Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.327
Filter
1.
Mikrochim Acta ; 191(8): 448, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38967796

ABSTRACT

Surface functionalization strategy is becoming a crucial bridge from magnetic nanoparticles (MNPs) to their broad bio-application. To realize the multiple functions of MNPs such as magnetic manipulation, target capture, and signal amplification in their use of electrochemical biosensing, co-crosslinking strategy was proposed here to construct dual-functionalized MNPs by combining ultra-sensitive redox moieties and specific biological probes. In this work, MNPs with a TEM size of 10 nm were synthesized by co-precipitation for amination and PEGylation to maintain colloid stability once dispersed in high-ionic-strength buffer (such as phosphate-buffered saline). Then, MNPs@IgG were prepared via the bis(sulfosuccinimidyl) suberate (BS3) cross-linker to conjugate these IgG onto the MNP surface, with a binding efficiency of 73%. To construct dual-functionalized MNPs, these redox probes of ferrocene-NHS (Fc) were co-crosslinked onto the MNP surface, together with IgG, by using BS3. The developed MNPs@Redox@IgG were characterized by SDS‒PAGE to identify IgG binding and by square wave voltammetry (SWV) to validate the redox signal. Additionally, the anti-CD63 antibodies were selected for the development of MNPs@anti-CD63 for use in the bio-testing of exosome sample capture. Therefore, co-crosslinking strategy paved a way to develop dual-functionalized MNPs that can be an aid of their potential utilization in diagnostic assay or electrochemical methods.


Subject(s)
Cross-Linking Reagents , Immunoglobulin G , Magnetite Nanoparticles , Oxidation-Reduction , Magnetite Nanoparticles/chemistry , Immunoglobulin G/chemistry , Humans , Cross-Linking Reagents/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Biosensing Techniques/methods , Tetraspanin 30/immunology , Electrochemical Techniques/methods
2.
ACS Appl Mater Interfaces ; 16(28): 36142-36156, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968001

ABSTRACT

There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.


Subject(s)
Ferrous Compounds , Hyaluronic Acid , Indocyanine Green , Metallocenes , Photochemotherapy , Ferrous Compounds/chemistry , Humans , Metallocenes/chemistry , Animals , Mice , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology , Hyaluronic Acid/chemistry , Photothermal Therapy , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Mice, Inbred BALB C , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Mice, Nude , Cell Line, Tumor , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use
3.
Water Sci Technol ; 90(1): 384-397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007326

ABSTRACT

Fe(II) is of great importance in iron-based advanced oxidation processes. However, traditional methods to maintain Fe(II) concentration, such as the addition of chelating agents or reducing agents, may lead to an increase in chemical oxygen demand of secondary pollution. Therefore, in this study, iron sulfides, namely ferrous sulfide (FeS), pyrite (FeS2), and sulfidated nanoscale zero-valent iron (S-nZVI), were applied for not only the regeneration of Fe(II) but also the direct dissolution of Fe(II). Nanoscale calcium peroxide (nCaO2) was synthesized and used as the oxidant. The removal of 1,2-dichloroethane (1,2-DCA) were significantly promoted from 8.8 to 98.2, 79.2, and 80.8% with the aid of FeS, FeS2, and S-nZVI within 180 min, respectively. The dominant reactive oxygen species were demonstrated and their steady-state concentrations were quantified. Besides, the dechlorination of 1,2-DCA reached 90.4, 69.5, and 83.9% in nCaO2/Fe(III) systems coupled with FeS, FeS2, and S-nZVI, respectively. All three systems had high tolerance to the complex water conditions, of which FeS-enhanced nCaO2/Fe(III) system displayed the best performance, which could be recommended to put into practice for the remediation of 1,2-DCA contaminated groundwater.


