Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.227
Filter
1.
Sci Rep ; 14(1): 17332, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068167

ABSTRACT

Senescent cells have been linked to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effectiveness of senolytic drugs in reducing liver damage in mice with MASLD is not clear. Additionally, MASLD has been reported to adversely affect male reproductive function. Therefore, this study aimed to evaluate the protective effect of senolytic drugs on liver damage and fertility in male mice with MASLD. Three-month-old male mice were fed a standard diet (SD) or a choline-deficient western diet (WD) until 9 months of age. At 6 months of age mice were randomized within dietary treatment groups into senolytic (dasatinib + quercetin [D + Q]; fisetin [FIS]) or vehicle control treatment groups. We found that mice fed choline-deficient WD had liver damage characteristic of MASLD, with increased liver size, triglycerides accumulation, fibrosis, along increased liver cellular senescence and liver and systemic inflammation. Senolytics were not able to reduce liver damage, senescence and systemic inflammation, suggesting limited efficacy in controlling WD-induced liver damage. Sperm quality and fertility remained unchanged in mice developing MASLD or receiving senolytics. Our data suggest that liver damage and senescence in mice developing MASLD is not reversible by the use of senolytics. Additionally, neither MASLD nor senolytics affected fertility in male mice.


Subject(s)
Fertility , Flavonols , Quercetin , Senotherapeutics , Animals , Male , Mice , Fertility/drug effects , Quercetin/pharmacology , Senotherapeutics/pharmacology , Flavonols/pharmacology , Liver/metabolism , Liver/drug effects , Liver/pathology , Cellular Senescence/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/pathology , Diet, Western/adverse effects , Disease Progression , Choline Deficiency/complications , Mice, Inbred C57BL , Disease Models, Animal
2.
Nutrients ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064715

ABSTRACT

Iron is a vital trace element for our bodies and its imbalance can lead to various diseases. The progression of metabolic-associated fatty liver disease (MAFLD) is often accompanied by disturbances in iron metabolism. Alisma orientale extract (AOE) has been reported to alleviate MAFLD. However, research on its specific lipid metabolism targets and its potential impact on iron metabolism during the progression of MAFLD remains limited. To establish a model of MAFLD, mice were fed either a standard diet (CON) or a high-fat diet (HFD) for 9 weeks. The mice nourished on the HFD were then randomly assigned to the HF group and the HFA group, with the HFA group receiving AOE by gavage on a daily basis for 13 weeks. Supplementation with AOE remarkably reduced overabundant lipid accumulation in the liver and restored the iron content of the liver. AOE partially but significantly reversed dysregulated lipid metabolizing genes (SCD1, PPAR γ, and CD36) and iron metabolism genes (TFR1, FPN, and HAMP) induced by HFD. Chromatin immunoprecipitation assays indicated that the reduced enrichment of FXR on the promoters of SCD1 and FPN genes induced by HFD was significantly reversed by AOE. These findings suggest that AOE may alleviate HFD-induced disturbances in liver lipid and iron metabolism through FXR-mediated gene repression.


Subject(s)
Diet, High-Fat , Iron , Lipid Metabolism , Liver , Plant Extracts , Receptors, Cytoplasmic and Nuclear , Animals , Plant Extracts/pharmacology , Liver/metabolism , Liver/drug effects , Iron/metabolism , Mice , Male , Lipid Metabolism/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Diet, High-Fat/adverse effects , Alisma/chemistry , Mice, Inbred C57BL , Disease Models, Animal , Gene Expression Regulation/drug effects , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3600-3607, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041132

ABSTRACT

Based on the Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway, this study observed the regulatory effect of ginsenoside Rb_1(Rb_1) on liver lipid metabolism in db/db obese mice and explored its potential mechanism. Thirty 6-week-old male db/db mice were randomly divided into a model group, a metformin group, and Rb_1 groups with low, medium, and high doses, with six mice in each group. Additionally, six age-matched male db/m mice were assigned to the normal group. The intervention lasted for five weeks. Body weight, fasting blood glucose, and food intake were mea-sured weekly. At the end of the experiment, serum lipid levels and liver function were detected. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in liver tissue. Real-time quantitative PCR and immunohistochemistry on paraffin sections were used to detect the mRNA and protein expression of TLR4, MyD88, and NF-κB p65. RESULTS:: showed that compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, epididymal fat mass, epididymal fat index, total cholesterol, low-density lipoprotein cholesterol, liver function parameters, and fasting blood glucose levels. Liver lipid accumulation significantly increased, along with elevated mRNA and protein expression of TLR4, MyD88, and NF-κB p65 in the liver. After Rb_1 treatment, the above-mentioned parameters in the intervention groups showed significant reversals. In conclusion, Rb_1 can improve obesity and obesity-related hepatic steatosis in mice while regulating abnormal lipid and glucose meta-bolism. Mechanistically, Rb_1 may improve liver steatosis in db/db obese mice by modulating the TLR4/MyD88/NF-κB signaling pathway.


Subject(s)
Fatty Liver , Ginsenosides , Myeloid Differentiation Factor 88 , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Animals , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Mice , Male , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/genetics , Obesity/drug therapy , Obesity/metabolism , Obesity/genetics , Mice, Obese , Liver/metabolism , Liver/drug effects , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology
4.
Expert Opin Pharmacother ; 25(9): 1249-1263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38954663

ABSTRACT

INTRODUCTION: Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers. AREAS COVERED: The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor ß-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches. EXPERT OPINION: Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.


Subject(s)
Fatty Liver , Humans , Animals , Fatty Liver/drug therapy , Fatty Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Obesity/drug therapy , Obesity/complications , Obesity/metabolism , Drug Development , Metabolic Diseases/drug therapy , Pyridazines , Uracil/analogs & derivatives
5.
Nutrients ; 16(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999906

ABSTRACT

Obesity is an unhealthy condition associated with various diseases characterized by excess fat accumulation. However, in China, the prevalence of obesity is 14.1%, and it remains challenging to achieve weight loss or resolve this issue through clinical interventions. Sanghuangpours vaninii (SPV) is a nutritional fungus with multiple pharmacological activities and serves as an ideal dietary intervention for combating obesity. In this study, a long-term high-fat diet (HFD) was administered to induce obesity in mice. Different doses of SPV and the positive drug simvastatin (SV) were administered to mice to explore their potential anti-obesity effects. SPV regulated weight, serum lipids, and adipocyte size while inhibiting inflammation and hepatic steatosis. Compared with the vehicle-treated HFD-fed mice, the lowest decreases in total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were 9.72%, 9.29%, and 12.29%, respectively, and the lowest increase in high-density lipoprotein cholesterol (HDL-C) was 5.88% after treatment with different doses of SPV. With SPV treatment, the analysis of gut microbiota and serum lipids revealed a significant association between lipids and inflammation-related factors, specifically sphingomyelin. Moreover, Western blotting results showed that SPV regulated the toll-like receptor (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in HFD-diet mice, which is related to inflammation and lipid metabolism. This research presents empirical proof of the impact of SPV therapy on obesity conditions.


Subject(s)
Anti-Obesity Agents , Diet, High-Fat , Inflammation , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Anti-Obesity Agents/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Lipids/blood , NF-kappa B/metabolism , Fatty Liver/prevention & control , Fatty Liver/drug therapy
6.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000046

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) involves excessive lipid accumulation in hepatocytes, impacting global healthcare due to its high prevalence and risk of progression to severe liver conditions. Its pathogenesis involves genetic, metabolic, and inflammatory factors, with cardiovascular events as the leading cause of mortality. This review examines the role of lipid-lowering therapies in MASLD, with a particular focus on bempedoic acid, a recently approved cholesterol-lowering agent for hypercholesterolemia and high cardiovascular-risk patients. It explores its potential in liver disease by modulating lipid metabolism and inflammatory pathways based on the most recent studies available. Bempedoic acid inhibits ATP-citrate lyase, reducing cholesterol and fatty acid synthesis while activating AMP-activated protein kinase to suppress gluconeogenesis and lipogenesis. Animal studies indicate its efficacy in reducing hepatic steatosis, inflammation, and fibrosis. Bempedoic acid holds promise as a therapeutic for MASLD, offering dual benefits in lipid metabolism and inflammation. Further clinical trials are required to confirm its efficacy and safety in MASLD patients, potentially addressing the multifaceted nature of this disease.


Subject(s)
Dicarboxylic Acids , Fatty Acids , Lipid Metabolism , Humans , Dicarboxylic Acids/therapeutic use , Dicarboxylic Acids/pharmacology , Animals , Fatty Acids/metabolism , Lipid Metabolism/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism
8.
Cardiovasc Diabetol ; 23(1): 245, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987784

ABSTRACT

BACKROUND: Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD) has been associated with increased cardiovascular risk. The aim of this Randomized Double-blind clinical Trial was to evaluate the effects of coenzyme-Q10 supplementation in patients with MASLD in terms of endothelial, vascular and myocardial function. METHODS: Sixty patients with MASLD were randomized to receive daily 240 mg of coenzyme-Q10 or placebo. At baseline and at 6-months, the a)Perfused boundary region of sublingual vessels using the Sideview Darkfield imaging technique, b)pulse-wave-velocity, c)flow-mediated dilation of the brachial artery, d)left ventricular global longitudinal strain, e)coronary flow reserve of the left anterior descending coronary artery and f)controlled attenuation parameter for the quantification of liver steatosis were evaluated. RESULTS: Six months post-treatment, patients under coenzyme-Q10 showed reduced Perfused boundary region (2.18 ± 0.23vs.2.29 ± 0.18 µm), pulse-wave-velocity (9.5 ± 2vs.10.2 ± 2.3 m/s), controlled attenuation parameter (280.9 ± 33.4vs.304.8 ± 37.4dB/m), and increased flow-mediated dilation (6.1 ± 3.8vs.4.3 ± 2.8%), global longitudinal strain (-19.6 ± 1.6vs.-18.8 ± 1.9%) and coronary flow reserve (3.1 ± 0.4vs.2.8 ± 0.4) compared to baseline (p < 0.05). The placebo group exhibited no improvement during the 6-month follow-up period (p > 0.05). In patients under coenzyme-Q10, the reduction in controlled attenuation parameter score was positively related to the reduction in Perfused boundary region and pulse wave velocity and reversely related to the increase in coronary flow reserve and flow-mediated dilation (p < 0.05 for all relations). CONCLUSIONS: Six-month treatment with high-dose coenzyme-Q10 reduces liver steatosis and improves endothelial, vascular and left ventricle myocardial function in patients with MASLD, demonstrating significant improvements in micro- and macro-vasculature function. TRIAL REGISTRATION: NCT05941910.


Subject(s)
Endothelium, Vascular , Ubiquinone , Ventricular Function, Left , Humans , Double-Blind Method , Ubiquinone/analogs & derivatives , Ubiquinone/administration & dosage , Male , Female , Middle Aged , Treatment Outcome , Ventricular Function, Left/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/drug effects , Time Factors , Dietary Supplements , Aged , Vasodilation/drug effects , Adult , Non-alcoholic Fatty Liver Disease/physiopathology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/diagnosis , Coronary Circulation/drug effects , Pulse Wave Analysis , Fatty Liver/physiopathology , Fatty Liver/drug therapy , Fatty Liver/diagnosis
9.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39023282

ABSTRACT

BACKGROUND: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased in recent decades. Approximately 25% of patients with MASLD progress to metabolic dysfunction-associated steatohepatitis, which is characterized by hepatic steatosis plus hepatocyte damage, inflammation, and fibrosis. We previously reported that Neurotropin (NTP), a drug used for relieving pain in Japan and China, inhibits lipid accumulation in hepatocytes by preventing mitochondrial dysfunction. We hypothesized that inhibiting hepatic steatosis and inflammation by NTP can be an effective strategy for treating MASLD and tested this hypothesis in a MASLD mouse model. METHODS: Six-week-old C57BL/6NJ male mice were fed a normal diet and normal drinking water or a high-fat diet with high fructose/glucose water for 12 weeks. During the last 6 weeks, the mice were also given high-dose NTP, low-dose NTP, or control treatment. Histologic, biochemical, and functional tests were conducted. MitoPlex, a new proteomic platform, was used to measure mitochondrial proteins, as mitochondrial dysfunction was previously reported to be associated with MASLD progression. RESULTS: NTP inhibited the development of hepatic steatosis, injury, inflammation, and fibrosis induced by feeding a high-fat diet plus high fructose/glucose in drinking water. NTP also inhibited HSC activation. MitoPlex analysis revealed that NTP upregulated the expression of mitochondrial proteins related to oxidative phosphorylation, the tricarboxylic acid cycle, mitochondrial dynamics, and fatty acid transport. CONCLUSIONS: Our results indicate that NTP prevents the development of hepatic steatosis, injury, and inflammation by preserving mitochondrial function in the liver and inhibits liver fibrosis by suppressing HSC activation. Thus, repurposing NTP may be a beneficial option for treating MASLD/metabolic dysfunction-associated steatohepatitis.


Subject(s)
Diet, High-Fat , Disease Models, Animal , Drug Repositioning , Mice, Inbred C57BL , Animals , Mice , Male , Diet, High-Fat/adverse effects , Fatty Liver/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Analgesics/therapeutic use , Analgesics/pharmacology
10.
Anal Chim Acta ; 1312: 342747, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834275

ABSTRACT

BACKGROUND: Lipid droplets (LDs) polarity is intricately linked to diverse biological processes and diseases. The visualization of LDs-polarity is of vital importance but challenging due to the lack of high-specificity, high-sensitivity and large-Stokes shift probes for real-time tracking LDs-polarity in biological systems. RESULTS: Four D-π-A based fluorescent probes (TPA-TCF1-TPA-TCF4) have been developed by combining tricyanofuran (an electron acceptor, A) and triphenylamine (an electron donor, D) derivatives with different terminal groups. Among them, TPA-TCF1 and TPA-TCF4 exhibit excellent polar sensitivity, large Stokes shift (≥182 nm in H2O), and efficient LDs targeting ability. In particular, TPA-TCF4 is capable of monitoring the change of LDs-polarity during ferroptosis, inflammation, apoptosis of cancer cell, and fatty liver. SIGNIFICANCE: All these features render TPA-TCF4 a versatile tool for pharmacodynamic evaluation of anti-cancer drugs, in-depth understanding of the biological effect of LDs on ferroptosis, and medical diagnosis of LDs-polarity related diseases.


Subject(s)
Fatty Liver , Ferroptosis , Fluorescent Dyes , Inflammation , Lipid Droplets , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Humans , Ferroptosis/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fluorescent Dyes/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
11.
Biomed Pharmacother ; 177: 117067, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943989

ABSTRACT

BACKGROUND AND AIMS: Drugs resolving steatotic liver disease (SLD) could prevent the evolution of metabolic dysfunction associated SLD (MASLD) to more aggressive forms but must show not only efficacy, but also a high safety profile. Repurposing of drugs in clinical use, such as pemafibrate and mirabegron, could facilitate the finding of an effective and safe drug-treatment for SLD. APPROACH AND RESULTS: The SLD High Fat High Fructose (HFHFr) rat model develops steatosis without the influence of other metabolic disturbances, such as obesity, inflammation, or type 2 diabetes. Further, liver fatty acids are provided, as in human pathology, both from dietary origin and de novo lipid synthesis. We used the HFHFr model to evaluate the efficacy of pemafibrate and mirabegron, alone or in combination, in the resolution of SLD, analyzing zoometric, biochemical, histological, transcriptomic, fecal metabolomic and microbiome data. We provide evidence showing that pemafibrate, but not mirabegron, completely reverted liver steatosis, due to a direct effect on liver PPARα-driven fatty acid catabolism, without changes in total energy consumption, subcutaneous, perigonadal and brown fat, blood lipids and body weight. Moreover, pemafibrate treatment showed a neutral effect on whole-body glucose metabolism, but deeply modified fecal bile acid composition and microbiota. CONCLUSIONS: Pemafibrate administration reverts liver steatosis in the HFHFr dietary rat SLD model without altering parameters related to metabolic or organ toxicity. Our results strongly support further clinical research to reposition pemafibrate for the treatment of SLD/MASLD.


Subject(s)
Benzoxazoles , Bile Acids and Salts , Disease Models, Animal , Feces , Animals , Bile Acids and Salts/metabolism , Male , Rats , Benzoxazoles/pharmacology , Feces/microbiology , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Acetanilides/pharmacology , Butyrates/pharmacology , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats, Wistar , Thiazoles/pharmacology , Fatty Liver/drug therapy , Fatty Liver/pathology , Fatty Liver/metabolism , Fructose/adverse effects
12.
Pharmacol Rev ; 76(4): 561-563, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876495

ABSTRACT

Steatotic liver disease (SLD) is a highly prevalent chronic liver disease with significant challenges for global health. The pathophysiology of SLD involves an interplay among genetic, endocrine, and metabolic factors. Successful management of SLD entails accurate diagnosis and disease monitoring through noninvasive methods such as advanced imaging techniques and biomarkers. Many emerging pharmacotherapies for SLD are now in the pipeline, which target different pathways like collagen turnover, fibrogenesis, inflammation, and metabolism. The recent approval of resmetirom for noncirrhotic metabolic dysfunction-associated steatohepatitis (MASH) has been a milestone in addressing the unmet medical need for an efficacious SLD treatment. Finally, the potential of personalized medicine approaches and interdisciplinary cooperation in improving patient outcomes and reducing disease burden should be strongly pursued. SIGNIFICANCE STATEMENT: The healthcare burden due to steatotic liver disease (SLD) is enormous. This perspective sheds light on the recent advances in understanding the pathophysiology and diagnosis of SLD as well as promising drug development approaches.


Subject(s)
Fatty Liver , Animals , Humans , Drug Development , Fatty Liver/therapy , Fatty Liver/drug therapy , Fatty Liver/metabolism , Precision Medicine
13.
Clin Transl Sci ; 17(6): e13760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847320

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.


Subject(s)
Adiponectin , Disease Models, Animal , Hepatocytes , Non-alcoholic Fatty Liver Disease , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/deficiency , Mice , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/pathology , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/etiology , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology
14.
Medicine (Baltimore) ; 103(23): e38444, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847728

ABSTRACT

To investigate changes in skeletal muscle mass and fat fraction in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus (T2DM) undergoing treatment with Semaglutide for 6months. This single-arm pilot study included 21 patients with MASLD who received semaglutide for T2DM. Body weight, metabolic parameters, liver enzymes, fibrosis markers, skeletal muscle index (cm2/m2), and fat fraction (%) at the L3 level using the two-point Dixon method on magnetic resonance imaging (MRI), as well as liver steatosis and liver stiffness assessed using MRI-based proton density fat fraction (MRI-PDFF) and MR elastography, respectively, were prospectively examined before and 6 months after semaglutide administration. The mean age of the patients was 53 years and 47.6% were females. The median liver steatosis-fraction (%) and skeletal muscle steatosis-fraction values (%) significantly decreased (22.0 vs 12.0; P = .0014) and (12.8 vs 9.9; P = .0416) at baseline and 6 months, respectively, while maintaining muscle mass during treatment. Semaglutide also dramatically reduced hemoglobin A1c (%) (6.8 vs 5.8, P = .0003), AST (IU/L) (54 vs 26, P < .0001), ALT (IU/L) (80 vs 34, P = .0004), and γ-GTP (IU/L) levels (64 vs 34, P = .0007). Although not statistically significant, Body weight (kg) (79.9 vs 77.4), body mass index (BMI) (kg/m2) (28.9 vs 27.6), and liver stiffness (kPa) (28.9 vs 27.6) showed a decreasing trend. Fibrosis markers such as M2BPGi, type IV collagen, and skeletal muscle area did not differ. Semaglutide demonstrated favorable effects on liver and skeletal muscle steatosis, promoting improved liver function and diabetic status.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptides , Liver , Muscle, Skeletal , Humans , Female , Middle Aged , Male , Diabetes Mellitus, Type 2/drug therapy , Prospective Studies , Muscle, Skeletal/drug effects , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/administration & dosage , Pilot Projects , Liver/drug effects , Liver/diagnostic imaging , Liver/pathology , Hypoglycemic Agents/therapeutic use , Fatty Liver/drug therapy , Adult , Glucagon-Like Peptide-1 Receptor/agonists , Magnetic Resonance Imaging , Elasticity Imaging Techniques , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/analysis , Aged
15.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891768

ABSTRACT

Gut-dysbiosis-induced lipopolysaccharides (LPS) translocation into systemic circulation has been suggested to be implicated in nonalcoholic fatty liver disease (NAFLD) pathogenesis. This study aimed to assess if oleuropein (OLE), a component of extra virgin olive oil, lowers high-fat-diet (HFD)-induced endotoxemia and, eventually, liver steatosis. An immunohistochemistry analysis of the intestine and liver was performed in (i) control mice (CTR; n = 15), (ii) high-fat-diet fed (HFD) mice (HFD; n = 16), and (iii) HFD mice treated with 6 µg/day of OLE for 30 days (HFD + OLE, n = 13). The HFD mice developed significant liver steatosis compared to the controls, an effect that was significantly reduced in the HFD + OLE-treated mice. The amount of hepatocyte LPS localization and the number of TLR4+ macrophages were higher in the HFD mice in the than controls and were lowered in the HFD + OLE-treated mice. The number of CD42b+ platelets was increased in the liver sinusoids of the HFD mice compared to the controls and decreased in the HFD + OLE-treated mice. Compared to the controls, the HFD-treated mice showed a high percentage of intestine PAS+ goblet cells, an increased length of intestinal crypts, LPS localization and TLR4+ expression, and occludin downregulation, an effect counteracted in the HFD + OLE-treated mice. The HFD-fed animals displayed increased systemic levels of LPS and zonulin, but they were reduced in the HFD + OLE-treated animals. It can be seen that OLE administration improves liver steatosis and inflammation in association with decreased LPS translocation into the systemic circulation, hepatocyte localization of LPS and TLR4 downregulation in HFD-induced mouse model of NAFLD.


Subject(s)
Iridoid Glucosides , Iridoids , Lipopolysaccharides , Non-alcoholic Fatty Liver Disease , Olive Oil , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Iridoid Glucosides/pharmacology , Mice , Olive Oil/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Male , Iridoids/pharmacology , Down-Regulation/drug effects , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Inflammation/metabolism , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/pathology
16.
Prog Mol Biol Transl Sci ; 207: 193-206, 2024.
Article in English | MEDLINE | ID: mdl-38942537

ABSTRACT

Designing and predicting novel drug targets to accelerate drug discovery for treating metabolic dysfunction-associated steatohepatitis (MASH)-cirrhosis is a challenging task. The presence of superimposed (nested) and co-occurring clinical and histological phenotypes, namely MASH and cirrhosis, may partly explain this. Thus, in this scenario, each sub-phenotype has its own set of pathophysiological mechanisms, triggers, and processes. Here, we used gene/protein and set enrichment analysis to predict druggable pathways for the treatment of MASH-cirrhosis. Our findings indicate that the pathogenesis of MASH-cirrhosis can be explained by perturbations in multiple, simultaneous, and overlapping molecular processes. In this scenario, each sub-phenotype has its own set of pathophysiological mechanisms, triggers, and processes. Therefore, we used systems biology modeling to provide evidence that MASH and cirrhosis paradoxically present unique and distinct as well as common disease mechanisms, including a network of molecular targets. More importantly, pathway analysis revealed straightforward results consistent with modulation of the immune response, cell cycle control, and epigenetic regulation. In conclusion, the selection of potential therapies for MASH-cirrhosis should be guided by a better understanding of the underlying biological processes and molecular perturbations that progressively damage liver tissue and its underlying structure. Therapeutic options for patients with MASH may not necessarily be of choice for MASH cirrhosis. Therefore, the biology of the disease and the processes associated with its natural history must be at the forefront of the decision-making process.


Subject(s)
Drug Repositioning , Liver Cirrhosis , Humans , Fatty Liver/drug therapy , Fatty Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Molecular Targeted Therapy , Signal Transduction/drug effects , Systems Biology
17.
Biomed Pharmacother ; 176: 116888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861859

ABSTRACT

OBJECTIVES: Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS: Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS: Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS: Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.


Subject(s)
Fatty Liver , Glucagon-Like Peptide 1 , Mice, Inbred C57BL , Obesity , Receptors, Glucagon , Weight Loss , Animals , Obesity/drug therapy , Obesity/metabolism , Weight Loss/drug effects , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Male , Fatty Liver/drug therapy , Fatty Liver/metabolism , Mice , Glucagon-Like Peptide 1/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Insulin Resistance , Glucagon-Like Peptides/pharmacology
18.
Redox Biol ; 74: 103230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875959

ABSTRACT

α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.


Subject(s)
AMP-Activated Protein Kinases , Hyperlipidemias , Ketoglutaric Acids , NF-E2-Related Factor 2 , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Animals , Hyperlipidemias/metabolism , Hyperlipidemias/drug therapy , Hyperlipidemias/complications , Mice , Oxidative Stress/drug effects , Humans , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Signal Transduction/drug effects , Hep G2 Cells , Mitochondria/metabolism , Mitochondria/drug effects , Male , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/drug therapy , Fatty Liver/prevention & control , Fatty Liver/pathology , Disease Models, Animal , Liver/metabolism , Liver/drug effects , Liver/pathology
19.
Discov Med ; 36(185): 1139-1153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926100

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD), and more specifically steatohepatitis may be associated with fat infiltration of skeletal muscles which is known as myosteatosis. Pan-peroxisome proliferator-activated receptor (PPAR) agonists have been shown to promote metabolic dysfunction-associated steatohepatitis (MASH) remission. However, the effect of PPAR agonists on myosteatosis remains to be determined. The aim of this review is to evaluate the effect that PPAR agonists alone or in combination, have on myosteatosis in the context of MASLD. METHODS: Original research reports concerning the impact of PPAR agonists on muscle fat in MASLD were screened from PUBMED and EMBASE databases following the PRISMA methodology. RESULTS: Eleven original manuscripts were included in this review. Two preclinical studies assessed the impact of the PPARα agonist on fat content in the quadriceps muscle and the liver by extracting triglycerides in rats fed a high-fat diet and in insulin-resistant mice. Both models showed muscle and liver triglyceride content reduction using WY14643. Fenofibrate had no significant impact on soleus intramyocellular lipids or liver fat content in insulin-resistant subjects based on proton magnetic resonance spectroscopy. Treatment with PPARδ agonists increased the expression of genes involved in fatty acid oxidation in two studies on muscle cell culture. PPARγ agonists were investigated in two preclinical studies and one clinical study using spectroscopy and computed tomography respectively. In the first preclinical study in Zucker diabetic fatty rats, rosiglitazone reduced muscle lipids and hepatic steatosis. In a second preclinical study using the same animal model, pioglitazone reduced tibialis anterior intramyocellular lipids. In contrast, computed tomography analyses in patients with type 2 diabetes revealed a surface area increase of low-density muscles (suggesting an increase in muscle fat content) after a one-year treatment with rosiglitazone. Varying combinations of PPAR agonists (cevoglitazar, fenofibrate/pioglitazone and muraglitazar) were evaluated in two preclinical studies and one clinical study. In rats, these treatments showed variable results for muscle and liver depending on the combinations studied. In type 2 diabetic patients, treatment with muraglitazar (a PPARα/γ agonist) reduced the intramyocellular lipid content of tibialis anterior as well as liver fat content following spectroscopy assessment. CONCLUSION: The combination of different PPAR agonists could have a positive impact on reducing myosteatosis, in addition to their effect on the liver. Some discrepancies could be explained by the different techniques used to assess muscle lipid content, the muscles assessed and the possible adipogenic effect of PPARγ agonists. Further clinical research is needed to fully assess the efficacy of these treatments on both MASLD progression and associated myosteatosis.


Subject(s)
Fatty Liver , Animals , Humans , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/pathology , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Mice , PPAR alpha/agonists , PPAR alpha/metabolism
20.
N Engl J Med ; 391(4): 299-310, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38856224

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease associated with liver-related complications and death. The efficacy and safety of tirzepatide, an agonist of the glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptors, in patients with MASH and moderate or severe fibrosis is unclear. METHODS: We conducted a phase 2, dose-finding, multicenter, double-blind, randomized, placebo-controlled trial involving participants with biopsy-confirmed MASH and stage F2 or F3 (moderate or severe) fibrosis. Participants were randomly assigned to receive once-weekly subcutaneous tirzepatide (5 mg, 10 mg, or 15 mg) or placebo for 52 weeks. The primary end point was resolution of MASH without worsening of fibrosis at 52 weeks. A key secondary end point was an improvement (decrease) of at least one fibrosis stage without worsening of MASH. RESULTS: Among 190 participants who had undergone randomization, 157 had liver-biopsy results at week 52 that could be evaluated, with missing values imputed under the assumption that they would follow the pattern of results in the placebo group. The percentage of participants who met the criteria for resolution of MASH without worsening of fibrosis was 10% in the placebo group, 44% in the 5-mg tirzepatide group (difference vs. placebo, 34 percentage points; 95% confidence interval [CI], 17 to 50), 56% in the 10-mg tirzepatide group (difference, 46 percentage points; 95% CI, 29 to 62), and 62% in the 15-mg tirzepatide group (difference, 53 percentage points; 95% CI, 37 to 69) (P<0.001 for all three comparisons). The percentage of participants who had an improvement of at least one fibrosis stage without worsening of MASH was 30% in the placebo group, 55% in the 5-mg tirzepatide group (difference vs. placebo, 25 percentage points; 95% CI, 5 to 46), 51% in the 10-mg tirzepatide group (difference, 22 percentage points; 95% CI, 1 to 42), and 51% in the 15-mg tirzepatide group (difference, 21 percentage points; 95% CI, 1 to 42). The most common adverse events in the tirzepatide groups were gastrointestinal events, and most were mild or moderate in severity. CONCLUSIONS: In this phase 2 trial involving participants with MASH and moderate or severe fibrosis, treatment with tirzepatide for 52 weeks was more effective than placebo with respect to resolution of MASH without worsening of fibrosis. Larger and longer trials are needed to further assess the efficacy and safety of tirzepatide for the treatment of MASH. (Funded by Eli Lilly; SYNERGY-NASH ClinicalTrials.gov number, NCT04166773.).


Subject(s)
Liver Cirrhosis , Humans , Male , Liver Cirrhosis/drug therapy , Female , Double-Blind Method , Middle Aged , Adult , Liver/pathology , Liver/drug effects , Fatty Liver/drug therapy , Dose-Response Relationship, Drug , Glucagon-Like Peptide-1 Receptor/agonists , Injections, Subcutaneous , Aged , Glucagon-Like Peptide-2 Receptor , Gastric Inhibitory Polypeptide
SELECTION OF CITATIONS
SEARCH DETAIL