motor recovery in rats. Based on the analysis of cerebrospinal fluid samples from patients, ferroptosis occurred locally in SCI and continued to progress in patients during the acute phase of SCI as well as the stage after their clinical surgery. This study showcases effective treatment of SCI through the aggregation and synergistic effect of M@8G in focal areas, providing a safe and promising strategy for the clinical treatment of SCI.


Spinal Cord Injuries , Animals , Rats , Spinal Cord Injuries/drug therapy , Catechols/pharmacology , Fatty Alcohols/pharmacology
15.
Phytomedicine ; 115: 154835, 2023 Jul.
Article En | MEDLINE | ID: mdl-37121058

BACKGROUND: The 6-Gingerol has significant anti-inflammatory, anti-oxidative and hypolipidemic activities and is widely used for treating cardiac-cerebral vascular diseases. However, the multi-target mechanism of 6-Gingerol in the treatment of atherosclerosis remains to be elucidated. METHODS: Firstly, the therapeutic actions of 6-Gingerol anti-atherosclerosis were researched based on an atherosclerotic ApoE-deficient mice model induced by high-fat feed. Then, network pharmacology and molecular docking were employed to reveal the anti-atherogenic mechanism of 6-Gingerol. Finally, the target for these predictions was validated by target protein expression assay in vitro and in vivo experiments and further correlation analysis. RESULTS: Firstly, 6-Gingerol possessed obvious anti-atherogenic activity, which was manifested by a significant reduction in the plaque area, decrease in the atherosclerosis index and vulnerability index. Secondly, based on network pharmacology, 14 predicted intersection target genes between the targets of 6-Gingerol and atherogenic-related targets were identified. The key core targets of 6-Gingerol anti-atherosclerosis were found to be TP53, RELA, BAX, BCL2, and CASP3. Lipid and atherosclerosis pathways might play a critical role in 6-Gingerol anti-atherosclerosis. Molecular docking results also further revealed that the 6-Gingerol bound well and stable to key core targets from network pharmacological predictions. Then, the experimental results in vivo and in vitro verified that the up-regulation of TP53, RELA, BAX, CASP3, and down-regulation of BCL2 from atherosclerotic ApoE-deficient mice model can be improved by 6-Gingerol intervention. Meanwhile, the correlation analysis further confirmed that 6-Gingerol anti-atherosclerosis was closely related to these targets. CONCLUSION: The 6-Gingerol can markedly improve atherosclerosis by modulating key multi-targets TP53, RELA, BAX, CASP3, and BCL2 in lipid and atherosclerosis pathways. These novel findings shed light on the anti-atherosclerosis mechanism of 6-Gingerol from the perspective of multiple targets and pathways.


Atherosclerosis , Drugs, Chinese Herbal , Animals , Mice , Molecular Docking Simulation , Caspase 3 , Network Pharmacology , bcl-2-Associated X Protein , Atherosclerosis/drug therapy , Fatty Alcohols/pharmacology , Apolipoproteins E , Disease Models, Animal
16.
Int J Mol Sci ; 24(6)2023 Mar 08.
Article En | MEDLINE | ID: mdl-36982259

This study evaluated the efficacy and safety of 20 mg of Cuban policosanol in blood pressure (BP) and lipid/lipoprotein parameters of healthy Japanese subjects via a placebo-controlled, randomized, and double-blinded human trial. After 12 weeks of consumption, the policosanol group showed significantly lower BP, glycated hemoglobin (HbA1c), and blood urea nitrogen (BUN) levels. The policosanol group also showed lower aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GTP) levels at week 12 than those at week 0: A decrease of up to 9% (p < 0.05), 17% (p < 0.05), and 15% (p < 0.05) was observed, respectively. The policosanol group showed significantly higher HDL-C level and HDL-C/TC (%), approximately 9.5% (p < 0.001) and 7.2% (p = 0.003), respectively, than the placebo group and a difference in the point of time and group interaction (p < 0.001). In lipoprotein analysis, the policosanol group showed a decrease in oxidation and glycation extent in VLDL and LDL with an improvement of particle shape and morphology after 12 weeks. HDL from the policosanol group showed in vitro stronger antioxidant and in vivo anti-inflammatory abilities. In conclusion, 12 weeks of Cuban policosanolconsumption in Japanese subjects showed significant improvement in blood pressure, lipid profiles, hepatic functions, and HbA1c with enhancement of HDL functionalities.


Anticholesteremic Agents , Lipoproteins, HDL , Humans , Lipoproteins, HDL/pharmacology , Blood Pressure , Glycated Hemoglobin , East Asian People , Anticholesteremic Agents/pharmacology , Fatty Alcohols/pharmacology , Lipoproteins/pharmacology , Double-Blind Method
17.
J Neuroimmune Pharmacol ; 18(1-2): 127-144, 2023 06.
Article En | MEDLINE | ID: mdl-36637699

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.


Neurodegenerative Diseases , Parkinson Disease , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , alpha-Synuclein/genetics , Neurodegenerative Diseases/metabolism , Reactive Oxygen Species/metabolism , Oxidopamine/toxicity , Oxidopamine/metabolism , Fatty Alcohols/metabolism , Fatty Alcohols/pharmacology , Fatty Alcohols/therapeutic use , Disease Models, Animal , Dopaminergic Neurons , Animals, Genetically Modified
18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 633-647, 2023 Apr.
Article En | MEDLINE | ID: mdl-36585999

The rhizomes of ginger have been in use in many forms of traditional and alternative medicines. Besides being employed as condiment and flavoring agent, it is used in the treatment of nausea, osteoarthritis, muscle pain, menstrual pain, chronic indigestion, Alzheimer's disease, and cancer. Ginger rhizome contains volatile oils, phenolic compounds and resins, and characterization studies showed that [6]-gingerol, [6]-shogaol, and [6]-paradol are reported to be the pharmacologically active components. Gingerol is a major chemical constituent found as volatile oil in the rhizomes of ginger. It has several medicinal benefits and used for the treatment of rheumatoid arthritis, nausea, cancer, and diabetes. Many studies have been carried out in various parts of the world to isolate and standardize gingerol for their use as a complementary medicine. The present review summarizes wide range of research studies on gingerol and its pharmacological roles in various metabolic diseases.


Catechols , Zingiber officinale , Catechols/pharmacology , Catechols/therapeutic use , Fatty Alcohols/pharmacology , Fatty Alcohols/therapeutic use , Fatty Alcohols/chemistry , Plant Extracts/chemistry , Zingiber officinale/chemistry , Zingiber officinale/metabolism
19.
J Nat Med ; 77(1): 118-127, 2023 Jan.
Article En | MEDLINE | ID: mdl-36209453

Ginger (Zingiber officinale Roscoe) is a perennial plant widely distributed in tropical and subtropical regions, and its rhizomes are sometimes processed for use in traditional medicine. In Japan, "ginger" (Shokyo in Japanese) and "processed ginger" (Kankyo in Japanese) are defined as crude drugs derived from ginger rhizomes, which have different medicinal properties due to complex changes in their chemical composition during processing. The effects of processing on gingerols and shogaols are well known, but for other phytochemicals remain unclear. Therefore, the present study prepared dried ginger and processed ginger derived from three ginger cultivars (Kintoki, Kogane, and Tosa ginger) and examined the effects of drying and processing on multiple secondary metabolites. Drying showed only a limited effect on ginger chemical constituents and significantly reduced [6]-gingerol content in Tosa ginger. In contrast, processing altered content of numerous metabolites, such as terpenes and gingerol-related compounds, in addition to those gingerols and shogaols. Notably, processing reduced labdane diterpene content, including labdadienedial, aframodial, and galanolactone in all ginger cultivars. Our results show galanolactone with anti-emetic activity was abundant in dried ginger and decreased following processing, highlighting different uses between "ginger" and "processed ginger" in traditional medicine. Overall, we comprehensively clarified the impact of drying and processing on terpenes and gingerol-related compounds. These findings help reveal the varying medicinal properties among crude drugs prepared from Z. officinale.


Diterpenes , Zingiber officinale , Zingiber officinale/chemistry , Catechols/chemistry , Fatty Alcohols/pharmacology , Diterpenes/pharmacology , Plant Extracts/chemistry , Terpenes/pharmacology , Terpenes/metabolism
20.
Turk J Med Sci ; 53(6): 1593-1604, 2023.
Article En | MEDLINE | ID: mdl-38813490

Background/aim: Neuropathic pain (NP) is a type of chronic pain usually caused by damage to the somatosensory system. Bioactive antioxidant compounds, such as curcumin and ginger, are widely preferred in the treatment of NP. However, the ingredient-based mechanism that underlies their pain-relieving activity remains unknown. The aim of this study was to investigate the therapeutic effects of trans-[6]-Shogaol and [6]-Gingerol active ingredients of the Zingiber officinale Roscoe extract on the spinal cord and cortex in the neuroinflammatory pathway in rats with experimental sciatic nerve injury. Materials and methods: Forty-six volatile phenolic components were identified in ginger samples using gas chromatography-mass spectrometry analysis. Thirty 3-month-old male 250-300 g Wistar Albino rats were divided into three groups as (i) sham, (ii) chronic constriction injury (CCI), and (iii) CCI+ginger. NP was induced using the CCI model. A ginger extract treatment enriched with trans-[6]-shogaol and [6]-gingerol active ingredients was administered by gavage at 200 mg/kg/day for 7 days. On the 14th day of the experiment, locomotor activity was evaluated in open field and hyperalgesia in tail flick tests. Results: In behavioural experiments, a significant decrease was observed in the CCI group compared to the sham group, while a significant increase was observed in the CCI+ginger group compared to the CCI group (p < 0.05). In the spinal cord and cortex tissues, there was a significant increase in the TNF-α, IL-1ß, and IL-18 neuroinflammation results of the CCI group compared to the sham group, while there was a significant decrease in the CCI+ginger group compared to the CCI group. Conclusion: In this study, ginger treatment was shown to have a therapeutic effect on neuroinflammation against sciatic nerve damage.


Catechols , Disease Models, Animal , Fatty Alcohols , Neuralgia , Rats, Wistar , Zingiber officinale , Animals , Fatty Alcohols/pharmacology , Catechols/pharmacology , Catechols/therapeutic use , Neuralgia/drug therapy , Rats , Male , Zingiber officinale/chemistry , Cytokines/metabolism , Plant Extracts/pharmacology , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism
...