Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56.340
Filter
1.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39012627

ABSTRACT

Centrosomes are the main microtubule-organizing centers in animal cells. Due to the semiconservative nature of centrosome duplication, the two centrosomes differ in age. In asymmetric stem cell divisions, centrosome age can induce an asymmetry in half-spindle lengths. However, whether centrosome age affects the symmetry of the two half-spindles in tissue culture cells thought to divide symmetrically is unknown. Here, we show that in human epithelial and fibroblastic cell lines centrosome age imposes a mild spindle asymmetry that leads to asymmetric cell daughter sizes. At the mechanistic level, we show that this asymmetry depends on a cenexin-bound pool of the mitotic kinase Plk1, which favors the preferential accumulation on old centrosomes of the microtubule nucleation-organizing proteins pericentrin, γ-tubulin, and Cdk5Rap2, and microtubule regulators TPX2 and ch-TOG. Consistently, we find that old centrosomes have a higher microtubule nucleation capacity. We postulate that centrosome age breaks spindle size symmetry via microtubule nucleation even in cells thought to divide symmetrically.


Subject(s)
Cell Cycle Proteins , Centrosome , Microtubules , Protein Serine-Threonine Kinases , Spindle Apparatus , Centrosome/metabolism , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Spindle Apparatus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Microtubules/metabolism , Polo-Like Kinase 1 , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Epithelial Cells/metabolism , Cell Line , Cell Division , Tubulin/metabolism , Fibroblasts/metabolism , Antigens , Nerve Tissue Proteins
2.
Sci Rep ; 14(1): 16459, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013942

ABSTRACT

Beneficial effects of sodium glucose co-transporter 2 inhibitors (SGLT2is) in cardiovascular diseases have been extensively reported leading to the inclusion of these drugs in the treatment guidelines for heart failure. However, molecular actions especially on non-myocyte cells remain uncertain. We observed dose-dependent inhibitory effects of two SGLT2is, dapagliflozin (DAPA) and empagliflozin (EMPA), on inflammatory signaling in human umbilical vein endothelial cells. Proteomic analyses and subsequent enrichment analyses discovered profound effects of these SGLT2is on proteins involved in mitochondrial respiration and actin cytoskeleton. Validation in functional oxygen consumption measurements as well as tube formation and migration assays revealed strong impacts of DAPA. Considering that most influenced parameters played central roles in endothelial to mesenchymal transition (EndMT), we performed in vitro EndMT assays and identified substantial reduction of mesenchymal and fibrosis marker expression as well as changes in cellular morphology upon treatment with SGLT2is. In line, human cardiac fibroblasts exposed to DAPA showed less proliferation, reduced ATP production, and decelerated migration capacity while less extensive impacts were observed upon EMPA. Mechanistically, sodium proton exchanger 1 (NHE1) as well as sodium-myoinositol cotransporter (SMIT) and sodium-multivitamin cotransporter (SMVT) could be identified as relevant targets of SGLT2is in non-myocyte cardiovascular cells as validated by individual siRNA-knockdown experiments. In summary, we found comprehensive beneficial effects of SGLT2is on human endothelial cells and cardiac fibroblasts. The results of this study therefore support a distinct effect of selected SGLT2i on non-myocyte cardiovascular cells and grant further insights into potential molecular mode of action of these drugs.


Subject(s)
Benzhydryl Compounds , Fibroblasts , Glucosides , Human Umbilical Vein Endothelial Cells , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Epithelial-Mesenchymal Transition/drug effects , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Cell Movement/drug effects , Cell Proliferation/drug effects
3.
Glycobiology ; 34(8)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38976017

ABSTRACT

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of NOTCH1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O-fucose on NOTCH1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous NOTCH1 from control and patient fibroblasts and analyzed O-fucosylation using mass spectral glycoproteomics methods. NOTCH1 EGF8 to EGF12 comprise the ligand binding domain, and O-fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of NOTCH1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O-fucose at EGF12. Since the loss of O-fucose on EGF12 is known to have significant effects on NOTCH1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.


Subject(s)
Fibroblasts , Fucose , Fucosyltransferases , Receptor, Notch1 , Humans , Fibroblasts/metabolism , Fucose/metabolism , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/chemistry , EGF Family of Proteins/metabolism
4.
Nat Commun ; 15(1): 5949, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009587

ABSTRACT

Bullous pemphigoid (BP) is a type 2 inflammation- and immunity-driven skin disease, yet a comprehensive understanding of the immune landscape, particularly immune-stromal crosstalk in BP, remains elusive. Herein, using single-cell RNA sequencing (scRNA-seq) and in vitro functional analyzes, we pinpoint Th2 cells, dendritic cells (DCs), and fibroblasts as crucial cell populations. The IL13-IL13RA1 ligand-receptor pair is identified as the most significant mediator of immune-stromal crosstalk in BP. Notably, fibroblasts and DCs expressing IL13RA1 respond to IL13-secreting Th2 cells, thereby amplifying Th2 cell-mediated cascade responses, which occurs through the specific upregulation of PLA2G2A in fibroblasts and CCL17 in myeloid cells, creating a positive feedback loop integral to immune-stromal crosstalk. Furthermore, PLA2G2A and CCL17 contribute to an increased titer of pathogenic anti-BP180-NC16A autoantibodies in BP patients. Our work provides a comprehensive insight into BP pathogenesis and shows a mechanism governing immune-stromal interactions, providing potential avenues for future therapeutic research.


Subject(s)
Chemokine CCL17 , Dendritic Cells , Fibroblasts , Pemphigoid, Bullous , Single-Cell Analysis , Th2 Cells , Humans , Pemphigoid, Bullous/immunology , Pemphigoid, Bullous/genetics , Single-Cell Analysis/methods , Fibroblasts/metabolism , Fibroblasts/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Chemokine CCL17/genetics , Chemokine CCL17/metabolism , Th2 Cells/immunology , Autoantibodies/immunology , Transcriptome , Interleukin-13/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Non-Fibrillar Collagens/immunology , Non-Fibrillar Collagens/genetics , Non-Fibrillar Collagens/metabolism , Inflammation/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling/methods , Male , Female , Autoantigens/immunology , Autoantigens/metabolism , Autoantigens/genetics , Collagen Type XVII , Myeloid Cells/metabolism , Myeloid Cells/immunology , Stromal Cells/metabolism , Stromal Cells/immunology
5.
ACS Appl Mater Interfaces ; 16(28): 36983-37006, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953207

ABSTRACT

Repairing multiphasic defects is cumbersome. This study presents new soft and hard scaffold designs aimed at facilitating the regeneration of multiphasic defects by enhancing angiogenesis and improving cell attachment. Here, the nonimmunogenic, nontoxic, and cost-effective human serum albumin (HSA) fibril (HSA-F) was used to fabricate thermostable (up to 90 °C) and hard printable polymers. Additionally, using a 10.0 mg/mL HSA-F, an innovative hydrogel was synthesized in a mixture with 2.0% chitosan-conjugated arginine, which can gel in a cell-friendly and pH physiological environment (pH 7.4). The presence of HSA-F in both hard and soft scaffolds led to an increase in significant attachment of the scaffolds to the human periodontal ligament fibroblast (PDLF), human umbilical vein endothelial cell (HUVEC), and human osteoblast. Further studies showed that migration (up to 157%), proliferation (up to 400%), and metabolism (up to 210%) of these cells have also improved in the direction of tissue repair. By examining different in vitro and ex ovo experiments, we observed that the final multiphasic scaffold can increase blood vessel density in the process of per-vascularization as well as angiogenesis. By providing a coculture environment including PDLF and HUVEC, important cross-talk between these two cells prevails in the presence of roxadustat drug, a proangiogenic in this study. In vitro and ex ovo results demonstrated significant enhancements in the angiogenic response and cell attachment, indicating the effectiveness of the proposed design. This approach holds promise for the regeneration of complex tissue defects by providing a conducive environment for vascularization and cellular integration, thus promoting tissue healing.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Neovascularization, Physiologic/drug effects , Serum Albumin, Human/chemistry , Glycine/chemistry , Glycine/pharmacology , Glycine/analogs & derivatives , Fibroblasts/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Cell Proliferation/drug effects , Amyloid/chemistry , Amyloid/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Tissue Engineering , Hydrogels/chemistry , Hydrogels/pharmacology , Temperature , Isoquinolines
6.
PLoS One ; 19(7): e0306248, 2024.
Article in English | MEDLINE | ID: mdl-38950058

ABSTRACT

Diabetic foot ulcers (DFUs) pose a significant challenge in diabetes care. Yet, a comprehensive understanding of the underlying biological disparities between healing and non-healing DFUs remains elusive. We conducted bioinformatics analysis of publicly available transcriptome sequencing data in an attempt to elucidate these differences. Our analysis encompassed differential analysis to unveil shifts in cell composition and gene expression profiles between non-healing and healing DFUs. Cell communication alterations were explored employing the Cellchat R package. Pseudotime analysis and cytoTRACE allowed us to dissect the heterogeneity within fibroblast subpopulations. Our findings unveiled disruptions in various cell types, localized low-grade inflammation, compromised systemic antigen processing and presentation, and extensive extracellular matrix signaling disarray in non-healing DFU patients. Some of these anomalies partially reverted in healing DFUs, particularly within the abnormal ECM-receptor signaling pathway. Furthermore, we distinguished distinct fibroblast subpopulations in non-healing and healing DFUs, each with unique biological functions. Healing-associated fibroblasts exhibited heightened extracellular matrix (ECM) remodeling and a robust wound healing response, while non-healing-associated fibroblasts showed signs of cellular senescence and complement activation, among other characteristics. This analysis offers profound insights into the wound healing microenvironment, identifies pivotal cell types for DFU healing promotion, and reveals potential therapeutic targets for DFU management.


Subject(s)
Diabetic Foot , Fibroblasts , Single-Cell Analysis , Transcriptome , Wound Healing , Diabetic Foot/genetics , Diabetic Foot/pathology , Diabetic Foot/metabolism , Humans , Wound Healing/genetics , Single-Cell Analysis/methods , Fibroblasts/metabolism , Fibroblasts/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Gene Expression Profiling , Signal Transduction/genetics
7.
J Gene Med ; 26(7): e3715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962887

ABSTRACT

BACKGROUND: The present study aimed to dissect the cellular complexity of Crohn's disease (CD) using single-cell RNA sequencing, focusing on identifying key cell populations and their transcriptional profiles in inflamed tissue. METHODS: We applied scRNA-sequencing to compare the cellular composition of CD patients with healthy controls, utilizing Seurat for clustering and annotation. Differential gene expression analysis and protein-protein interaction networks were constructed to identify crucial genes and pathways. RESULTS: Our study identified eight distinct cell types in CD, highlighting crucial fibroblast and T cell interactions. The analysis revealed key cellular communications and identified significant genes and pathways involved in the disease's pathology. The role of fibroblasts was underscored by elevated expression in diseased samples, offering insights into disease mechanisms and potential therapeutic targets, including responses to ustekinumab treatment, thus enriching our understanding of CD at a molecular level. CONCLUSIONS: Our findings highlight the complex cellular and molecular interplay in CD, suggesting new biomarkers and therapeutic targets, offering insights into disease mechanisms and treatment implications.


Subject(s)
Crohn Disease , Single-Cell Analysis , Ustekinumab , Crohn Disease/genetics , Crohn Disease/drug therapy , Humans , Ustekinumab/therapeutic use , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Protein Interaction Maps , Fibroblasts/metabolism , Biomarkers , Female , Transcriptome , Adult , Male , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Treatment Outcome , Sequence Analysis, RNA/methods , Gene Regulatory Networks
8.
Theranostics ; 14(9): 3603-3622, 2024.
Article in English | MEDLINE | ID: mdl-38948058

ABSTRACT

Background: Myofibroblasts (MYFs) are generally considered the principal culprits in excessive extracellular matrix deposition and scar formation in the pathogenesis of lung fibrosis. Lipofibroblasts (LIFs), on the other hand, are defined by their lipid-storing capacity and are predominantly found in the alveolar regions of the lung. They have been proposed to play a protective role in lung fibrosis. We previously reported that a LIF to MYF reversible differentiation switch occurred during fibrosis formation and resolution. In this study, we tested whether WI-38 cells, a human embryonic lung fibroblast cell line, could be used to study fibroblast differentiation towards the LIF or MYF phenotype and whether this could be relevant for idiopathic pulmonary fibrosis (IPF). Methods: Using WI-38 cells, Fibroblast (FIB) to MYF differentiation was triggered using TGF-ß1 treatment and FIB to LIF differentiation using Metformin treatment. We also analyzed the MYF to LIF and LIF to MYF differentiation by pre-treating the WI-38 cells with TGF-ß1 or Metformin respectively. We used IF, qPCR and bulk RNA-Seq to analyze the phenotypic and transcriptomic changes in the cells. We correlated our in vitro transcriptome data from WI-38 cells (obtained via bulk RNA sequencing) with the transcriptomic signature of LIFs and MYFs derived from the IPF cell atlas as well as with our own single-cell transcriptomic data from IPF patients-derived lung fibroblasts (LF-IPF) cultured in vitro. We also carried out alveolosphere assays to evaluate the ability of the proposed LIF and MYF cells to support the growth of alveolar epithelial type 2 cells. Results: WI-38 cells and LF-IPF display similar phenotypical and gene expression responses to TGF-ß1 and Metformin treatment. Bulk RNA-Seq analysis of WI-38 cells and LF-IPF treated with TGF-ß1, or Metformin indicate similar transcriptomic changes. We also show the partial conservation of the LIF and MYF signature extracted from the Habermann et al. scRNA-seq dataset in WI-38 cells treated with Metformin or TGF-ß1, respectively. Alveolosphere assays indicate that LIFs enhance organoid growth, while MYFs inhibit organoid growth. Finally, we provide evidence supporting the MYF to LIF and LIF to MYF reversible switch using WI-38 cells. Conclusions: WI-38 cells represent a versatile and reliable model to study the intricate dynamics of fibroblast differentiation towards the MYF or LIF phenotype associated with lung fibrosis formation and resolution, providing valuable insights to drive future research.


Subject(s)
Cell Differentiation , Fibroblasts , Idiopathic Pulmonary Fibrosis , Myofibroblasts , Transforming Growth Factor beta1 , Humans , Myofibroblasts/metabolism , Fibroblasts/metabolism , Cell Line , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Lung/pathology , Lung/cytology , Transcriptome , Metformin/pharmacology , Cell Plasticity/drug effects , Phenotype
9.
J Nanobiotechnology ; 22(1): 383, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951875

ABSTRACT

The characteristic features of the rheumatoid arthritis (RA) microenvironment are synovial inflammation and hyperplasia. Therefore, there is a growing interest in developing a suitable therapeutic strategy for RA that targets the synovial macrophages and fibroblast-like synoviocytes (FLSs). In this study, we used graphene oxide quantum dots (GOQDs) for loading anti-arthritic sinomenine hydrochloride (SIN). By combining with hyaluronic acid (HA)-inserted hybrid membrane (RFM), we successfully constructed a new nanodrug system named HA@RFM@GP@SIN NPs for target therapy of inflammatory articular lesions. Mechanistic studies showed that this nanomedicine system was effective against RA by facilitating the transition of M1 to M2 macrophages and inhibiting the abnormal proliferation of FLSs in vitro. In vivo therapeutic potential investigation demonstrated its effects on macrophage polarization and synovial hyperplasia, ultimately preventing cartilage destruction and bone erosion in the preclinical models of adjuvant-induced arthritis and collagen-induced arthritis in rats. Metabolomics indicated that the anti-arthritic effects of HA@RFM@GP@SIN NPs were mainly associated with the regulation of steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and tyrosine metabolism. More notably, transcriptomic analyses revealed that HA@RFM@GP@SIN NPs suppressed the cell cycle pathway while inducing the cell apoptosis pathway. Furthermore, protein validation revealed that HA@RFM@GP@SIN NPs disrupted the excessive growth of RAFLS by interfering with the PI3K/Akt/SGK/FoxO signaling cascade, resulting in a decline in cyclin B1 expression and the arrest of the G2 phase. Additionally, considering the favorable biocompatibility and biosafety, these multifunctional nanoparticles offer a promising therapeutic approach for patients with RA.


Subject(s)
Arthritis, Rheumatoid , Cell Proliferation , Graphite , Macrophages , Morphinans , Quantum Dots , Synoviocytes , Morphinans/pharmacology , Morphinans/chemistry , Animals , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Arthritis, Rheumatoid/drug therapy , Synoviocytes/drug effects , Synoviocytes/metabolism , Graphite/chemistry , Graphite/pharmacology , Cell Proliferation/drug effects , Rats , Macrophages/drug effects , Macrophages/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Male , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats, Sprague-Dawley , Mice , Humans , RAW 264.7 Cells , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology
10.
Open Biol ; 14(7): 240089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981514

ABSTRACT

Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.


Subject(s)
ARNTL Transcription Factors , Arthritis, Experimental , Circadian Rhythm , Fibroblasts , Synoviocytes , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Circadian Clocks/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Mice, Knockout , Disease Models, Animal , Gene Expression Regulation , Male
13.
Sci Rep ; 14(1): 15778, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982264

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the most predominant type of idiopathic interstitial pneumonia and has an increasing incidence, poor prognosis, and unclear pathogenesis. In order to investigate the molecular mechanisms underlying IPF further, we performed single-cell RNA sequencing analysis on three healthy controls and five IPF lung tissue samples. The results revealed a significant shift in epithelial cells (ECs) phenotypes in IPF, which may be attributed to the differentiation of alveolar type 2 cells to basal cells. In addition, several previously unrecognized basal cell subtypes were preliminarily identified, including extracellular matrix basal cells, which were increased in the IPF group. We identified a special population of fibroblasts that highly expressed extracellular matrix-related genes, POSTN, CTHRC1, COL3A1, COL5A2, and COL12A1. We propose that the close interaction between ECs and fibroblasts through ligand-receptor pairs may have a critical function in IPF development. Collectively, these outcomes provide innovative perspectives on the complexity and diversity of basal cells and fibroblasts in IPF and contribute to the understanding of possible mechanisms in pathological lung fibrosis.


Subject(s)
Fibroblasts , Idiopathic Pulmonary Fibrosis , Sequence Analysis, RNA , Single-Cell Analysis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Single-Cell Analysis/methods , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Male , Lung/pathology , Lung/metabolism , Extracellular Matrix/metabolism , Middle Aged
14.
F1000Res ; 13: 120, 2024.
Article in English | MEDLINE | ID: mdl-38988879

ABSTRACT

Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor ß receptor (TGFßR) on fibroblast cell states.


Subject(s)
Fibroblasts , Homeostasis , Receptors, Fibroblast Growth Factor , Receptors, Platelet-Derived Growth Factor , Humans , Fibroblasts/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Animals , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Transforming Growth Factor beta/metabolism
15.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38990714

ABSTRACT

Dermal fibroblasts deposit type I collagen, the dominant extracellular matrix molecule found in skin, during early postnatal development. Coincident with this biosynthetic program, fibroblasts proteolytically remodel pericellular collagen fibrils by mobilizing the membrane-anchored matrix metalloproteinase, Mmp14. Unexpectedly, dermal fibroblasts in Mmp14-/- mice commit to a large-scale apoptotic program that leaves skin tissues replete with dying cells. A requirement for Mmp14 in dermal fibroblast survival is recapitulated in vitro when cells are embedded within, but not cultured atop, three-dimensional hydrogels of crosslinked type I collagen. In the absence of Mmp14-dependent pericellular proteolysis, dermal fibroblasts fail to trigger ß1 integrin activation and instead actuate a TGF-ß1/phospho-JNK stress response that leads to apoptotic cell death in vitro as well as in vivo. Taken together, these studies identify Mmp14 as a requisite cell survival factor that maintains dermal fibroblast viability in postnatal dermal tissues.


Subject(s)
Apoptosis , Cell Survival , Fibroblasts , Matrix Metalloproteinase 14 , Animals , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Fibroblasts/metabolism , Mice , Mice, Knockout , Collagen Type I/metabolism , Collagen Type I/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Transforming Growth Factor beta1/metabolism , Dermis/metabolism , Dermis/cytology , Cells, Cultured , Extracellular Matrix/metabolism , Mice, Inbred C57BL , Skin/metabolism
16.
PLoS One ; 19(7): e0307227, 2024.
Article in English | MEDLINE | ID: mdl-38990974

ABSTRACT

Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon's ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon's ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon's ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon's ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon's ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon's ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes.


Subject(s)
Fibroblasts , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Sequence Analysis, RNA , Female , Male , Glaucoma/genetics , Glaucoma/pathology , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/pathology , Aged , Middle Aged , Filtering Surgery/adverse effects , Fibrosis/genetics , Cells, Cultured , Gene Expression Profiling
17.
Physiol Rep ; 12(13): e16148, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38991987

ABSTRACT

Pulmonary fibrosis is characterized by pathological accumulation of scar tissue in the lung parenchyma. Many of the processes that are implicated in fibrosis, including increased extracellular matrix synthesis, also occur following pneumonectomy (PNX), but PNX instead results in regenerative compensatory growth of the lung. As fibroblasts are the major cell type responsible for extracellular matrix production, we hypothesized that comparing fibroblast responses to PNX and bleomycin (BLM) would unveil key differences in the role they play during regenerative versus fibrotic lung responses. RNA-sequencing was performed on flow-sorted fibroblasts freshly isolated from mouse lungs 14 days after BLM, PNX, or sham controls. RNA-sequencing analysis revealed highly similar biological processes to be involved in fibroblast responses to both BLM and PNX, including TGF-ß1 and TNF-α. Interestingly, we observed smaller changes in gene expression after PNX than BLM at Day 14, suggesting that the fibroblast response to PNX may be muted by expression of transcripts that moderate pro-fibrotic pathways. Itpkc, encoding inositol triphosphate kinase C, was a gene uniquely up-regulated by PNX and not BLM. ITPKC overexpression in lung fibroblasts antagonized the pro-fibrotic effect of TGF-ß1. RNA-sequencing analysis has identified considerable overlap in transcriptional changes between fibroblasts following PNX and those overexpressing ITPKC.


Subject(s)
Bleomycin , Fibroblasts , Mice, Inbred C57BL , Pneumonectomy , Pulmonary Fibrosis , Bleomycin/pharmacology , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Mice , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/cytology , Lung/pathology , Male , Sequence Analysis, RNA/methods , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Cells, Cultured
18.
Nat Commun ; 15(1): 5834, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992003

ABSTRACT

We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.


Subject(s)
Cell- and Tissue-Based Therapy , Collagen Type VII , Epidermolysis Bullosa Dystrophica , Induced Pluripotent Stem Cells , Humans , Epidermolysis Bullosa Dystrophica/therapy , Epidermolysis Bullosa Dystrophica/genetics , Animals , Induced Pluripotent Stem Cells/transplantation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mice , Collagen Type VII/genetics , Collagen Type VII/metabolism , Cell- and Tissue-Based Therapy/methods , Fibroblasts/metabolism , Cell Differentiation , Keratinocytes/metabolism , Keratinocytes/transplantation , Skin/metabolism , Transplantation, Autologous , Male , Mutation , Female , Skin Transplantation/methods , Gene Editing/methods , CRISPR-Cas Systems
19.
Int J Biol Sci ; 20(9): 3353-3371, 2024.
Article in English | MEDLINE | ID: mdl-38993568

ABSTRACT

Radiation-induced pulmonary fibrosis (RIPF) represents a serious complication observed in individuals undergoing thoracic radiation therapy. Currently, effective interventions for RIPF are unavailable. Prior research has demonstrated that nintedanib, a Food and Drug Administration (FDA)-approved anti-fibrotic agent for idiopathic pulmonary fibrosis, exerts therapeutic effects on chronic fibrosing interstitial lung disease. This research aimed to investigate the anti-fibrotic influences of nintedanib on RIPF and reveal the fundamental mechanisms. To assess its therapeutic impact, a mouse model of RIPF was established. The process involved nintedanib administration at various time points, both prior to and following thoracic radiation. In the RIPF mouse model, an assessment was conducted on survival rates, body weight, computed tomography features, histological parameters, and changes in gene expression. In vitro experiments were performed to discover the mechanism underlying the therapeutic impact of nintedanib on RIPF. Treatment with nintedanib, administered either two days prior or four weeks after thoracic radiation, significantly alleviated lung pathological changes, suppressed collagen deposition, and improved the overall health status of the mice. Additionally, nintedanib demonstrated significant mitigation of radiation-induced inflammatory responses in epithelial cells by inhibiting the PI3K/AKT and MAPK signaling pathways. Furthermore, nintedanib substantially inhibited fibroblast-to-myofibroblast transition by suppressing the TGF-ß/Smad and PI3K/AKT/mTOR signaling pathways. These findings suggest that nintedanib exerts preventive and therapeutic effects on RIPF by modulating multiple targets instead of a single anti-fibrotic pathway and encourage the further clinical trials to determine the efficacy of nintedanib in patients with RIPF.


Subject(s)
Fibroblasts , Indoles , Pulmonary Fibrosis , Animals , Indoles/therapeutic use , Indoles/pharmacology , Mice , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/drug therapy , Fibroblasts/drug effects , Fibroblasts/metabolism , Epithelial Cells/drug effects , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Mice, Inbred C57BL , Inflammation/drug therapy , Signal Transduction/drug effects
20.
Cells ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38994943

ABSTRACT

Gingival fibroblasts (GFs) can differentiate into osteoblast-like cells and induce osteoclast precursors to differentiate into osteoclasts. As it is unclear whether these two processes influence each other, we investigated how osteogenic differentiation of GFs affects their osteoclast-inducing capacity. To establish step-wise mineralization, GFs were cultured in four groups for 3 weeks, without or with osteogenic medium for the final 1, 2, or all 3 weeks. The mineralization was assessed by ALP activity, calcium concentration, scanning electron microscopy (SEM), Alizarin Red staining, and quantitative PCR (qPCR). To induce osteoclast differentiation, these cultures were then co-cultured for a further 3 weeks with peripheral blood mononuclear cells (PBMCs) containing osteoclast precursors. Osteoclast formation was assessed at different timepoints with qPCR, enzyme-linked immunosorbent assay (ELISA), TRAcP activity, and staining. ALP activity and calcium concentration increased significantly over time. As confirmed with the Alizarin Red staining, SEM images showed that the mineralization process occurred over time. Osteoclast numbers decreased in the GF cultures that had undergone osteogenesis. TNF-α secretion, a costimulatory molecule for osteoclast differentiation, was highest in the control group. GFs can differentiate into osteoblast-like cells and their degree of differentiation reduces their osteoclast-inducing capacity, indicating that, with appropriate stimulation, GFs could be used in regenerative periodontal treatments.


Subject(s)
Cell Differentiation , Fibroblasts , Gingiva , Osteoclasts , Osteogenesis , Humans , Osteoclasts/metabolism , Osteoclasts/cytology , Gingiva/cytology , Fibroblasts/metabolism , Fibroblasts/cytology , Cells, Cultured , Calcium/metabolism , Tumor Necrosis Factor-alpha/metabolism , Coculture Techniques , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL