Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.754
Filter
1.
Nat Commun ; 15(1): 6105, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030209

ABSTRACT

Fish fecundity scales hyperallometrically with body mass, meaning larger females produce disproportionately more eggs than smaller ones. We explore this relationship beyond the species-level to estimate the "reproductive potential" of 1633 coral reef sites distributed globally. We find that, at the site-level, reproductive potential scales hyperallometrically with assemblage biomass, but with a smaller median exponent than at the species-level. Across all families, modelled reproductive potential is greater in fully protected sites versus fished sites. This difference is most pronounced for the important fisheries family, Serranidae. When comparing a scenario where 30% of sites are randomly fully protected to a current protection scenario, we estimate an increase in the reproductive potential of all families, and particularly for Serranidae. Such results point to the possible ecological benefits of the 30 × 30 global conservation target and showcase management options to promote the sustainability of population replenishment.


Subject(s)
Coral Reefs , Fishes , Reproduction , Animals , Fishes/physiology , Reproduction/physiology , Biomass , Conservation of Natural Resources , Female , Fisheries , Fertility/physiology , Ecosystem
2.
Reprod Domest Anim ; 59(7): e14664, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010850

ABSTRACT

In several mammalian species, the measurement of mitochondrial oxygen consumption (MITOX) under different metabolic conditions has demonstrated a positive correlation with sperm motility and may be a sensitive indicator of mitochondrial health. In general, the maintenance of sperm motility and many key sperm functions and fertilizing events are heavily energy-dependent processes, and some species-specific substrate preferences exist. Although canine sperm have been known to undergo capacitation and maintain motility with supplementation of a wide range of energy substrates, the relationship between mitochondrial function, and the maintenance of oxidative metabolism and sperm motility remain unclear. The objective of this study was to explore the metabolic flexibility of canine sperm, and to investigate the relationship between mitochondrial function, and maintenance of motility under differing nutrient conditions. We explored substrate preferences and the bioenergetics underlying maintenance of canine sperm motility by monitoring mitochondrial oxidative function and sperm kinematics in the presence of mitochondrial effector drug treatments: FCCP, antimycin (ANTI), and oligomycin (OLIGO). We hypothesized that canine sperm possess the ability to use compensatory pathways and utilize diverse nutrient sources in the maintenance of motility. Oxygen consumption (change in pO2, oxygen partial pressure) and sperm kinematics (CASA) were measured concurrently (t0-t30) to assess the relationship between oxidative metabolism and maintenance of sperm motility in dogs. Four media were tested: containing glucose, lactate, and pyruvate (GLP), containing glucose (G), fructose (F), or lactate and pyruvate (LP). In the absence of pharmacological inhibition of the electron transport chain, energetic substrate had no effect on sperm kinematics in fertile dogs. Following mitochondrial disruption by ANTI and OLIGO, mitochondrial oxygen consumption was negatively correlated with several sperm motility parameters in GLP, G, F, and LP media. In every media, FCCP treatment quickly induced significantly higher oxygen consumption than in untreated sperm, and spare respiratory capacity, the maximal inducible oxidative metabolism, was high. With respiratory control ratios RCR >1 there was no indication of bioenergetic dysfunction in any media type, indicating that sperm mitochondria of fertile dogs have a high capacity for substrate oxidation and ATP turnover regardless of substrate. Our results suggest MITOX assessment is a valuable tool for assessing mitochondrial functionality, and that canine sperm employ flexible energy management systems which may be exploited to improve sperm handling and storage.


Subject(s)
Mitochondria , Oxygen Consumption , Sperm Motility , Spermatozoa , Animals , Male , Dogs , Mitochondria/metabolism , Mitochondria/physiology , Spermatozoa/physiology , Spermatozoa/drug effects , Energy Metabolism , Antimycin A/pharmacology , Antimycin A/analogs & derivatives , Fertility/physiology
4.
Cells ; 13(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38994935

ABSTRACT

Successful pregnancy depends on precise molecular regulation of uterine physiology, especially during the menstrual cycle. Deregulated oxidative stress (OS), often influenced by inflammatory changes but also by environmental factors, represents a constant threat to this delicate balance. Oxidative stress induces a reciprocally regulated nuclear factor erythroid 2-related factor 2/peroxisome proliferator-activated receptor-gamma (Nrf2/PPARγ) pathway. However, increased PPARγ activity appears to be a double-edged sword in endometrial physiology. Activated PPARγ attenuates inflammation and attenuates OS to restore redox homeostasis. However, it also interferes with physiological processes during the menstrual cycle, such as hormonal signaling and angiogenesis. This review provides an elucidation of the molecular mechanisms that support the interplay between PPARγ and OS. Additionally, it offers fresh perspectives on the Nrf2/PPARγ pathway concerning endometrial receptivity and its potential implications for infertility.


Subject(s)
Endometrium , Fertility , NF-E2-Related Factor 2 , Oxidative Stress , PPAR gamma , Humans , Female , NF-E2-Related Factor 2/metabolism , Endometrium/metabolism , PPAR gamma/metabolism , Fertility/physiology , Signal Transduction , Animals
5.
Sci Rep ; 14(1): 15047, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951576

ABSTRACT

Pink bollworm (PBW) Pectinophora gossypiella is an important pest cotton worldwide. There are multiple factors which determines the occurrence and distribution of P. gossypiella across different cotton growing regions of the world, and one such key factor is 'temperature'. The aim was to analyze the life history traits of PBW across varying temperature conditions. We systematically explored the biological and demographic parameters of P. gossypiella at five distinct temperatures; 20, 25, 30, 35 and 40 ± 1 °C maintaining a photoperiod of LD 16:8 h. The results revealed that the total developmental period of PBW shortens with rising temperatures, and the highest larval survival rates were observed between 30 °C and 35 °C, reaching 86.66% and 80.67%, respectively. Moreover, significant impacts were observed as the pupal weight, percent mating success, and fecundity exhibited higher values at 30 °C and 35 °C. Conversely, percent egg hatching, larval survival, and adult emergence were notably lower at 20 °C and 40 °C, respectively. Adult longevity decreased with rising temperatures, with females outliving males across all treatments. Notably, thermal stress had a persistent effect on the F1 generation, significantly affecting immature stages (egg and larvae), while its impact on reproductive potential was minimal. These findings offer valuable insights for predicting the population dynamics of P. gossypiella at the field level and developing climate-resilient management strategies in cotton.


Subject(s)
Larva , Temperature , Animals , Larva/physiology , Female , Male , Gossypium/parasitology , Lepidoptera/physiology , Lepidoptera/growth & development , Fertility/physiology , Moths/physiology , Moths/growth & development , Longevity/physiology , Pupa/physiology , Pupa/growth & development
6.
Reprod Biol Endocrinol ; 22(1): 83, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020374

ABSTRACT

BACKGROUND: Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS: Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION: Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.


Subject(s)
Fertility , Infertility, Male , Mitochondria , Spermatozoa , Humans , Male , Infertility, Male/physiopathology , Infertility, Male/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Mitochondria/metabolism , Mitochondria/physiology , Fertility/physiology , Sperm Motility/physiology , Female , Reactive Oxygen Species/metabolism , Animals
7.
Mol Reprod Dev ; 91(7): e23764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072963

ABSTRACT

Clusterin (CLU), one of the main glycoproteins in mammalian semen and the male reproductive tract, plays a role in spermatogenesis and sperm maturation. Given the poor reliability of classic seminal studies in determining male-fertilizing capacity and the differences in CLU abundance between normal and abnormal spermatozoa, we investigated the potential value of mRNA-CLU levels and protein distribution in spermatozoa as markers of sperm quality and predictors of male fertility. This multicenter study included 90 patients undergoing in vitro fertilization (IVF) treatment with their partners, and a control group of 36 fertile males with normal seminograms. We assessed the relationship between IVF treatment outcomes, seminogram variables, mRNA-CLU levels by quantitative real-time-PCR and CLU distribution by immunostaining in spermatozoa. Our study reveals CLU staining in the acrosome (p = 0.002, OR 14.8, 95% CI: 2.7-79.3) and mRNA-CLU levels (p = 0.005, OR 10.85, 95% CI: 2.0-57.4) as independent risk factors for pregnancy failure, irrespective of traditional seminogram variables. Additionally, our results suggest that CLU, and specially its secreted isoform, constitutes a component of the protein pool that human spermatozoa can produce during its maturation process, exhibiting a variable abundance and distribution in spermatozoa from fertile men compared to those in patients with altered seminograms and infertile patients with normal seminograms. Our study is the first to identify mRNA-CLU levels and CLU immunostaining in the spermatozoa acrosome as independent risk factors for pregnancy failure, with distribution patterns correlating with sperm maturity and seminogram alterations.


Subject(s)
Clusterin , Spermatozoa , Humans , Clusterin/metabolism , Clusterin/genetics , Male , Spermatozoa/metabolism , Adult , Female , Fertility/physiology , Pregnancy , Fertilization in Vitro , Infertility, Male/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
9.
Front Endocrinol (Lausanne) ; 15: 1397783, 2024.
Article in English | MEDLINE | ID: mdl-38846497

ABSTRACT

Objective: Various stem cell-loaded scaffolds have demonstrated promising endometrial regeneration and fertility restoration. This study aimed to evaluate the efficacy of stem cell-loaded scaffolds in treating uterine injury in animal models. Methods: The PubMed, Embase, Scopus, and Web of Science databases were systematically searched. Data were extracted and analyzed using Review Manager version 5.4. Improvements in endometrial thickness, endometrial glands, fibrotic area, and number of gestational sacs/implanted embryos were compared after transplantation in the stem cell-loaded scaffolds and scaffold-only group. The standardized mean difference (SMD) and confidence interval (CI) were calculated using forest plots. Results: Thirteen studies qualified for meta-analysis. Overall, compared to the scaffold groups, stem cell-loaded scaffolds significantly increased endometrial thickness (SMD = 1.99, 95% CI: 1.54 to 2.44, P < 0.00001; I² = 16%) and the number of endometrial glands (SMD = 1.93, 95% CI: 1.45 to 2.41, P < 0.00001; I² = 0). Moreover, stem cell-loaded scaffolds present a prominent effect on improving fibrosis area (SMD = -2.50, 95% CI: -3.07 to -1.93, P < 0.00001; I² = 36%) and fertility (SMD = 3.34, 95% CI: 1.58 to 5.09, P = 0.0002; I² = 83%). Significant heterogeneity among studies was observed, and further subgroup and sensitivity analyses identified the source of heterogeneity. Moreover, stem cell-loaded scaffolds exhibited lower inflammation levels and higher angiogenesis, and cell proliferation after transplantation. Conclusion: The evidence indicates that stem cell-loaded scaffolds were more effective in promoting endometrial repair and restoring fertility than the scaffold-only groups. The limitations of the small sample sizes should be considered when interpreting the results. Thus, larger animal studies and clinical trials are needed for further investigation. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024493132.


Subject(s)
Endometrium , Regeneration , Tissue Scaffolds , Female , Endometrium/physiology , Endometrium/cytology , Regeneration/physiology , Tissue Scaffolds/chemistry , Animals , Humans , Fertility/physiology , Stem Cells/cytology , Infertility, Female/therapy , Stem Cell Transplantation/methods
10.
Semin Reprod Med ; 42(1): 5-14, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38914117

ABSTRACT

Anti-Müllerian hormone (AMH) is secreted by Sertoli cells and is responsible for the regression of Müllerian ducts in the male fetus as part of the sexual differentiation process. Serum AMH concentrations are at their lowest levels in the first days after birth but increase after the first week, likely reflecting active Sertoli cell proliferation. AMH rises rapidly in concentration in boys during the first month, reaching a peak level at ∼6 months of age, and it remains high during childhood, then they will slowly decline during puberty, falling to low levels in adulthood. Serum AMH measurement is used by pediatric endocrinologist as a specific marker of immature Sertoli cell number and function during childhood. After puberty, AMH is released especially by the apical pole of the Sertoli cells toward the lumen of the seminiferous tubules, resulting in higher levels in the seminal plasma than in the serum. Recently, AMH has received increasing attention in research on male fertility-related disorders. This article reviews and summarizes the potential contribution of serum AMH measurement in different male fertility-related disorders.


Subject(s)
Anti-Mullerian Hormone , Infertility, Male , Sperm Motility , Anti-Mullerian Hormone/blood , Anti-Mullerian Hormone/metabolism , Male , Humans , Infertility, Male/metabolism , Infertility, Male/physiopathology , Sperm Motility/physiology , Sertoli Cells/metabolism , Sertoli Cells/physiology , Biomarkers/blood , Biomarkers/metabolism , Reproduction/physiology , Fertility/physiology , Animals
11.
Exp Gerontol ; 194: 112501, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897017

ABSTRACT

Diet significantly affects reproductive outcomes across species, yet the precise effects of macronutrient compositions beyond caloric intake on reproductive aging are understudied. Existing literature presents conflicting views on the fertility impacts of nutrient-rich versus nutrient-poor developmental diets, underscoring a notable research gap. This study addresses these gaps by examining effects of isocaloric diets with varied protein-to-carbohydrate ratios during both developmental and adult stages on reproductive aging of a large, outbred Drosophila melanogaster population (n = âˆ¼2100). Our results clearly demonstrate an age-dependent dietary impact on reproductive output, initially dominated by the developmental diet, then by a combination of developmental and adult diets in early to mid-life, and ultimately by the adult diet in later life. Importantly, we found that the effects of developmental and adult diets on reproductive output are independent, with no significant interaction. Further investigations into the mechanisms revealed that the effect of developmental diet on fecundity is regulated via ovarioles formation and vitellogenesis; while, the effect of adult diet on fecundity is mostly regulated only via vitellogenesis. These insights resolve disputes in the literature about dietary impacts on fertility and offer valuable perspectives for optimizing fertility strategies in improving public health and conservation efforts in this changing world.


Subject(s)
Aging , Diet , Drosophila melanogaster , Fertility , Reproduction , Animals , Drosophila melanogaster/physiology , Female , Aging/physiology , Fertility/physiology , Fertility/drug effects , Reproduction/physiology , Reproduction/drug effects , Male , Animal Nutritional Physiological Phenomena , Vitellogenesis/physiology , Dietary Proteins/administration & dosage
12.
Biomolecules ; 14(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927088

ABSTRACT

pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.


Subject(s)
Fertilization , Spermatozoa , Male , Hydrogen-Ion Concentration , Humans , Spermatozoa/metabolism , Spermatozoa/physiology , Animals , Fertilization/physiology , Fertility/physiology , Female , Spermatogenesis/physiology , Homeostasis , Sperm Motility/physiology
13.
J Proteomics ; 303: 105213, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797435

ABSTRACT

Protein lysine modifications (PLMs) are hotspots of post-translational modifications and are involved in many diseases; however, their role in human sperm remains obscure. This study examined the presence and functional roles of a classical PLM (lysine acetylation, Kac) and three novel PLMs (lysine malonylation, Kmal; lysine succinylation, Ksucc; lysine crotonylation, Kcr) in human sperm. Immunoblotting and immunofluorescence assays revealed modified proteins (15-150 kDa) in the tails of human sperm. An immunoaffinity approach coupled with liquid chromatography/tandem mass spectrometry revealed 1423 Kac sites in 680 proteins, 196 Kmal sites in 118 proteins, 788 Ksucc sites in 251 proteins, and 1836 Kcr sites in 645 proteins. These modified proteins participate in a variety of biological processes and metabolic pathways. Crosstalk analysis demonstrated that proteins involved in the sperm energy pathways of glycolysis, oxidative phosphorylation, the citrate cycle, fatty acid oxidation, and ketone body metabolism were modified by at least one of these modifications. In addition, these modifications were found in 62 male fertility-related proteins that weave a protein-protein interaction network associated with asthenoteratozoospermia, asthenozoospermia, globozoospermia, spermatogenic failure, hypogonadotropic hypogonadism, and polycystic kidney disease. Our findings shed light on the functional role of PLMs in male reproduction. SIGNIFICANCE: Protein lysine modifications (PLMs) are hotspots of posttranslational modifications and are involved in many diseases. This study revealed the presence of a classical PLM (lysine acetylation) and three novel PLMs (lysine malonylation, lysine succinylation, and lysine crotonylation) in human sperm tails. The modified proteins participate in a variety of biological processes and metabolic pathways. In addition, these modifications were found in 62 male infertility-associated proteins and could serve as potential diagnostic markers and therapeutic targets for male infertility.


Subject(s)
Lysine , Protein Processing, Post-Translational , Proteomics , Spermatozoa , Humans , Male , Lysine/metabolism , Spermatozoa/metabolism , Acetylation , Proteomics/methods , Proteome/metabolism , Fertility/physiology , Infertility, Male/metabolism
14.
Reprod Domest Anim ; 59(5): e14597, 2024 May.
Article in English | MEDLINE | ID: mdl-38798195

ABSTRACT

Oestrus is defined as a period when a female animal exhibits characteristic sexual behaviour in the presence of a mature male. Oestrous manifestation in dairy animals is due to the oestrogen (E2) effect on the central nervous system (CNS). It is a critical issue to be considered on a priority basis. Inefficient oestrous detection reduces the fertility status of the herd. The primary and most reliable indicator of oestrus is standing to be mounted by a bull or another female herd mate, signalling receptivity and the pre-ovulatory state in dairy cattle. Oestrous detection is primarily a management challenge requiring skill and vigilance. To improve the efficiency of oestrous detection in dairy cattle, visual observation is one of the best methods if done three times a day; however, heat detection aids, if combined, give better results. However, techniques like using teaser bulls, tail painting, chin ball markers, ultrasound (USG) examination, hormonal analysis and examination of cervicovaginal mucus (CVM) improve oestrous detection efficiency. Moreover, the changes in production systems have reduced the expression of oestrous behaviour among cows, due to higher oestrogen (E2) metabolism. Therefore, automated systems, such as pedometers, accelerometers and acoustic sensors like infrared thermography (IRT) and image processing, have significantly enhanced reproductive performance by facilitating oestrous detection and optimizing insemination schedules. From this review, we would conclude that oestrous detection alone contributes considerably to the reproductive status of the herd; therefore, applying different methods of oestrous detection reduces the incidence of missed oestrus and improves the fertility status of the herd.


Subject(s)
Buffaloes , Estrus Detection , Estrus , Fertility , Animals , Cattle/physiology , Female , Buffaloes/physiology , Estrus/physiology , Fertility/physiology , Estrus Detection/methods , Male , Sexual Behavior, Animal , Dairying/methods
15.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731898

ABSTRACT

The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.


Subject(s)
Aging , NAD , Ovary , Humans , Female , NAD/metabolism , Aging/metabolism , Aging/physiology , Ovary/metabolism , Animals , Sirtuins/metabolism , Energy Metabolism , Fertility/physiology , Reproduction/physiology
16.
Theriogenology ; 225: 162-171, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38805998

ABSTRACT

Fourier harmonic analysis (FHA) is a robust method for identification of minute changes in sperm nuclear shape that are indicative of reduced fertility. The current study was designed to develop a fertility prediction model for Nili-Ravi buffalo bulls through FHA of sperm. In experiment I, FHA technique was standardized, average sperm nuclear perimeter was measured and sperm nuclear shape plot of buffalo bull was constructed. Sperm of buffalo bulls (n = 10) were stained with YOYO-1 and Hoechst-33342 to differentiate live and dead, and digital images were captured using phase contrast and fluorescent microscopy. The images were analyzed by ImageJ software and 100 sperm/bull were evaluated. The results are described as mean ± SEM values of mean harmonic amplitude (mharm), skewness harmonic amplitude (skharm), kurtosis harmonic amplitude (kurharm) and variance harmonic amplitude (varharm) at Fourier frequencies 0-5 along with the cartesian and polar coordinate plots of buffalo bull sperm. In experiment II, a fertility prediction model was developed based on FHA of buffalo bull sperm. Semen samples of low (n = 6), medium (n = 3) and high (n = 8) fertility bulls were investigated for FHA of sperm and harmonic amplitudes (HA) were generated. Firstly, to determine if live and dead sperm population have unique nuclear shape distribution; the mean, skewness, kurtosis and variance HA 0-5 of 1700 live and 1294 dead spermatozoa of 17 bulls were evaluated. T-test signified a difference in the mharm0 (2.363 ± 0.01 vs. 2.439 ± 0.02), skharm0 (-0.0002 ± 0.07 vs. -0.266 ± 0.09), kurharm0 (-0.156 ± 0.07 vs. 0.260 ± 0.18), kurharm2 (0.142 ± 0.11 vs. 1.031 ± 0.32) and varharm4 (0.109 ± 0.00 vs. 0.082 ± 0.00) of live vs. dead sperm population (p < 0.05). Therefore, 100 live sperm/bull were further evaluated for mean, skewness, kurtosis and variance HA 0-5 values among high (n = 6) and low-fertility (n = 6) groups. Results of T-test showed higher values of mharm2 (0.739 ± 0.01 vs. 0.686 ± 0.00), mharm4 (0.105 ± 0.001 vs. 0.007 ± 0.001), and skharm0 (0.214 ± 0.109 vs. -0.244 ± 0.097) in high vs. low-fertility group (p < 0.05). In next step, five significantly different combinations of discriminant measures between high and low-fertility groups were obtained by discriminant analysis. In conclusion, mharm4, skharm0 and varharm2 correctly identified 91.7 % of bulls into their respective fertility groups, and upon cross validation the value of the canonical correlation was 0.928.


Subject(s)
Buffaloes , Fertility , Semen Analysis , Spermatozoa , Animals , Male , Buffaloes/physiology , Spermatozoa/physiology , Fertility/physiology , Semen Analysis/veterinary , Semen Analysis/methods , Fourier Analysis
17.
Ceska Gynekol ; 89(2): 139-143, 2024.
Article in English | MEDLINE | ID: mdl-38704227

ABSTRACT

Reactive oxygen species play a significant role in male fertility and infertility. They are essential for physiological processes, but when their concentration becomes excessive, they can be a cause of various sperm pathologies. Seminal leukocytes and pathologically abnormal sperm are the primary sources of oxygen radicals in ejaculate. They negatively affect sperm quality, including DNA fragmentation and sperm motility impairment. Addressing increased concentrations of reactive oxygen species involves various appropriate lifestyle modifications and measures, including the use of antioxidants, treatment of urogenital infections, management of varicocele, weight reduction, and others. In many cases, these interventions can lead to adjustments in the condition and improvement in sperm quality. Such improvements can subsequently lead to enhanced outcomes in assisted reproduction or even an increased likelihood of natural conception. In some instances, the need for donor sperm may be eliminated. However, a key factor is adhering to a sufficiently prolonged treatment, which requires patience on the part of both, the physician and the patient.


Subject(s)
Infertility, Male , Reactive Oxygen Species , Humans , Male , Reactive Oxygen Species/metabolism , Infertility, Male/metabolism , Infertility, Male/etiology , Spermatozoa/metabolism , Spermatozoa/physiology , Fertility/physiology
18.
J Integr Plant Biol ; 66(7): 1500-1516, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38751028

ABSTRACT

Tapetum, the innermost layer of the anther wall, provides essential nutrients and materials for pollen development. Timely degradation of anther tapetal cells is a prerequisite for normal pollen development in flowering plants. Tapetal cells facilitate male gametogenesis by providing cellular contents after highly coordinated programmed cell death (PCD). Tapetal development is regulated by a transcriptional network. However, the signaling pathway(s) involved in this process are poorly understood. In this study, we report that a mitogen-activated protein kinase (MAPK) cascade composed of OsYDA1/OsYDA2-OsMKK4-OsMPK6 plays an important role in tapetal development and male gametophyte fertility. Loss of function of this MAPK cascade leads to anther indehiscence, enlarged tapetum, and aborted pollen grains. Tapetal cells in osmkk4 and osmpk6 mutants exhibit an increased presence of lipid body-like structures within the cytoplasm, which is accompanied by a delayed occurrence of PCD. Expression of a constitutively active version of OsMPK6 (CA-OsMPK6) can rescue the pollen defects in osmkk4 mutants, confirming that OsMPK6 functions downstream of OsMKK4 in this pathway. Genetic crosses also demonstrated that the MAPK cascade sporophyticly regulates pollen development. Our study reveals a novel function of rice MAPK cascade in plant male reproductive biology.


Subject(s)
Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases , Oryza , Plant Proteins , Pollen , Pollen/genetics , Pollen/growth & development , Oryza/genetics , Oryza/enzymology , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , MAP Kinase Signaling System , Fertility/physiology , Fertility/genetics , Mutation/genetics , Flowers/genetics , Flowers/physiology
19.
Reprod Biomed Online ; 49(1): 103937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744029

ABSTRACT

RESEARCH QUESTION: How knowledgeable are Danish young adults about fertility and what are their attitudes towards learning about their reproductive biology? DESIGN: The study was conducted at different educational institutions with 11 focus-group discussions that included a total of 47 participants (aged 18-29 years). Qualitative content analysis was used. The participants' fertility knowledge score was measured using the Cardiff Fertility Knowledge Scale. RESULTS: The participants had an overall fertility knowledge score of 54%. Focus-group data showed that they thought it was important to learn about fertility and how to protect their fertility potential regardless of whether or not they wanted children. Providing knowledge is like planting a seed in the young adults. They wanted to hear about fertility in multifaceted ways and formats, and believed the information should be delivered by professionals, but developed in partnership with young people. The double-edged sword of knowledge and the consequence of knowledge made them hesitant or less open to learning. CONCLUSIONS: Recommendations from this study are to tailor fertility information to young people, with due cognisance of their developmental stage, and ideally from an earlier age.


Subject(s)
Fertility , Focus Groups , Health Knowledge, Attitudes, Practice , Humans , Adult , Young Adult , Adolescent , Female , Male , Fertility/physiology , Denmark
20.
Fertil Steril ; 122(2): 194-203, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38704081

ABSTRACT

Obesity is a highly prevalent chronic disease that impacts >40% of reproductive-aged females. The pathophysiology of obesity is complex and can be understood simply as a chronic energy imbalance whereby caloric intake exceeds caloric expenditure with an energy surplus stored in adipose tissue. Obesity may be categorized into degrees of severity as well as different phenotypes on the basis of metabolic health and underlying pathophysiology. Obesity and excess adiposity have a significant impact on fertility and reproductive health, with direct effects on the hypothalamic-pituitary-ovarian axis, the ovary and oocyte, and the endometrium. There are significant adverse pregnancy outcomes related to obesity, and excess weight gain before, during, and after pregnancy that can alter the lifelong risk for metabolically unhealthy obesity. Given the high prevalence and pervasive impact of obesity on reproductive health, there is a need for better and individualized care for reproductive-aged females that considers obesity phenotype, underlying pathophysiology, and effective and sustainable interventions to treat obesity and manage weight gain before, during, and after pregnancy.


Subject(s)
Obesity , Reproductive Health , Humans , Female , Obesity/physiopathology , Obesity/metabolism , Obesity/epidemiology , Pregnancy , Reproduction/physiology , Infertility, Female/physiopathology , Infertility, Female/metabolism , Infertility, Female/therapy , Infertility, Female/etiology , Infertility, Female/epidemiology , Energy Metabolism , Fertility/physiology , Risk Factors , Pregnancy Complications/physiopathology , Pregnancy Complications/metabolism , Pregnancy Complications/epidemiology , Pregnancy Complications/etiology , Pregnancy Complications/therapy , Pregnancy Outcome/epidemiology , Age Factors , Adult
SELECTION OF CITATIONS
SEARCH DETAIL