Subject(s)
Ethylene Dichlorides , Iron , Peroxides , Sulfides , Water Pollutants, Chemical , Ethylene Dichlorides/chemistry , Peroxides/chemistry , Sulfides/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Ferric Compounds/chemistry , Water Purification/methods , Ferrous Compounds
4.
Bioresour Technol ; 406: 131066, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969240

ABSTRACT

In constructed wetlands (CWs), carbon source availability profoundly affected microbial metabolic activities engaged in both iron cycle and nitrogen metabolism. However, research gaps existed in understanding the biotransformation of nitrogen and iron in response to fluctuations in organic carbon content under day-night alterations. Results demonstrated increased removal efficiency of NO3--N (95.7 %) and NH4+-N (75.70 %) under light conditions, attributed to increased total organic carbon (TOC). This enhancement promoted the relative abundance of bacteria involved in nitrogen and iron processes, establishing a more stable microbial network. Elevated TOC content also upregulated genes for iron metabolism and glycolysis, facilitating denitrification. Spearman correlation analysis supported the synergistic mechanisms between FeS2-based autotrophic denitrification and TOC-mediated heterotrophic denitrification under light conditions. The significant impact of carbon sources on microbial activities underscores the critical role of organic carbon availability in enhancing nitrogen removal efficiency, providing valuable insights for optimizing FeS2-based CWs design and operation strategies.


Subject(s)
Carbon , Denitrification , Nitrogen , Wetlands , Carbon/metabolism , Nitrogen/metabolism , Bacteria/metabolism , Ferrous Compounds/metabolism , Biodegradation, Environmental , Light
5.
Chem Rec ; 24(7): e202300347, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984727

ABSTRACT

The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.


Subject(s)
Antineoplastic Agents , Azoles , Ferrous Compounds , Heterocyclic Compounds , Metallocenes , Azoles/chemistry , Azoles/pharmacology , Azoles/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Metallocenes/chemistry , Metallocenes/pharmacology , Metallocenes/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis
6.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970675

ABSTRACT

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Escherichia coli O157 , Escherichia coli O157/isolation & purification , Escherichia coli O157/immunology , Biosensing Techniques/methods , Immunoassay/methods , Immunoassay/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Nanostructures/chemistry , Electrodes , Ferrous Compounds/chemistry , Antibodies, Immobilized/immunology , Metallocenes/chemistry , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antimicrobial Peptides/chemistry
7.
Langmuir ; 40(28): 14346-14354, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953474

ABSTRACT

The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.


Subject(s)
Anti-Bacterial Agents , Disulfides , Iron , Molybdenum , Sulfides , Wound Healing , Molybdenum/chemistry , Molybdenum/pharmacology , Wound Healing/drug effects , Sulfides/chemistry , Sulfides/pharmacology , Animals , Disulfides/chemistry , Disulfides/pharmacology , Iron/chemistry , Iron/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Catalysis , Staphylococcus aureus/drug effects , Mice , Escherichia coli/drug effects , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/metabolism , Nanostructures/chemistry , Phototherapy , Microbial Sensitivity Tests , Photothermal Therapy , Ferrous Compounds
8.
Nutrients ; 16(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064701

ABSTRACT

Effective food fortification strategies using elemental iron powders (EIPs) are needed to combat iron deficiency anemia. The purpose of this study was to determine hemoglobin regeneration efficiency (HRE) and relative iron bioavailability (RBV) of four food-grade EIPs (El-Lyte (EL), Hi-Sol (HS), H-325 (H3), and A-131 (A1)) by treating anemic rats with 14 d iron repletion diets (uncooked and cooked), fortified with a 12, 24, or 36 mg iron/kg diet of the EIPs, ferrous sulfate monohydrate (FS, FeSO4•H2O), or no added iron (control), n = 9-12/group. The ability of EL and HS to maintain hemoglobin for 6 weeks on the 6 mg iron/kg diet was also studied. The dissolution rate of iron from the EIPs was measured in hydrochloric acid at pH 1.0. Compared to FS, the EL, HS, and A1 EIPs had >50% overall RBV, with the following order: HS > A1 > EL > H3 (p ≤ 0.05); the effect of cooking was not significant (p > 0.05). Dissolution testing revealed that the mean RBV of the EIPs was positively associated with the percentage of iron solubility. In the 6-week maintenance study, EL and HS maintained hemoglobin as well as FS. Overall, the findings show that at the concentrations of iron tested, these EIPs are effective fortification agents to replenish hemoglobin and correct iron deficiency anemia.


Subject(s)
Anemia, Iron-Deficiency , Biological Availability , Food, Fortified , Hemoglobins , Iron , Powders , Rats, Sprague-Dawley , Animals , Hemoglobins/metabolism , Anemia, Iron-Deficiency/drug therapy , Iron/blood , Rats , Male , Iron, Dietary/administration & dosage , Iron, Dietary/pharmacokinetics , Ferrous Compounds/administration & dosage
9.
Nutrients ; 16(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064781

ABSTRACT

The nutritional quality of plant-based meat analogues compared to traditional meat products has been questioned in recent commentary, particularly in relation to protein quality and micronutrient bioavailability. However, the attributes of specific products within this category are unclear. We therefore undertook a comprehensive assessment of the compositional and functional attributes of v2food® (Sydney, Australia) plant-based mince, including an assessment of the effects of reformulation, including the addition of amino acids, ascorbic acid, and different forms of elemental iron. The protein digestibility and protein quality of v2food® plant-based mince were comparable to beef mince in the standardized INFOGEST system, and favourable effects on microbiota composition and short-chain fatty acid (SCFA) production were demonstrated in an in vitro digestion system. The use of ferrous sulphate as an iron source improved in vitro intestinal iron absorption by ~50% in comparison to other forms of iron (p < 0.05), although levels were ~3-fold lower than beef mince, even in the presence of ascorbic acid. In conclusion, the current study identified some favourable nutritional attributes of plant-based v2food® mince, specifically microbiota and SCFA changes, as well as other areas where further reformulation could be considered to further enhance the bioavailability of key nutrients. Further studies to assess the effect of plant-based meat analogues on health measures in vivo will be important to improve knowledge in this area.


Subject(s)
Feces , Gastrointestinal Microbiome , Intestinal Absorption , Humans , Gastrointestinal Microbiome/physiology , Feces/microbiology , Feces/chemistry , Intestinal Absorption/drug effects , Dietary Proteins/metabolism , Iron/metabolism , Iron/pharmacokinetics , Nutritive Value , Biological Availability , Ascorbic Acid , Fatty Acids, Volatile/metabolism , Digestion , Ferrous Compounds
10.
Sci Rep ; 14(1): 15674, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977742

ABSTRACT

Our study aims to validate safety and efficacy of Feroglobin capsule compared with different iron supplementations in adult subjects diagnosed with non-anemic to mild anemic iron deficiency and fatigue. Enrolled 302 participants diagnosed with non-anemic to mild anemic iron deficiency and fatigue. Group A (n = 147) received Feroglobin, Group B (n = 146) received standard of care [Haem Up Gems capsules (Ferrous fumarate) or Fericip tablets (Ferrous ascorbate)]. 293 subjects completed the study with follow-up visits on days 30, 60, and 90. Feroglobin treatment significantly increased hemoglobin levels from mean 12.43 g/dl to 13.24 g/dl in 90 days. Ferritin levels improved significantly by 442.87% compared to the standard care's 256.67%. Fatigue scale scores reduced by 47.51%, and all presenting health complaints resolved completely. Gastrointestinal symptoms observed were similar in both the groups. Both groups exhibited moderate treatment adherence. Quality of life improved in pain and general health domains, exhibiting a good tolerability. Adverse events were unrelated to the investigational products. Feroglobin serves as an efficacious therapeutic alternative for improving hemoglobin, ferritin, and reducing fatigue with low doses compared to standard of care. However, longer-term effects of low-dose require further investigations in different target groups.


Subject(s)
Anemia, Iron-Deficiency , Dietary Supplements , Ferrous Compounds , Hemoglobins , Humans , Female , Male , Adult , Middle Aged , Hemoglobins/analysis , Anemia, Iron-Deficiency/drug therapy , Ferrous Compounds/administration & dosage , Ferrous Compounds/therapeutic use , Quality of Life , Iron/administration & dosage , Iron/therapeutic use , Ferritins/blood , Fatigue/drug therapy , Fatigue/etiology , Treatment Outcome , Aged
11.
Biomolecules ; 14(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062570

ABSTRACT

Background: The regulation of divalent metal transporter-1 (DMT1) by insulin has been previously described in Langerhans cells and significant neuroprotection was found by insulin and insulin-like growth factor 1 treatment during experimental cerebral ischemia in acute ischemic stroke patients and in a rat 6-OHDA model of Parkinson's disease, where DMT1 involvement is described. According to the regulation of DMT1, previously described as a target gene of NF-kB in the early phase of post-ischemic neurodegeneration, both in vitro and in vivo, and because insulin controls the NFkB signaling with protection from ischemic cell death in rat cardiomyocytes, we evaluated the role of insulin in relation to DMT1 expression and function during ischemic neurodegeneration. Methods: Insulin neuroprotection is evaluated in differentiated human neuroblastoma cells, SK-N-SH, and in primary mouse cortical neurons exposed to oxygen glucose deprivation (OGD) for 8 h or 3 h, respectively, with or without 300 nM insulin. The insulin neuroprotection during OGD was evaluated in both cellular models in terms of cell death, and in SK-N-SH for DMT1 protein expression and acute ferrous iron treatment, performed in acidic conditions, known to promote the maximum DMT1 uptake as a proton co-transporter; and the transactivation of 1B/DMT1 mouse promoter, already known to be responsive to NF-kB, was analyzed in primary mouse cortical neurons. Results: Insulin neuroprotection during OGD was concomitant to the down-regulation of both DMT1 protein expression and 1B/DMT1 mouse promoter transactivation. We also showed the insulin-dependent protection from cell death after acute ferrous iron treatment. In conclusion, although preliminary, this evaluation highlights the peculiar role of DMT1 as a possible pharmacological target, involved in neuroprotection by insulin during in vitro neuronal ischemia and acute ferrous iron uptake.


Subject(s)
Cation Transport Proteins , Cell Death , Down-Regulation , Insulin , Neurons , Animals , Insulin/metabolism , Insulin/pharmacology , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Mice , Cell Death/drug effects , Neurons/metabolism , Neurons/drug effects , Down-Regulation/drug effects , Neuroprotection/drug effects , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Iron/metabolism , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Glucose/metabolism , Ferrous Compounds/pharmacology
12.
Saudi Med J ; 45(8): 848-850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39074892

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disorder marked by low platelet counts that puts patients at risk for spontaneous bleeding. A rare trigger for ITP is iron repletion, which has only been reported in a few cases. In this article, we present a unique case of a 54-year-old male with a history of recurrent ITP who experienced rapid thrombocytopenia following iron repletion with ferrous gluconate. Discontinuation of ferrous medications resulted in platelet counts returning to the normal baseline. Following more than 30 years of the patient's clinical timeline, this case demonstrates the chronic nature of ITP and the complexity of its causes. Further studies are needed to determine the prevalence of iron repletion-induced thrombocytopenia and its underlying mechanisms.


Subject(s)
Ferrous Compounds , Thrombocytopenia , Humans , Male , Middle Aged , Ferrous Compounds/adverse effects , Thrombocytopenia/chemically induced , Iron/adverse effects , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/drug therapy
13.
J Phys Chem B ; 128(29): 7022-7032, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39016210

ABSTRACT

The interaction between iron and amyloid-beta (Aß) peptides has received significant attention in Alzheimer's disease (AD) research due to its potential implications in developing this pathology. However, the coordination preferences of iron and Aß1-42 have not been thoroughly investigated or remain unknown. This study employs a computational protocol that combines homology modeling techniques with quantum mechanics (DTF-xTB) calculations to build and evaluate several 3D models of Fe2+/3+-Aß1-42. Our results reveal well-defined complexes for both the metal and peptide moieties, and we discuss the molecular interactions stabilizing these complexes by elucidating the coordinating environments and binding preferences. These proposed models offer valuable insights into the role of iron in Alzheimer's disease (AD) pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Peptide Fragments , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Humans , Quantum Theory , Models, Molecular , Iron/chemistry , Iron/metabolism , Ferric Compounds/chemistry , Ferrous Compounds/chemistry
14.
Anal Methods ; 16(29): 5032-5037, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38980034

ABSTRACT

In this work, a sensitive ratiometric electrochemical biosensor for microRNA-155 (miRNA-155) detection is reported based on a hybridization chain reaction amplifying the electrochemical signal. The biosensor was fabricated using Au NPs as a modified material to assemble capture DNA labeled with ferrocene (Fc) molecules, and a DNA probe labeled with methylene blue (MB) was employed for the signal probe. In the presence of target miRNA-155, it can be dual hybridized with capture and signal probe, especially with signal probe to continuously produce long concatemers containing lots of MB molecules. The electrochemical signal of Fc was used for the internal signal, and the signal from MB was used as an indicator signal. As the concentration of miRNA-155 was altered, the internal reference signal of Fc remained constant, and only the indicator signal changed in a sensitive way. The change in the ratio (IMB/IFc) between the indicator signal of MB and internal reference signal of Fc can be used to monitor the concentration of miRNA-155. Under optimal conditions, the prepared ratiometric biosensor could detect miRNA-155 within a wide linear range from 100 fM to 100 nM with low detection limit of 33 fM (at S/N = 3). Moreover, the biosensor was evaluated with human serum samples, and satisfactory recoveries were obtained, indicating that the ratiometric biosensor can be applied to clinical sample analysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , MicroRNAs , Nucleic Acid Hybridization , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Humans , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , DNA Probes/chemistry , DNA Probes/genetics , Methylene Blue/chemistry
15.
Carbohydr Polym ; 342: 122403, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048238

ABSTRACT

Sonodynamic therapy (SDT) has been extensively studied as a new type of non-invasive treatment for mammary cancer. However, the poor water solubility and defective biocompatibility of sonosensitizers during SDT hinder the sonodynamic efficacy. Herein, a nanoplatform has been developed to achieve high efficient SDT against mammary cancer through the host-guest interaction of ß-cyclodextrin/5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (ß-CD-TPP) and ferrocenecarboxylic acid/chitooligosaccharides (FC-COS). Moreover, the glucose oxidase (GOx) was loaded through electrostatic adsorption, which efficiently restricts the energy supply in tumor tissues, thus enhancing the therapeutic efficacy of SDT for tumors. Under optimal conditions, the entire system exhibited favorable water solubility, suitable particle size and viable biocompatibility. This facilitated the integration of the characteristics of starvation therapy and sonodynamic therapy, resulting in efficient inhibition of tumor growth with minimal side effects in vivo. This work may provide new insights into the application of natural oligosaccharides for construct multifunctional nanocarrier systems, which could optimize the design and development of sonodynamic therapy strategies and even combination therapy strategies.


Subject(s)
Chitosan , Oligosaccharides , Reactive Oxygen Species , Ultrasonic Therapy , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Animals , Chitosan/chemistry , Chitosan/pharmacology , Female , Reactive Oxygen Species/metabolism , Mice , Ultrasonic Therapy/methods , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , Mice, Inbred BALB C , Cell Line, Tumor , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Nanoparticles/chemistry , Chitin/chemistry , Chitin/analogs & derivatives , Chitin/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Metallocenes/chemistry , Metallocenes/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology
16.
ACS Appl Mater Interfaces ; 16(24): 30958-30966, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833280

ABSTRACT

Iron sulfide nanomaterials represented by FeS2 and Fe3S4 nanozymes have attracted increasing attention due to their biocompatibility and peroxidase-like (POD-like) catalytic activity in disease diagnosis and treatments. However, the mechanism responsible for their POD-like activities remains unclear. Herein, taking the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 on FeS2(100) and Fe3S4(001) surfaces, the catalytic mechanism was investigated in detail using density functional theory (DFT) calculations and experimental characterizations. Our experimental results showed that the catalytic activity of FeS2 nanozymes was significantly higher than that of Fe3S4 nanozymes. Our DFT calculations indicated that the surface iron ions of iron sulfide nanozymes could effectively catalyze the production of HO• radicals via the interactions between Fe 3d electrons and the frontier orbitals of H2O2 in the range of -10 to 5 eV. However, FeS2 nanozymes exhibited higher POD-like activity due to the surface Fe(II) binding to H2O2, forming inner-orbital complexes, which results in a larger binding energy and a smaller energy barrier for the base-like decomposition of H2O2. In contrast, the surface iron ions of Fe3S4 nanozymes bind to H2O2, forming outer-orbital complexes, which results in a smaller binding energy and a larger energy barrier for the base-like decomposition of H2O2. The charge transfer analysis showed that FeS2 nanozymes transferred 0.12 e and Fe3S4 nanozymes transferred 0.05 e from their surface iron ions to H2O2, respectively. The simulations were consistent with the experimental observations that the FeS2 nanozymes had a greater affinity for H2O2 compared to that of Fe3S4 nanozymes. This work provides a theoretical foundation for the rational design and accurate preparation of iron sulfide functional nanozymes.


Subject(s)
Hydrogen Peroxide , Nanostructures , Catalysis , Hydrogen Peroxide/chemistry , Nanostructures/chemistry , Density Functional Theory , Sulfides/chemistry , Benzidines/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Oxidation-Reduction , Ferrous Compounds/chemistry , Iron/chemistry
17.
J Appl Oral Sci ; 32: e20240014, 2024.
Article in English | MEDLINE | ID: mdl-38896640

ABSTRACT

AIM: To investigate iron-deficiency anemia as a risk factor for dental pulp disease in children from the central Peruvian jungle. METHODOLOGY: A case-control study was carried out with 270 children, of which 90 referred to cases and 180, to controls. Patients with pulp disease were diagnosed according to the criteria of the Association of Endodontists and the American Board of Endodontics. A specific questionnaire was used to assess ferrous sulfate consumption, maternal education level, maternal age, occupation, and household income. Data were analyzed using Pearson's correlation coefficient and a binary logistic regression. RESULTS: Iron deficiency anemia offers a risk factor for pulp disease in children (OR 7.44, IC 95% 4.0-13.8). According to multivariate analysis using binary logistic regression, ferrous sulfate consumption (OR 13.8, IC 95% 5.6.33.9), maternal education level (OR 2.4, IC 95% 1.1-5.3), maternal age (OR 7.5, IC 95% 2.9-19.4), household income (OR 4.0, IC 95% 1.6-9.6), and caries (OR 10.7, IC 95% 4.5-25.7) configured independent factors that were statistically associated with pulp disease. CONCLUSION: Iron deficiency anemia, ferrous sulfate consumption, maternal education level, maternal age, household income, and dental caries were positively associated with pulp disease in children.


Subject(s)
Anemia, Iron-Deficiency , Dental Pulp Diseases , Socioeconomic Factors , Humans , Anemia, Iron-Deficiency/epidemiology , Anemia, Iron-Deficiency/etiology , Peru/epidemiology , Female , Risk Factors , Case-Control Studies , Male , Child , Dental Pulp Diseases/epidemiology , Child, Preschool , Ferrous Compounds , Educational Status , Maternal Age , Adolescent , Income/statistics & numerical data , Dental Caries/epidemiology , Dental Caries/etiology
18.
Inorg Chem ; 63(25): 11667-11687, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38860314

ABSTRACT

Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.


Subject(s)
Ferrous Compounds , Ruthenium , Trypanocidal Agents , Trypanosoma cruzi , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemical synthesis , Trypanosoma cruzi/drug effects , Ligands , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Animals , Ruthenium/chemistry , Ruthenium/pharmacology , Mice , Metallocenes/chemistry , Metallocenes/pharmacology , Metallocenes/chemical synthesis , Trypanosoma brucei brucei/drug effects , Parasitic Sensitivity Tests , Molecular Structure , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
19.
Biosensors (Basel) ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38920580

ABSTRACT

Metal-organic frameworks (MOFs) are frequently utilized as sensing materials. Unfortunately, the low conductivity of MOFs hinder their further application in electrochemical determination. To overcome this limitation, a novel modification strategy for MOFs was proposed, establishing an electrochemical determination method for cyanides in Baijiu. Co and Ni were synergistically used as the metal active centers, with meso-Tetra(4-carboxyphenyl)porphine (TCPP) and Ferrocenecarboxylic acid (Fc-COOH) serving as the main ligands, synthesizing Ni/Co-MOF-TCPP-Fc through a hydrothermal method. The prepared MOF exhibited improved conductivity and stable ratio signals, enabling rapid and sensitive determination of cyanides. The screen-printed carbon electrodes (SPCE) were suitable for in situ and real-time determination of cyanide by electrochemical sensors due to their portability, low cost, and ease of mass production. A logarithmic linear response in the range of 0.196~44 ng/mL was demonstrated by this method, and the limit of detection (LOD) was 0.052 ng/mL. Compared with other methods, the sensor was constructed by a one-step synthesis method, which greatly simplifies the analysis process, and the determination time required was only 4 min. During natural cyanide determinations, recommended readouts match well with GC-MS with less than 5.9% relative error. Moreover, this electrochemical sensor presented a promising method for assessing the safety of cyanides in Baijiu.


Subject(s)
Cyanides , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Cyanides/analysis , Metal-Organic Frameworks/chemistry , Electrodes , Biosensing Techniques , Nickel/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Cobalt/chemistry
20.
Biosensors (Basel) ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38920594

ABSTRACT

Conventional electrochemical sensors use voltammetric and amperometric methods with external power supply and modulation systems, which hinder the flexibility and application of the sensors. To avoid the use of an external power system and to minimize the number of electrochemical cell components, a self-powered electrochemical sensor (SPES) for hydrogen peroxide was investigated here. Iron phthalocyanine, an enzyme mimetic material, and Ni were used as a cathode catalyst and an anode material, respectively. The properties of the iron phthalocyanine catalyst modified by graphene nanoplatelets (GNPs) were investigated. Open circuit potential tests demonstrated the feasibility of this system. The GNP-modulated interface helped to solve the problems of aggregation and poor conductivity of iron phthalocyanine and allowed for the achievement of the best analytical characteristics of the self-powered H2O2 sensor with a low detection limit of 0.6 µM and significantly higher sensitivity of 0.198 A/(M·cm2) due to the enhanced electrochemical properties. The SPES demonstrated the best performance at pH 3.0 compared to pH 7.4 and 12.0. The sensor characteristics under the control of external variable load resistances are discussed and the cell showed the highest power density of 65.9 µW/cm2 with a 20 kOhm resistor. The practical applicability of this method was verified by the determination of H2O2 in blood serum.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Graphite , Hydrogen Peroxide , Graphite/chemistry , Catalysis , Indoles/chemistry , Limit of Detection , Ferrous Compounds/chemistry , Platinum/chemistry , Nickel/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL