Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.398
Filter
1.
Sci Rep ; 14(1): 19598, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179576

ABSTRACT

Prenatal exposure to toxins can adversely affect long-term health outcomes of the offspring. Though chemotherapeutics are now standard of care for treating cancer patients during pregnancy, certain compounds are known to cross the placenta and harm placental tissue. The consequences for the fetus are largely unexplored. Here we examined the responses of newborn cord blood mononuclear cells in tissue culture to two chemotherapeutic drugs, cyclophosphamide and epirubicin, when either directly exposed to these drugs, or indirectly after crossing a placenta trophoblast bilayer barrier. Cord blood mononuclear cells exposed to the conditioned media obtained from cyclophosphamide-exposed trophoblast barriers showed a significant 2.4-fold increase of nuclear ROS levels compared to direct exposure to cyclophosphamide. Indirect exposure to epirubicine-exposed trophoblast barriers not only enhanced nuclear ROS levels but also significantly increased the fraction of cord blood cells with double strand breaks, relative to directly exposed cells. Neither apoptosis nor proliferation markers were affected in cord mononuclear blood cells upon direct or indirect exposure to cyclophosphamide or epirubicin. Our data suggests that trophoblast cells exposed to cyclophosphamide or epirubicine may induce an indirect 'bystander' effect and can aggravate genotoxicity in the fetal compartment.


Subject(s)
Cyclophosphamide , Epirubicin , Fetal Blood , Placenta , Humans , Fetal Blood/cytology , Fetal Blood/metabolism , Female , Pregnancy , Cyclophosphamide/toxicity , Cyclophosphamide/adverse effects , Epirubicin/adverse effects , Placenta/drug effects , Placenta/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Trophoblasts/drug effects , Trophoblasts/metabolism , Reactive Oxygen Species/metabolism , DNA Damage/drug effects , Apoptosis/drug effects , Infant, Newborn , Antineoplastic Agents/toxicity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/adverse effects , Cells, Cultured
2.
Immunol Lett ; 269: 106908, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151731

ABSTRACT

Mast cells are multifaceted cells localized in tissues and possess various surface receptors that allow them to respond to inner and external threat signals. Interleukin-33 (IL-33) is a cytokine released by structural cells in response to parasitic infections, mechanical damage, and cell death. IL-33 can activate mast cells, causing them to release an array of mediators. This study aimed to identify the different cytokines released by human cord blood-derived mast cells (hCBMCs) in response to acute and prolonged stimulation with IL-33. For this purpose, a hCBMC model was established and stimulated with 10 ng and 20 ng of recombinant human IL-33 (rhIL-33) for 6 h and 24 h. Total RNA was hybridized using a high-density oligonucleotide microarray. A multiplex assay was performed to assess the released cytokines. Acute exposure to rhIL-33 increased the expression of IL-1α, IL-1ß, IL-6, and IL-13, whereas prolonged exposure increased the expression of IL-5 and IL-10, and cytokines were detected in the culture supernatant. WebGestalt analysis revealed that rhIL-33 induces pathways and biological processes related to the immune system and the acute inflammatory response. This study demonstrates that rhIL-33 can activate hCBMCs to release pro- and anti-inflammatory cytokines, eliciting distinct acute and prolonged responses unique to hCBMCs.


Subject(s)
Cytokines , Fetal Blood , Interleukin-33 , Mast Cells , Humans , Interleukin-33/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Fetal Blood/cytology , Cytokines/metabolism , Cells, Cultured , Recombinant Proteins/pharmacology , Gene Expression Profiling
3.
Sci Rep ; 14(1): 19899, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39191975

ABSTRACT

Vitamin D deficiency is a common deficiency worldwide, particularly among women of reproductive age. During pregnancy, it increases the risk of immune-related diseases in offspring later in life. However, how the body remembers exposure to an adverse environment during development is poorly understood. Herein, we explore the effects of prenatal vitamin D deficiency on immune cell proportions in offspring using vitamin D deficient mice established by dietary manipulation. We found that prenatal vitamin D deficiency alters immune cell proportions in offspring by changing the transcriptional properties of genes downstream of vitamin D receptor signaling in hematopoietic stem and progenitor cells of both the fetus and adults. Moreover, further investigations of the associations between maternal vitamin D levels and cord blood immune cell profiles from 75 healthy pregnant women and their term offspring also confirm that maternal vitamin D levels in the second trimester significantly affect immune cell proportions in the offspring. These findings imply that the differentiation properties of hematopoiesis act as long-term memories of prenatal vitamin D deficiency exposure in later life.


Subject(s)
Prenatal Exposure Delayed Effects , Vitamin D Deficiency , Vitamin D , Vitamin D Deficiency/immunology , Female , Pregnancy , Animals , Humans , Prenatal Exposure Delayed Effects/immunology , Mice , Vitamin D/blood , Fetal Blood/cytology , Adult , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Hematopoietic Stem Cells/metabolism , Male
4.
Stem Cell Res Ther ; 15(1): 257, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135206

ABSTRACT

BACKGROUND: Using natural killer (NK) cells to treat hematopoietic and solid tumors has great promise. Despite their availability from peripheral blood and cord blood, stem cell-derived NK cells provide an "off-the-shelf" solution. METHODS: In this study, we developed two CAR-NK cells targeting PD-L1 derived from lentiviral transduction of human umbilical cord blood (UCB)-CD34+ cells and UCB-CD34+-derived NK cells. The transduction efficiencies and in vitro cytotoxic functions including degranulation, cytokine production, and cancer cell necrosis of both resultants PD-L1 CAR-NK cells were tested in vitro on two different PD-L1 low and high-expressing solid tumor cell lines. RESULTS: Differentiated CAR­modified UCB-CD34+ cells exhibited enhanced transduction efficiency. The expression of anti-PD-L1 CAR significantly (P < 0.05) enhanced the cytotoxicity of differentiated CAR­modified UCB-CD34+ cells and CAR-modified UCB-CD34+-derived NK cells against PD-L1 high-expressing tumor cell line. In addition, CAR-modified UCB-CD34+-derived NK cells significantly (P < 0.05) restored the tumor-killing ability of exhausted PD-1 high T cells. CONCLUSION: Considering the more efficient transduction in stem cells and the possibility of producing CAR-NK cell products with higher yields, this approach is recommended for studies in the field of CAR-NK cells. Also, a pre-clinical study is now necessary to evaluate the safety and efficacy of these two CAR-NK cells individually and in combination with other therapeutic approaches.


Subject(s)
Antigens, CD34 , B7-H1 Antigen , Fetal Blood , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Fetal Blood/cytology , Antigens, CD34/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Differentiation , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/pathology
5.
Can J Vet Res ; 88(3): 87-93, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988333

ABSTRACT

There is a knowledge gap regarding the effect of extracorporeal shockwave treatment (ESWT) on the stress response and immunomodulatory and anti-inflammatory properties of equine umbilical cord blood mesenchymal stromal cells (CB-MSCs). The objective of this study was to investigate the presence of cellular oxidative stress, inflammatory response, and production of growth factors in CB-MSCs after treatment with ESWT. We hypothesized that CB-MSCs treated with ESWT will experience higher levels of cellular stress and increased production of anti-inflammatory cytokines and growth factors compared to untreated CB-MSCs.


Il existe un manque de connaissances concernant l'effet du traitement extracorporel par ondes de choc (ESWT) sur la réponse au stress et les propriétés immunomodulatrices et anti-inflammatoires des cellules stromales mésenchymateuses du sang de cordon ombilical équin (CB-MSCs). L'objectif de cette étude était d'étudier la présence de stress oxydatif cellulaire, de réponse inflammatoire et de production de facteurs de croissance dans les CB-MSCs après un traitement par ESWT. Nous avons émis l'hypothèse que les CB-MSCs traitées par ESWT connaîtront des niveaux plus élevés de stress cellulaire et une production accrue de cytokines anti-inflammatoires et de facteurs de croissance par rapport aux CB-MSCs non traitées.(Traduit par Docteur Serge Messier).


Subject(s)
Fetal Blood , Mesenchymal Stem Cells , Animals , Horses , Fetal Blood/cytology , Extracorporeal Shockwave Therapy/methods , Cytokines/metabolism , Cells, Cultured
6.
Stem Cell Res Ther ; 15(1): 210, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020429

ABSTRACT

BACKGROUND: Hemophilia B is an X-linked bleeding disorder caused by a mutation in the gene responsible for encoding coagulation factor IX (FIX). Gene therapy offers promising potential for curing this disease. However, the current method of relatively high dosage of virus injection carries inherent risks. The purpose of this study was to introduce a novel scAAV-DJ/8-LP1-hFIXco vector transduced human umbilical cord blood derived mesenchymal stem cells (HUCMSCs) as an alternative cell-based gene therapy to conventional gene therapy for Hemophilia B. METHODS: The LP1-hFIXco gene structure was designed by us through searching the literature from NCBI and the scAAV-DJ/8-LP1-hFIXco vector was constructed by a commercial company. The HUCMSCs were cultivated in routine approach and transduced with scAAV-DJ/8-LP1-hFIXco vector. The human FIX activation system was employed for detection of hFIXco activity. The RNA and protein expression levels of the hFIXco were evaluated using PCR and western blot techniques. In animal studies, both NSG and F9-KO mice were used for the experiment, in which clotting time was utilized as a parameter for bleeding assessment. The immunohistochemical analysis was used to assess the distribution of HUCMSCs in mouse tissue sections. The safety for tumorigenicity of this cell-based gene therapy was evaluated by pathological observation after hematoxylin-eosin staining. RESULTS: The transduction of HUCMSCs with the scAAV-DJ/8-LP1-hFIXco vector results in consistent and sustainable secretion of human FIXco during 5 months period both in vitro and in mouse model. The secretion level (hFIXco activity: 97.1 ± 2.3% at day 7 to 48.8 ± 4.5% at 5 months) was comparable to that observed following intravenous injection with a high dose of the viral vector (hFIXco activity: 95.2 ± 2.2% to 40.8 ± 4.3%). After a 5-month observation period, no clonal expansions of the transduced cells in tissues were observed in any of the mice studied. CONCLUSIONS: We have discovered a novel and safer HUCMSCs mediated approach potentially effective for gene therapy in hemophilia B.


Subject(s)
Factor IX , Genetic Therapy , Genetic Vectors , Hemophilia B , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Genetic Therapy/methods , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hemophilia B/therapy , Hemophilia B/genetics , Mice , Factor IX/genetics , Factor IX/metabolism , Mesenchymal Stem Cell Transplantation/methods , Genetic Vectors/genetics , Genetic Vectors/metabolism , Transduction, Genetic , Umbilical Cord/cytology , Mice, Knockout , Fetal Blood/cytology , Fetal Blood/metabolism
7.
Immun Inflamm Dis ; 12(6): e1329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031850

ABSTRACT

BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade all mammalian cells. It is well established that natural killer (NK) cells have critical protective roles in innate immunity during infections by intracellular pathogens. In the current study, we conducted an in vitro experiment to evaluate NK cell differentiation and activation from human umbilical cord blood mononuclear cells (UCB-MNCs) after infection with T. gondii tachyzoites. METHODS: UCB-MNCs were infected by fresh tachyzoites of type I (RH) or type II (PTG) strains of T. gondii pre-expanded in mesenchymal stem cells for 2 weeks in a medium enriched with stem cell factor, Flt3, IL-2, and IL-15. Flow cytometry analysis and western blot analysis were performed to measure the CD57+, CD56+, and Granzyme A (GZMA). RESULTS: Data revealed that incubation of UCB-MNCs with NK cell differentiation medium increased the CD57+, CD56+, and GZMA. UCB-MNCs cocultured with PTG tachyzoites showed a significant reduction of CD56+ and GZMA, but nonsignificant changes, in the levels of CD56+ compared to the control UCB-MNCs (p > .05). Noteworthy, 2-week culture of UCB-MNCs with type I (RH) tachyzoites significantly suppressed CD57+, CD56+, and GZMA, showing reduction of NK cell differentiation from cord blood cells. CONCLUSION: Our findings suggest that virulent T. gondii tachyzoites with cytopathic effects inhibit NK cell activation and eliminate innate immune responses during infection, and consequently enable the parasite to continue its survival in the host body.


Subject(s)
Cell Differentiation , Fetal Blood , Killer Cells, Natural , Toxoplasma , Humans , Killer Cells, Natural/immunology , Fetal Blood/cytology , Fetal Blood/immunology , Fetal Blood/parasitology , Cell Differentiation/immunology , Toxoplasma/immunology , Cells, Cultured , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Immunity, Innate , Lymphocyte Activation/immunology , Leukocytes, Mononuclear/immunology
8.
Biochem Pharmacol ; 226: 116413, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971333

ABSTRACT

Chronic nonhealing diabetic wounds are a critical clinical challenge. Regulatory T cells (Tregs) are immunosuppressive modulators affecting wound healing progression by controlling the inflammatory response. The current study attempted to investigate whether the exosomes derived from cord blood (CB) Tregs can accelerate the healing process. Exosomes were isolated from CB-Treg cultures using ultracentrifugation and validated with different specific markers of exosomes. The purified CB-Treg-derived exosomes were co-cultured with peripheral blood mononuclear cells (PBMCs) and CD14+ monocytes. The migration-promoting effect of CB-Treg-derived exosomes on fibroblasts and endothelial cells was investigated. We used thermosensitive Pluronic F-127 hydrogel (PF-127) loaded with CB-Treg-derived exosomes in a diabetic wound healing mouse model. CB-Treg-derived exosomes with 30-120 nm diameters revealed exosome-specific markers, such as TSG101, Alix, and CD63. CB-Treg-derived exosomes were mainly bound to the monocytes when co-cultured with PBMCs, and promoted monocyte polarization to the anti-inflammatory phenotype (M2) in vitro. CB-Treg-derived exosomes enhanced the migration of endothelial cells and fibroblasts. Furthermore, CB-Treg-derived exosomes treatment accelerated wound healing by downregulating inflammatory factor levels and upregulating the M2 macrophage ratio in vivo. Our findings indicated that CB-Treg-derived exosomes could be a promising cell-free therapeutic strategy for diabetic wound healing, partly by targeting monocytes.


Subject(s)
Diabetes Mellitus, Experimental , Exosomes , Fetal Blood , Monocytes , T-Lymphocytes, Regulatory , Wound Healing , Exosomes/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Wound Healing/drug effects , Wound Healing/physiology , Monocytes/metabolism , Monocytes/drug effects , Monocytes/immunology , Mice , Fetal Blood/cytology , Humans , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/immunology , Male , Mice, Inbred C57BL , Coculture Techniques , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects
9.
Blood Cells Mol Dis ; 108: 102871, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013336

ABSTRACT

A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.


Subject(s)
Antigens, CD34 , Apoptosis , Cell-Derived Microparticles , Fetal Blood , Hematopoietic Stem Cells , Oxidative Stress , Humans , Fetal Blood/cytology , Antigens, CD34/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cell-Derived Microparticles/metabolism , HL-60 Cells , Lipid Peroxidation , Leukocytes, Mononuclear/metabolism , Superoxide Dismutase/metabolism , Reactive Oxygen Species/metabolism
10.
J Int Med Res ; 52(7): 3000605241263729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39068531

ABSTRACT

Platelet-rich plasma (PRP), a blood product containing high concentrations of platelets, has been increasingly used for the treatment of a number of diseases because of its anti-inflammatory and regenerative properties. PRP is generally obtained from the patient's own peripheral blood when used in clinical applications, but allogeneic PRP extracted from umbilical cord blood has also attracted attention due to its unique advantages. The main purpose of this narrative review was to summarize the research and clinical application of cord blood-derived PRP (CB-PRP) in the treatment of diseases up to April 2024. This review also discusses the differences between CB-PRP and autologous PRP (A-PRP). A thorough search of PubMed® and Clinicaltrials.gov identified 13 articles and four clinical trials. To date, CB-PRP has been primarily studied in the fields of orthopaedics, dermatology, neurology, obstetrics/gynaecology and ophthalmology. This is likely to be because this research is relatively novel. Considering the differences between the characteristics of A-PRP and CB-PRP, it is thought that CB-PRP might hold more promise for broader applications in the future.


Subject(s)
Fetal Blood , Platelet-Rich Plasma , Humans , Fetal Blood/cytology
11.
Sci Rep ; 14(1): 15551, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969714

ABSTRACT

A major challenge in therapeutic approaches applying hematopoietic stem cells (HSCs) is the cell quantity. The primary objective of this study was to predict the miRNAs and anti-miRNAs using bioinformatics tools and investigate their effects on the expression levels of key genes predicted in the improvement of proliferation, and the inhibition of differentiation in HSCs isolated from Human umbilical cord blood (HUCB). A network including genes related to the differentiation and proliferation stages of HSCs was constructed by enriching data of text (PubMed) and StemChecker server with KEGG signaling pathways, and was improved using GEO datasets. Bioinformatics tools predicted a profile from miRNAs containing miR-20a-5p, miR-423-5p, and chimeric anti-miRNA constructed from 5'-miR-340/3'-miR-524 for the high-score genes (RB1, SMAD4, STAT1, CALML4, GNG13, and CDKN1A/CDKN1B genes) in the network. The miRNAs and anti-miRNA were transferred into HSCs using polyethylenimine (PEI). The gene expression levels were estimated using the RT-qPCR technique in the PEI + (miRNA/anti-miRNA)-contained cell groups (n = 6). Furthermore, CD markers (90, 16, and 45) were evaluated using flow cytometry. Strong relationships were found between the high-score genes, miRNAs, and chimeric anti-miRNA. The RB1, SMAD4, and STAT1 gene expression levels were decreased by miR-20a-5p (P < 0.05). Additionally, the anti-miRNA increased the gene expression level of GNG13 (P < 0.05), whereas the miR-423-5p decreased the CDKN1A gene expression level (P < 0.01). The cellular count also increased significantly (P < 0.05) but the CD45 differentiation marker did not change in the cell groups. The study revealed the predicted miRNA/anti-miRNA profile expands HSCs isolated from HUCB. While miR-20a-5p suppressed the RB1, SMAD4, and STAT1 genes involved in cellular differentiation, the anti-miRNA promoted the GNG13 gene related to the proliferation process. Notably, the mixed miRNA/anti-miRNA group exhibited the highest cellular expansion. This approach could hold promise for enhancing the cell quantity in HSC therapy.


Subject(s)
Cell Differentiation , Cell Proliferation , Hematopoietic Stem Cells , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Humans , Cell Proliferation/genetics , Cell Differentiation/genetics , Fetal Blood/cytology , Computational Biology/methods , Gene Regulatory Networks , Gene Expression Regulation , Gene Expression Profiling
12.
Stem Cell Res Ther ; 15(1): 234, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075614

ABSTRACT

Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neuroregenerative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad range of conditions including haematological conditions, metabolic disorders and neurological conditions, however clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some samples meaning that often a therapeutic dose cannot be achieved. This is particularly important when treating adults or when administering repeat doses of cells. To overcome this, UCB cell expansion is being explored to increase cell numbers. The current focus of UCB cell expansion is CD34+ haematopoietic stem cells (HSCs) for which the main application is treatment of haematological conditions. Currently there are 36 registered clinical trials that are examining the efficacy of expanded UCB cells with 31 of these being for haematological malignancies. Early data from these trials suggest that expanded UCB cells are a safe and feasible treatment option and show greater engraftment potential than unexpanded UCB. Outside of the haematology research space, expanded UCB has been trialled as a therapy in only two preclinical studies, one for spinal cord injury and one for hind limb ischemia. Proteomic analysis of expanded UCB cells in these studies showed that the cells were neuroprotective, anti-inflammatory and angiogenic. These findings are also supported by in vitro studies where expanded UCB CD34+ cells showed increased gene expression of neurotrophic and angiogenic factors compared to unexpanded CD34+ cells. Preclinical evidence demonstrates that unexpanded CD34+ cells are a promising therapy for neurological conditions where they have been shown to improve multiple indices of injury in rodent models of stroke, Parkinson's disease and neonatal hypoxic ischemic brain injury. This review will highlight the current application of expanded UCB derived HSCs in transplant medicine, and also explore the potential use of expanded HSCs as a therapy for neurological conditions. It is proposed that expanded UCB derived CD34+ cells are an appropriate cellular therapy for a range of neurological conditions in children and adults.


Subject(s)
Fetal Blood , Hematopoietic Stem Cells , Humans , Fetal Blood/cytology , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cord Blood Stem Cell Transplantation/methods , Antigens, CD34/metabolism
13.
Nature ; 630(8016): 412-420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839950

ABSTRACT

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells , Nuclear Proteins , Animals , Female , Humans , Male , Mice , Cells, Cultured , Endocytosis , Endosomes/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fetal Blood/cytology , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Liver/cytology , Liver/metabolism , Liver/embryology , Mitochondria/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Single-Cell Gene Expression Analysis
14.
Stem Cell Res Ther ; 15(1): 164, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853275

ABSTRACT

BACKGROUND: Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14-) and their engraftment into immunocompromised NOD/Shi-scid Il2rgnull (NOG) mice. METHODS: NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14- to generate CB-NOG, FL-NOG and FL-CD14--NOG, respectively. After 15-20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. RESULTS: We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. CONCLUSION: Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT.


Subject(s)
Antigens, CD34 , Liver , Animals , Humans , Antigens, CD34/metabolism , Mice , Liver/metabolism , Liver/pathology , Mice, Inbred NOD , Hematopoietic Stem Cell Transplantation , Mice, SCID , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/transplantation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Fetal Blood/cytology , Melanoma/pathology , Melanoma/immunology
15.
Elife ; 122024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829685

ABSTRACT

Precision gene editing in primary hematopoietic stem and progenitor cells (HSPCs) would facilitate both curative treatments for monogenic disorders as well as disease modelling. Precise efficiencies even with the CRISPR/Cas system, however, remain limited. Through an optimization of guide RNA delivery, donor design, and additives, we have now obtained mean precise editing efficiencies >90% on primary cord blood HSCPs with minimal toxicity and without observed off-target editing. The main protocol modifications needed to achieve such high efficiencies were the addition of the DNA-PK inhibitor AZD7648, and the inclusion of spacer-breaking silent mutations in the donor in addition to mutations disrupting the PAM sequence. Critically, editing was even across the progenitor hierarchy, did not substantially distort the hierarchy or affect lineage outputs in colony-forming cell assays or the frequency of high self-renewal potential long-term culture initiating cells. As modelling of many diseases requires heterozygosity, we also demonstrated that the overall editing and zygosity can be tuned by adding in defined mixtures of mutant and wild-type donors. With these optimizations, editing at near-perfect efficiency can now be accomplished directly in human HSPCs. This will open new avenues in both therapeutic strategies and disease modelling.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Humans , Gene Editing/methods , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems/genetics , Fetal Blood/cytology , Cells, Cultured
16.
Cells ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920694

ABSTRACT

Background Recently, mesenchymal stromal cells (MSCs) have gained recognition for their clinical utility in transplantation to induce tolerance and to improve/replace pharmacological immunosuppression. Cord blood (CB)-derived MSCs are particularly attractive for their immunological naivety and peculiar anti-inflammatory and anti-apoptotic properties. OBJECTIVES: The objective of this study was to obtain an inventory of CB MSCs able to support large-scale advanced therapy medicinal product (ATMP)-based clinical trials. STUDY DESIGN: We isolated MSCs by plastic adherence in a GMP-compliant culture system. We established a well-characterized master cell bank and expanded a working cell bank to generate batches of finished MSC(CB) products certified for clinical use. The MSC(CB) produced by our facility was used in approved clinical trials or for therapeutic use, following single-patient authorization as an immune-suppressant agent. RESULTS: We show the feasibility of a well-defined MSC manufacturing process and describe the main indications for which the MSCs were employed. We delve into a regulatory framework governing advanced therapy medicinal products (ATMPs), emphasizing the need of stringent quality control and safety assessments. From March 2012 to June 2023, 263 of our Good Manufacturing Practice (GMP)-certified MSC(CB) preparations were administered as ATMPs in 40 subjects affected by Graft-vs.-Host Disease, nephrotic syndrome, or bronco-pulmonary dysplasia of the newborn. There was no infusion-related adverse event. No patient experienced any grade toxicity. Encouraging preliminary outcome results were reported. Clinical response was registered in the majority of patients treated under therapeutic use authorization. CONCLUSIONS: Our 10 years of experience with MSC(CB) described here provides valuable insights into the use of this innovative cell product in immune-mediated diseases.


Subject(s)
Fetal Blood , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Quality Control , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Fetal Blood/cytology , Female , Mesenchymal Stem Cell Transplantation/methods , Male , Adult , Middle Aged , Adolescent , Aged , Young Adult , Child
17.
Vox Sang ; 119(8): 867-877, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839078

ABSTRACT

BACKGROUND AND OBJECTIVES: In Japan, cord blood transplantations exceed those done with adult-sourced unrelated stem cells. This study analyses cord blood (CB) storage criteria to maintain high-quality CB units. MATERIALS AND METHODS: The Kanto-Koshinetsu Cord Blood Bank received 29,795 units from 2014 to 2021, mostly >60 mL, and 5486 (18.4%) were stored as transplantable units. We investigated the mother's gestational period, CB volume, total nucleated cells (TNCs), CD34+ cells, total colony-forming units (CFUs), time from collection to reception and cryopreservation, cell viability, and the reasons for not storing a unit. RESULTS: The average time from collection to reception of 29,795 units was 18.0 h. The most common reason for not storing a CB unit was low cell numbers (pre-processing TNC count <1.2 billion), accounting for 67.9% of the units received. There was no correlation between the CB volume and the CD34+ cell count. The shorter the gestational period, the lower the TNC count, but the higher the CD34+ cell count. There was no correlation between the time from collection to cryopreservation, within a 36-h time limit, and the CD34+ cell recovery rate. CONCLUSION: We could accept units with a TNC count <1.2 billion and a CB volume <60 mL from a gestational period of 38 weeks or less if we did a pre-processing CD34+ cell count. This would secure more units rich in CD34+ cells.


Subject(s)
Blood Banks , Blood Preservation , Cryopreservation , Fetal Blood , Humans , Fetal Blood/cytology , Japan , Blood Banks/standards , Blood Preservation/methods , Female , Cord Blood Stem Cell Transplantation , Antigens, CD34 , Pregnancy , Male
18.
Stem Cells Transl Med ; 13(7): 606-624, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38819251

ABSTRACT

INTRODUCTION: Lung injuries, such as bronchopulmonary dysplasia (BPD), remain a major complication of preterm birth, with limited therapeutic options. One potential emerging therapy is umbilical cord blood (UCB)-derived therapy. OBJECTIVES: To systematically assess the safety and efficacy of UCB-derived therapy for preterm lung injury in preclinical and clinical studies. METHODS: A systematic search of MEDLINE, Embase, CENTRAL, ClinicalTrials.gov, and WHO International Trials Registry Platform was performed. A meta-analysis was conducted with Review Manager (5.4.1) using a random effects model. Data was expressed as standardized mean difference (SMD) for preclinical data and pooled relative risk (RR) for clinical data, with 95% confidence intervals (CI). Potential effect modifiers were investigated via subgroup analysis. Certainty of evidence was assessed using the GRADE system. RESULTS: Twenty-three preclinical studies and six clinical studies met eligibility criteria. Statistically significant improvements were seen across several preclinical outcomes, including alveolarization (SMD, 1.32, 95%CI [0.99, 1.65]), angiogenesis (SMD, 1.53, 95%CI [0.87, 2.18]), and anti-inflammatory cytokines (SMD, 1.68, 95%CI [1.03, 2.34]). In clinical studies, 103 preterm infants have received UCB-derived therapy for preterm lung injury and no significant difference was observed in the development of BPD (RR, 0.93, 95%CI [0.73, 1.18]). Across both preclinical and clinical studies, administration of UCB-derived therapy appeared safe. Certainty of evidence was assessed as "low." CONCLUSIONS: Administration of UCB-derived therapy was associated with statistically significant improvements across several lung injury markers in preclinical studies. Early clinical studies demonstrated the administration of UCB-derived therapy as safe and feasible but lacked data regarding efficacy.


Subject(s)
Fetal Blood , Humans , Fetal Blood/cytology , Bronchopulmonary Dysplasia/therapy , Infant, Newborn , Infant, Premature , Lung Injury/therapy , Animals , Cord Blood Stem Cell Transplantation/methods
19.
J Immunol ; 213(2): 115-124, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38809115

ABSTRACT

Human umbilical cord blood (UCB) represents a unique resource for hematopoietic stem cell transplantation for children and patients lacking suitable donors. UCB harbors a diverse set of leukocytes such as professional APCs, including monocytes, that could act as a novel source for cellular therapies. However, the immunological properties of UCB monocytes and monocyte-derived dendritic cells (MoDCs) are not fully characterized. In this study, we characterized the phenotype and functions of UCB-MoDCs to gauge their potential for future applications. UCB exhibited higher frequencies of platelets and lymphocytes as well as lower frequencies of neutrophils in comparison with adult whole blood. Leukocyte subset evaluation revealed significantly lower frequencies of granulocytes, NK cells, and CD14+CD16- monocytes. Surface marker evaluation revealed significantly lower rates of costimulatory molecules CD80 and CD83 while chemokine receptors CCR7 and CXCR4, as well as markers for Ag presentation, were similarly expressed. UCB-MoDCs were sensitive to TLR1-9 stimulation and presented quantitative differences in the release of proinflammatory cytokines. UCB-MoDCs presented functional CCR7-, CXCR4-, and CCR5-associated migratory behavior as well as adequate receptor- and micropinocytosis-mediated Ag uptake. When cocultured with allogeneic T lymphocytes, UCB-MoDCs induced weak CD4+ T lymphocyte proliferation, CD71 expression, and release of IFN-γ and IL-2. Taken together, UCB-MoDCs present potentially advantageous properties for future medical applications.


Subject(s)
Dendritic Cells , Fetal Blood , Monocytes , Humans , Fetal Blood/cytology , Fetal Blood/immunology , Dendritic Cells/immunology , Monocytes/immunology , Cell Differentiation/immunology , Coculture Techniques , Cells, Cultured , Cytokines/metabolism , Cytokines/immunology , Lymphocyte Activation/immunology , Adult , Cell Proliferation
20.
Arch Gynecol Obstet ; 310(2): 1109-1119, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816625

ABSTRACT

PURPOSE: There are abundant hematopoietic stem cells (HSCs) in cord blood. It is known that HSCs continue to differentiate to CLP, CMP and erythroid progenitor cells (EPC), EPC ultimately differentiated to platelets and erythrocytes. It has been reported that the proportion of HSCs in cord blood was higher than that in healthy pregnant women, so as the incidence of neonatal polycythemia in gestational diabetes mellitus (GDM) patients. We aimed to investigate whether the hyperglycemic and/or hyperinsulin environment in GDM patients has effects on the differentiation of HSCs into erythrocytes in offspring cord blood. METHODS: In this study, we collected cord blood from 23 GDM patients and 52 healthy pregnant women at delivery. HSCs, CLP, CMP and EPCs in cord blood of the two groups were identified and quantified by flow cytometry. HSCs were sorted out and treated with glucose and insulin, respectively, and then, the changes of HSCs proliferation and differentiation were detected. RESULTS: Compared to healthy controls, HSCs, CMP and EPC numbers in cord blood from GDM group were significantly increased, while CLP cell number was decreased. The differentiation of HSCs into EPC was promoted after treatment with glucose or insulin. CONCLUSION: There were more HSCs in the cord blood of GDM group, and the differentiation of HSCs to EPCs was increased. These findings were probably caused by the high-glucose microenvironment and insulin medication in GDM patients, and the HSCs differentiation changes might be influencing factors of the high incidence of neonatal erythrocytosis in GDM patients.


Subject(s)
Cell Differentiation , Diabetes, Gestational , Fetal Blood , Hematopoietic Stem Cells , Humans , Diabetes, Gestational/blood , Female , Fetal Blood/cytology , Pregnancy , Adult , Hematopoietic Stem Cells/cytology , Infant, Newborn , Case-Control Studies , Insulin/blood , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL